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Bound on optimal local 
discrimination of multipartite 
quantum states
Donghoon Ha & Jeong San Kim*

We consider the unambiguous discrimination of multipartite quantum states and provide an upper 
bound for the maximum success probability of optimal local discrimination. We also provide a 
necessary and sufficient condition to realize the upper bound. We further establish a necessary and 
sufficient condition for this upper bound to be saturated. Finally, we illustrate our results using 
examples in multidimensional multipartite quantum systems.

Quantum nonlocality is a quintessential phenomenon of multipartite quantum systems which does not have 
any classical counterpart. Entanglement is one of the most representative nonlocal quantum correlations which 
cannot be realized only by local operations and classical communication (LOCC)1,2. It is known that the nonlocal 
property of quantum entanglement can be used as a resource in many quantum information processing  tasks3.

Quantum nonlocal phenomenon can also arise in multipartite quantum state discrimination, which is an 
essential process for efficient information transfer in quantum communication. In general, orthogonal quantum 
states can be discriminated with certainty, whereas such discrimination is impossible for nonorthogonal quantum 
states. Along this line, state discrimination strategies are needed to discriminate nonorthogonal quantum states 
at least with some nonzero  probability4–7. However, some orthogonal states of multipartite quantum systems 
cannot be discriminated with certainty when the available measurements are limited to LOCC  measurements8. 
As orthogonal states can always be discriminated with certainty when there is no limitation of possible measure-
ment, this limited discrimination ability of LOCC measurement reveals the nonlocal phenomenon inherent in 
quantum state discrimination.

Nonlocal phenomenon of quantum state discrimination can also arise in discriminating nonorthogonal states 
of multipartite quantum systems; it is known that some nonorthogonal states cannot be optimally discriminated 
using only  LOCC9–11. For this reason, much attention has been shown for the optimal local discrimination of 
multipartite quantum  states12–19. Nevertheless, realizing optimal local discrimination still remains a challenging 
task because it is hard to have a good mathematical characterization of LOCC.

One efficient way to overcome this difficulty is to investigate possible upper bounds for the maximum success 
probability of optimal local discrimination. For a better understanding of optimal local discrimination, it is also 
important to establish good conditions realizing such upper bounds. Recently, an upper bound of maximum 
success probability was established in local minimum-error discrimination of bipartite quantum states. Moreover, 
a necessary and sufficient condition was also provided for this upper bound to be  saturated20.

Here, we consider unambiguous discrimination (UD)21–24 among multipartite quantum states of arbitrary 
dimensions and provide an upper bound for the maximum success probability of optimal local discrimina-
tion. Moreover, we provide a necessary and sufficient condition to realize this upper bound. We also establish a 
necessary and sufficient condition for this upper bound to be saturated. Finally, we illustrate our results using 
examples in multidimensional multipartite quantum systems.

This paper is organized as follows. In the “Results” Section, we first recall the definition and some properties 
about separable operators and separable measurements in multipartite quantum systems. We further recall the 
definition of UD and provide some useful properties of optimal UD (Proposition 1). As the main results of this 
paper, we provide an upper bound for the maximum success probability of optimal local discrimination by using 
a certain class of Hermitian operators acting on multipartite Hilbert space (Theorem 1). Moreover, we provide a 
necessary and sufficient condition for the Hermitian operator to realize this upper bound (Theorem 2 and Corol-
lary 1). We also establish a necessary and sufficient condition for this upper bound to be saturated (Corollary 2). 
We illustrate our results by examples in multidimensional multipartite quantum systems (Examples 1 and 2). In 
the “Methods” Section, we provide a detail proof of Theorem 1. In the “Discussion” Section, we summarize our 
results and discuss possible future works related to our results.
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Results
In multipartite quantum systems, a state is described by a density operator ρ acting on a multipartite Hilbert space 
H =

⊗m
k=1 Hk consisting of the subsystems Hk

∼= C
dk with m � 2 and positive integers dk for k = 1, . . . ,m . A 

measurement is expressed by a positive operator-valued measure(POVM) {Mi}i that is a set of positive-semidefinite 
operators Mi � 0 on H satisfying completeness relation 

∑
i Mi = 1 , where 1 is the identity operator on H . The 

probability of obtaining the measurement outcome corresponding to Mj is Tr(ρMj) for the prepared state ρ.
A positive-semidefinite operator E (not necessarily a state) on H is called separable if it can be represented 

as a summation of positive-semidefinite product operators, that is,

where El,k is a positive-semidefinite operator on Hk for each k = 1, . . . ,m . We denote the set of all positive-
semidefinite separable operators on H as

A measurement {Mi}i is called a LOCC measurement if it can be implemented by LOCC, and it is called separable 
if Mi ∈ SEP for all i. It is known that every LOCC measurement is  separable1.

A simple example of LOCC measurement is {M1,i1 ⊗ · · · ⊗Mm,im}i1,...,im where {Ml,il }il is a POVM on the 
lth subsystem for each l = 1, . . . ,m . This separable measurement can be implemented by local measurements 
and classical communication; For each l = 1, . . . ,m , a local measurement {Ml,il }il is performed on the lth sub-
system; If it is confirmed through classical communication that the measurement result of the lth subsystem 
is Ml,il for each l = 1, . . . ,m , the measurement result of the whole system becomes M1,i1 ⊗ · · · ⊗Mm,im . Thus, 
{M1,i1 ⊗ · · · ⊗Mm,im}i1,...,im is a LOCC measurement.

Here, we consider the situation of discriminating multipartite quantum states ρ1, . . . , ρn where the state ρi is 
prepared with the probability ηi . We denote this situation as an ensemble E = {ηi , ρi}ni=1 . Moreover, we consider 
the discrimination of the multipartite state ensemble E using a measurement {Mi}ni=0 where M0 gives inconclusive 
results about the prepared state and Mi provides conclusive results of ρi for each i = 1, . . . , n . For the conclusive 
results to be unambiguous, so-called no-error condition is required;

By defining

Eq. (3) can be rewritten as

We say that a measurement {Mi}ni=0 is unambiguous if it satisfies the no-error condition in Eq. (5).
The optimal UD of E is to minimize the probability of obtaining inconclusive results. Equivalently, the optimal 

UD of E is to achieve the optimal success probability of E = {ηi , ρi}ni=1 defined as

where the maximum is taken over all possible unambiguous measurements. The following proposition provide 
a necessary and sufficient condition of an optimal unambiguous measurement realizing pG(E )25.

Proposition 1 For given ensemble E = {ηi , ρi}ni=1 , an unambiguous measurement {Mi}ni=0 provides the optimal 
success probability pG(E ) if and only if there is a Hermitian operator K satisfying the following condition, 

 where Pos∗i (E )(i = 1, . . . , n ) is the dual set of Posi(E ) defined as

In this case, we have

For each Posi(E ) in Eq. (4), we denote the subset of separable operators,

(1)E =
∑

l

⊗m
k=1 El,k ,

(2)SEP =
{
E
∣∣E: a positive-semidefinite separable operator acting onH

}
.

(3)Tr(ρiMj) = 0 ∀i, j = 1, . . . , n with i �= j.

(4)Posi(E ) = {E � 0 |Tr(ρjE) = 0 ∀j = 1, . . . , n with j �= i},

(5)Mi ∈ Posi(E ) ∀i = 1, . . . , n.

(6)
pG(E ) = max

POVM
with (5)

n∑

i=1

ηiTr(ρiMi),

(7a)K � 0,

(7b)Tr(M0K) = 0,

(7c)K − ηiρi ∈ Pos∗i (E ) ∀i = 1, . . . , n,

(7d)Tr[Mi(K − ηiρi)] = 0 ∀i = 1, . . . , n,

(8)Pos∗i (E ) = {A |A† = A, Tr(AB) � 0 ∀B ∈ Posi(E )}.

(9)pG(E ) =
n∑

i=1
ηiTr(ρiMi) = TrK .
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The unambiguous measurement {Mi}ni=0 is called separable if

where SEP is defined in Eq. (2).
When the available measurements are limited to separable unambiguous measurements, we denote the maxi-

mum success probability by

We use pL(E ) to denote the maximum of success probability that can be obtained using LOCC unambiguous 
measurements, that is,

For a given ensemble E = {ηi , ρi}ni=1 , we define qSEP(E ) as the minimum quantity

over all possible Hermitian operator H satisfying 

where SEP∗ and SEP∗i (E )(i = 1, . . . , n ) are the dual sets of SEP and SEPi(E ) in Eqs. (2) and (10), respec-
tively, that is,

Note that SEP∗ contains all positive-semidefinite operators because every element of SEP is positive semidefinite. 
Due to the similar reason, SEP∗i (E )(i = 1, . . . , n ) contains all positive-semidefinite operators.

The following theorem shows that qSEP(E ) is equal to pSEP(E ) in Eq. (12). The proof of Theorem 1 is pro-
vided in the “Methods” Section.

Theorem 1 For a multipartite quantum state ensemble E = {ηi , ρi}ni=1,

 For a given ensemble E = {ηi , ρi}ni=1 , the following theorem provides a necessary and sufficient condition on 
a Hermitian operator H to realize qSEP(E ).

Theorem 2 For a multipartite quantum state ensemble E = {ηi , ρi}ni=1 , a Hermitian operator H satisfying Condi-
tion (15) gives qSEP(E ) if and only if there is a separable unambiguous measurement {Mi}ni=0 such that, 

 In this case, we have

Proof For the necessity, suppose that H is a Hermitian operator providing qSEP(E ) . We also denote {Mi}ni=0 as 
a separable unambiguous measurement giving pSEP(E ) . From Conditions (11) and (15), we have

We also note that

(10)SEPi(E ) = Posi(E ) ∩ SEP = {E ∈ SEP |Tr(ρjE) = 0 ∀j = 1, . . . , n with j �= i}.

(11)M0 ∈ SEP, Mi ∈ SEPi(E ) ∀i = 1, . . . , n,

(12)
pSEP(E ) = max

POVM
with (11)

n∑

i=1

ηiTr(ρiMi).

(13)
pL(E ) = max

LOCC POVM
with (5)

n∑

i=1

ηiTr(ρiMi).

(14)qSEP(E ) = minTrH

(15a)H ∈ SEP∗,

(15b)H − ηiρi ∈ SEP∗i (E ) ∀i = 1, . . . , n,

(16)
SEP∗ = {A |A† = A, Tr(AB) � 0 ∀B ∈ SEP},

SEP∗i (E ) = {A |A† = A, Tr(AB) � 0 ∀B ∈ SEPi(E )}.

(17)pSEP(E ) = qSEP(E ).

(18a)Tr(M0H) = 0,

(18b)Tr[Mi(H − ηiρi)] = 0 ∀i = 1, . . . , n.

(19)qSEP(E ) = TrH =
n∑

i=1
ηiTr(ρiMi).

(20)Tr(M0H) � 0, Tr[Mi(H − ηiρi)] � 0 ∀i = 1, . . . , n.

(21)Tr(M0H)+
n∑

i=1
Tr[Mi(H − ηiρi)] = TrH −

n∑
i=1

ηiTr(ρiMi) = qSEP(E )− pSEP(E ) = 0,
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where the first equality follows from 
∑n

i=0 Mi = 1 , the second equality is due to the assumption of H and {Mi}ni=0 , 
and the last equality is by Theorem 1. Inequality (20) and Eq. (21) lead us to Condition (18). Therefore, {Mi}ni=0 
is a separable unambiguous measurement satisfying Condition (18).

For the sufficiency, we assume that {Mi}ni=0 is a separable unambiguous measurement and H is a Hermitian 
operator satisfying Conditions (15) and (18). This assumption implies,

where the first equality follows from Theorem 1, the second equality is from Condition (18), the last equal-
ity is due to 

∑n
i=0 Mi = 1 , and the first and second inequalities are from the definitions of pSEP(E ) and 

qSEP(E ) , respectively. Inequality (22) leads us to TrH = qSEP(E ) . Therefore, H is a Hermitian operator giving 
qSEP(E ) .   �

From Theorems 1 and 2, we have the following corollary providing a necessary and sufficient condition on a 
separable unambiguous measurement {Mi}ni=0 to realize pSEP(E ).

Corollary 1. For a multipartite quantum state ensemble E = {ηi , ρi}ni=1 , a separable unambiguous measurement 
{Mi}ni=0 gives pSEP(E ) if and only if there is a Hermitian operator H satisfying Conditions (15) and (18). In this 
case, we have,

Moreover, we have the following corollary that provides the relative ordering between pL(E ) and qSEP(E ).

Corollary 2. For a multipartite quantum state ensemble E = {ηi , ρi}ni=1,

where the equality holds if and only if there is a LOCC unambiguous measurement {Mi}ni=0 and a Hermitian opera-
tor H satisfying Conditions (15) and (18).

Proof Since every LOCC measurement is separable, pL(E ) � pSEP(E ) . Moreover, pL(E ) = pSEP(E ) if and 
only if there is a LOCC unambiguous measurement realizing pSEP(E ) . Thus, we can show from Theorem 1 and 
Corollary 1 that our statement is true.   �

Here, we provide the following example of two-qubit state ensemble E to illustrate how our results can be 
used to obtain pG(E ) , qSEP(E ) , and pL(E ).

Example 1. Let us consider the two-qubit state ensemble E = {ηi , ρi}3i=1 consisting of three product states with 
equal prior probabilities,

To obtain pG(E ) , we use the unambiguous measurement {Mi}3i=0 with

and Hermitian operator

where

are the Bell states in two-qubit systems. We will show the unambiguous measurement {Mi}3i=0 and the Hermitian 
operator K satisfy the conditions of Proposition 1 for the ensemble E = {ηi , ρi}3i=1 in Eq. (25).

(22)

qSEP(E ) = pSEP(E ) �
n∑

i=1
ηiTr(ρiMi) =

n∑
i=1

ηiTr(ρiMi)+ Tr(M0H)+
n∑

i=1
Tr[Mi(H − ηiρi)] = TrH � qSEP(E ),

(23)pSEP(E ) =
n∑

i=1
ηiTr(ρiMi) = TrH .

(24)pL(E ) � qSEP(E ),

(25)
η1 = 1

3 , ρ1 = |0��0| ⊗ |0��0|,
η2 = 1

3 , ρ2 = |ν+��ν+| ⊗ |ν+��ν+|, |ν+� = 1
2 |0� +

√
3
2 |1�,

η3 = 1
3 , ρ3 = |ν−��ν−| ⊗ |ν−��ν−|, |ν−� = 1

2 |0� −
√
3
2 |1�.

(26)

M0 = 1
2 |�+���+| + |�−���−|,

M1 = 5
6 |�1���1|, |�1� = 3√

10
|00� − 1√

10
|11�,

M2 = 5
6 |�2���2|, |�2� =

√
3
10 |01� +

√
3
10 |10� +

2√
10
|11�,

M3 = 5
6 |�3���3|, |�3� =

√
3
10 |01� +

√
3
10 |10� −

2√
10
|11�,

(27)K = 3
8 |�−���−| + 3

8 |�+���+|,

(28)|�±� = 1√
2
|00� ± 1√

2
|11�, |�±� = 1√

2
|01� ± 1√

2
|10�
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For K of Eq. (27), Condition (7a) is obvious and Condition (7b) is also true due to the orthogonality of Bell 
states. For Condition (7c), we first note |�−���−| is orthogonal to each ρi , that is, Tr(|�−���−|ρi) = 0 , i = 1, 2, 3 . 
Moreover, |�i���i| is orthogonal to ρj for all i, j = 1, 2, 3 with i  = j . Thus, we have

for the ensemble E of Eq. (25). Now, a straightforward calculation leads us to

and this implies

for all E in Posi(E ) . From the definition of Pos∗i (E ) in Eq. (8), we have K − ηiρi ∈ Pos∗i (E ) for each i = 1, 2, 3 , 
and this shows the validity of Condition (7c). Finally, Condition (7d) naturally follows from Eqs. (26) and (30). 
From Proposition 1, the optimal success probability pG(E ) in Eq. (6) is

To obtain qSEP(E ) in Eq. (14), let us consider the Hermitian operator

and the separable unambiguous measurement {Mi}3i=0 consisting of

where

We will show the Hermitian operator H and the separable unambiguous measurement {Mi}3i=0 satisfy the condi-
tions of Theorem 2 for the ensemble E = {ηi , ρi}3i=1 in Eq. (25).

For H of Eq. (33), Condition (15a) holds due to the argument after Eq. (16) and Condition (18a) is also true 
from the fact that |�−� is orthogonal to |1� ⊗ |1�,|µ+� ⊗ |µ+�,|µ−� ⊗ |µ−� . For Condition (15b), we first note 
every positive-semidefinite product operator orthogonal to ρ2 and ρ3 is proportional to |µ+��µ+| ⊗ |µ−��µ−| 
or |µ−��µ−| ⊗ |µ+��µ+| . Moreover, every positive-semidefinite product operator orthogonal to ρ1 and ρ3(2) is 
proportional to |µ+(−)��µ+(−)| ⊗ |1��1| or |1��1| ⊗ |µ+(−)��µ+(−)| . Thus, we have

for the ensemble E of Eq. (25). Now, a straightforward calculation leads us to

and this implies

for all E in SEPi(E )(i = 1, 2, 3 ). From the definition of SEP∗i (E )(i = 1, 2, 3 ) in Eq.  (16), we have 
H − ηiρi ∈ SEP∗i (E ) for each i = 1, 2, 3 , and this shows the validity of Condition (15b). Finally, Condition 
(18b) naturally follows from Eqs. (34) and (37). From Theorem 2, the minimum quantity qSEP(E ) in Eq. (14) is

We also note that the POVM {Mi}3i=0 with Eq. (34) is a LOCC measurement because it can be implemented by 
performing the same local measurement { 23 |1��1|,

2
3 |µ+��µ+|, 23 |µ−��µ−|} on two subsystems. Thus, Corollary 2 

and Eq. (39) lead us to

Now, we provide another example of mixed-state ensemble in multipartite high-dimensional quantum systems 
to illustrate the application of our results in obtaining pG(E ) , qSEP(E ) , and pL(E ).

(29)Posi(E ) = {E � 0 | E acting on the subspace spanned by |�i� and |�−�} ∀i = 1, 2, 3,

(30)��i|(K − ηiρi)|�i� = ��i|(K − ηiρi)|�−� = ��−|(K − ηiρi)|�−� = 0 ∀i = 1, 2, 3,

(31)Tr[(K − ηiρi)E] = 0

(32)pG(E ) =
3∑

i=1
ηiTr(ρiMi) = TrK = 3

4 .

(33)H = 1
2 |�−���−|,

(34)

M0 = 4
9 |1��1| ⊗ |1��1| + 4

9 |µ+��µ+| ⊗ |µ+��µ+| + 4
9 |µ−��µ−| ⊗ |µ−��µ−|,

M1 = 4
9 |µ+��µ+| ⊗ |µ−��µ−| + 4

9 |µ−��µ−| ⊗ |µ+��µ+|,
M2 = 4

9 |µ+��µ+| ⊗ |1��1| + 4
9 |1��1| ⊗ |µ+��µ+|,

M3 = 4
9 |µ−��µ−| ⊗ |1��1| + 4

9 |1��1| ⊗ |µ−��µ−|,

(35)|µ±� =
√
3
2 |0� ± 1

2 |1�.

(36)
SEP1(E ) = {a|µ+��µ+| ⊗ |µ−��µ−| + b|µ−��µ−| ⊗ |µ+��µ+| | a, b � 0},
SEP2(E ) = {a|µ+��µ+| ⊗ |1��1| + b|1��1| ⊗ |µ+��µ+| | a, b � 0},
SEP3(E ) = {a|µ−��µ−| ⊗ |1��1| + b|1��1| ⊗ |µ−��µ−| | a, b � 0},

(37)
�v|(H − η1ρ1)|v� = 0 ∀|v� = |µ+� ⊗ |µ−�, |µ−� ⊗ |µ+�,
�v|(H − η2ρ2)|v� = 0 ∀|v� = |µ+� ⊗ |1�, |1� ⊗ |µ+�,
�v|(H − η3ρ3)|v� = 0 ∀|v� = |µ−� ⊗ |1�, |1� ⊗ |µ−�,

(38)Tr[(H − ηiρi)E] = 0

(39)qSEP(E ) = TrH =
3∑

i=1
ηiTr(ρiMi) = 1

2 .

(40)pL(E ) = qSEP(E ) = 1
2 .
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Example 2 For any integer d � 3 , let us consider the following ( d − 1)-qudit state ensemble E = {ηi , ρi}di=1 
consisting of d mixed states with equal prior probabilities,

where ⊕ denotes modulo-d addition. To obtain pG(E ) , we use the unambiguous measurement {Mi}di=0 with

and Hermitian operator

We will show the unambiguous measurement {Mi}di=0 and the Hermitian operator K satisfy the conditions of 
Proposition 1 for the ensemble E = {ηi , ρi}di=1 in Eq. (41).

For K of Eq. (43), Condition (7a) is obvious and Condition (7b) is also true due to the orthogonality of 
{|�i�, |�i�}di=1 . For Condition (7c), we first note both |�i���i| and |�i���i| are orthogonal to ρj , that is, 
Tr(|�i���i|ρj) = Tr(|�i���i|ρj) = 0 , for all i, j = 1, . . . , d with i  = j.

Let O1 be the set of all positive semidefinite operators orthogonal to ρ1 . From the definition of ρi in Eq. (41), 
we have

Now, let Oj be the set of all positive semidefinite operators orthogonal to ρj for each j = 2, . . . , d . Similarly, we 
have

where

From the definition of Posi(E ) in Eq. (4), we have

for the ensemble E of Eq. (41). Moreover, a straightforward calculation leads us to

This implies Eq. (31) for all E in Posi(E )(i = 1, . . . , d ). From the definition of Pos∗i (E ) in Eq. (8), we have 
K − ηiρi ∈ Pos∗i (E ) for each i = 1, . . . , d , and this shows the validity of Condition (7c). Finally, Condition 
(7d) naturally follows from Eqs. (42) and (48). Therefore, the optimal success probability pG(E ) in Eq. (6) is

To obtain qSEP(E ) in Eq. (14), let us consider the Hermitian operator

and the separable unambiguous measurement {Mi}di=0 consisting of

(41)

ηi =
1

d
, ρi =

1

2(d − 1)

[
1−

d∑

j = 1
j �= i

(|�j���j| + |�j���j|)
]
, i = 1, . . . , d,

|�j� = |j − 1�⊗(d−1), |�j� =
1

√
d − 1

d−1∑

k = 0
k �= j − 1

d−1⊗

l = 0
k ⊕ l �= j − 1

|k ⊕ l�, j = 1, . . . , d,

(42)M0 = 1−
d∑
j=1

(|�j���j| + |�j���j|), Mi = |�i���i| + |�i���i|, i = 1, . . . , d,

(43)K = 1
2d(d−1)

d∑
j=1

(|�j���j| + |�j���j|).

(44)O1 = {E � 0 |E acting on the subspace spanned by |�2�, . . . , |�d� and |�2�, . . . , |�d�}.

(45)
Oj = {E � 0 |E acting on the subspace spanned by |�1�, . . . , |̂�j�, . . . , |�d� and |�1�, . . . , |̂�j�, . . . , |�d�},

(46)
{|�1�, . . . , |̂�j�, . . . , |�d�} = {|�1�, . . . , |�j−1�, |�j+1�, . . . , |�d�},
{|�1�, . . . , |̂�j�, . . . , |�d�} = {|�1�, . . . , |�j−1�, |�j+1�, . . . , |�d�}.

(47)

Posi(E ) =
⋂d

j = 1
j �= i

Oj = {E � 0 |E acting on the subspace spanned by |�i� and |�i�} ∀i = 1, . . . , d,

(48)��i|(K − ηiρi)|�i� = ��i|(K − ηiρi)|�i� = ��i|(K − ηiρi)|�i� = 0 ∀i = 1, . . . , d.

(49)pG(E ) =
d∑

i=1
ηiTr(ρiMi) = TrK = 1

d−1 .

(50)H = 1
2d(d−1)

d∑
j=1

|�j���j|,

(51)M0 = 1−
d∑
j=1

|�j���j|, Mi = |�i���i|, i = 1, . . . , d,
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where {|�j�}dj=1 is defined in Eq. (41). We will show the Hermitian operator H and the separable unambiguous 
measurement {Mi}di=0 satisfy the conditions of Theorem 2 for the ensemble E = {ηi , ρi}di=1 in Eq. (41).

For H of Eq. (50), Condition (15a) is satisfied from the argument after Eq. (16) and Condition (18a) is also 
true due to the orthogonality of {|�i�}di=1 . For Condition (15b), we first note that |�i���i| is obviously separable 
for all i = 1, . . . , d . However, |�i���i| is not separable for each i = 1, . . . , d because the reduced density operator 
of |�i���i| onto any qudit subsystem is not rank one.

For each i = 1, . . . , d , we also note that |�i���i| is the only pure product state acting on the subspace spanned 
by |�i� and |�i� . To see this, let us consider any pure state (c1|�i� + c2|�i�)(c∗1 ��i| + c∗2 ��i|) on the subspace 
spanned by |�i� and |�i� with complex numbers c1 and c2 such that |c1|2 + |c2|2 = 1 . Due to the definitions of 
|�i� and |�i� in Eq. (41), it is straightforward to show that any partial trace of |�i���i| is the zero operator. Thus, 
the reduced density operator of (c1|�i� + c2|�i�)(c∗1 ��i| + c∗2 ��i|) is

where S is any α-qudit subsystem with α < d − 1 . If c2 is nonzero, then the reduced density operator in Eq. (52) 
is not rank one because |�i���i| is not separable, which implies that (c1|�i� + c2|�i�)(c∗1 ��i| + c∗2 ��i|) is not 
separable. Thus, |�i���i| is the only pure product state acting on the subspace spanned by |�i� and |�i�.

Now, let us consider SEPi(E ) of the ensemble E in Eq. (41) for each i = 1, . . . , d . From Eq. (47) and the 
definition of SEPi(E ) in Eq. (10), we have

Because any separable state is a convex combination of pure product states and |�i���i| is the only pure product 
state acting on the subspace spanned by |�i� and |�i� , we have

Moreover, a straightforward calculation leads us to

which implies Tr[(H − ηiρi)E] = 0 for all E in SEPi(E ) . Thus, we have H − ηiρi ∈ SEP∗i (E ) , and this shows 
the validity of Condition (15b) for each i = 1, . . . , d . Finally, Condition (18b) naturally follows from Eqs. (51) 
and (55).

From Theorem 2, the minimum quantity qSEP(E ) in Eq. (14) is

Moreover, the POVM {Mi}di=0 with Eq. (51) is a LOCC measurement since it can be implemented by performing 
the same local measurement {|i��i|}d−1

i=0  on all subsystems. Thus, Corollary 2 and Eq. (56) lead us to

Examples 1 and 2 are special cases that pL(E ) = pSEP(E ) , or equivalently pL(E ) = qSEP(E ) . We also note 
that there exist separable-state ensembles with pL(E ) < qSEP(E ) , therefore pL(E ) < pSEP(E ) . A well-known 
example with pL(E ) < pSEP(E ) is the domino state ensemble which can be perfectly discriminated by separable 
measurements but not by LOCC  measurements8.

Discussion
In this paper, we have considered the situation of unambiguously discriminating multipartite quantum states, 
and provided an upper bound qSEP(E ) for the maximum success probability of optimal local discrimination 
pL(E ) . We have further established a necessary and sufficient condition for the Hermitian operator H to realize 
qSEP(E ) . Moreover, we have provided a necessary and sufficient condition for the upper bound qSEP(E ) to be 
saturated. Finally, we have illustrated our results by examples in multidimensional multipartite quantum systems.

We remark that finding pG(E ) and qSEP(E ) in unambiguously discriminating separable quantum states 
can be useful in studying the phenomenon of nonlocality without entanglement(NLWE)8. For the optimal UD of 
a separable-state ensemble {ηi , ρi}ni=1 , the NLWE phenomenon occurs when pG(E ) cannot be realized only by 
LOCC, that is, pL(E ) < pG(E ) . Due to Corollary 2, qSEP(E ) < pG(E ) means pL(E ) < pG(E ) , therefore the 
occurrence of NLWE. It is a natural future work to find good bounds on optimal local discrimination in other 
generalized state discrimination strategies such as an optimal discrimination with a fixed rate of inconclusive 
 results26–30.

Methods
In this section, we prove Theorem 1 by showing that 

(52)TrS[(c1|�i� + c2|�i�)(c∗1 ��i| + c∗2 ��i|)] = |c1|2 |TrS(|�i���i|)+ |c2|2 |TrS(|�i���i|),

(53)SEPi(E ) = {E ∈ SEP |E acting on the subspace spanned by |�i� and |�i�}.

(54)SEPi(E ) =
{
a|�i���i|

∣∣ a � 0
}
.

(55)��i|(H − ηiρi)|�i� = 0,

(56)qSEP(E ) = TrH =
∑d

i=1 ηiTr(ρiMi) = 1
2(d−1) .

(57)pL(E ) = qSEP(E ) = 1
2(d−1) .

(58a)pSEP(E ) � qSEP(E ),

(58b)pSEP(E ) � qSEP(E ).
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Proof of Inequality (58a). Let us assume that {Mi}ni=0 is a separable unambiguous measurement realizing 
pSEP(E ) and H is a Hermitian operator giving qSEP(E ) . Since this assumption implies Conditions (11) and 
(15), we have

which lead us to

where the second equality is due to 
∑n

i=0 Mi = 1 . Therefore, Inequality (58a) holds.

Proof of Inequality (58b). We first prove Inequality (58b) when pSEP(E ) = 0 . In this case, we claim that 
every M ∈ SEPj(E ) satisfies Tr(ρjM) = 0 for each j = 1, . . . , n . To see this, suppose that there is a positive-
semidefinite product operator E ∈ SEPj(E ) with Tr(ρjE) > 0 . Since 1− E/TrE is obvious separable, the fol-
lowing POVM {Mi}ni=0 is a separable unambiguous measurement:

where 0H is the zero operator on H.
Moreover, the measurement of (61) gives

From Inequality (62) and the definition of pSEP(E ) , we have pSEP(E ) > 0 , a contradiction. Therefore, there 
is no positive-semidefinite product operator E ∈ SEPj(E ) with Tr(ρjE) > 0 . Since every positive-semidefinite 
separable operator can be represented as a summation of positive-semidefinite product operators, we have

for all M ∈ SEPj(E ) . Equation (63) together with the definition of SEP∗j (E ) in Eq. (16) imply that

for any real number a and j ∈ {1, . . . , n}.
By letting H = 0H , we trivially have

For each i = 1, . . . , n , we also have

where the inclusion is from Eq. (64). Equations (65) and (66) imply that H = 0H satisfies Condition (15), 
therefore

where the inequality is due to the definition of qSEP(E ) . Thus, Inequality (67) and the assumption pSEP(E ) = 0 
lead us to Inequality (58b).

Now, we prove Inequality (58b) when pSEP(E ) > 0.

Lemma 1. If E ∈ SEP∗ and E  = 0H , then TrE > 0 , where 0H is the zero operator on H.

Proof The proof is by contradiction. We first note that TrE = Tr(1E) � 0 because E ∈ SEP∗ and the identity 
operator 1 is obviously separable. Thus, let us suppose TrE = 0.

For an arbitrary orthonormal product basis {|ei�}Di=1 of the multipartite Hilbert space H =
⊗m

k=1 Hk , we have

where D is the dimension of H . From E ∈ SEP∗ and |ei��ei| ∈ SEP for all i = 1, . . . ,D , we have

Equation (68) and Inequality (69) lead us to Tr(E|ei��ei|) = 0 for all i = 1, . . . ,D . Since the choice of {|ei�}Di=1 can 
be arbitrary, Tr(E|e��e|) = 0 for any product vector |e� ∈ H , therefore

We note that SEP spans the set of all Hermitian operators on H . To see this, we first note that the set of all 
positive-semidefinite operators on Hk spans the set of all Hermitian operators on Hk for each k = 1, . . . ,m . 
Moreover, every Hermitian operator A on H can be represented as a summation of product Hermitian operators,

(59)Tr(M0H) � 0, Tr[Mi(H − ηiρi)] � 0 ∀i = 1, . . . , n,

(60)
pSEP(E ) =

∑n
i=1 ηiTr(ρiMi) �

∑n
i=1 ηiTr(ρiMi)+ Tr(M0H)+

∑n
i=1 Tr[Mi(H − ηiρi)] = TrH = qSEP(E ),

(61)M0 = 1− E/TrE, Mj = E/TrE, Mi = 0H ∀i = 1, . . . , n with i �= j,

(62)
∑n

i=1 ηiTr(ρiMi) = ηjTr(ρjE) > 0.

(63)Tr(ρjM) = 0

(64)aρj ∈ SEP∗j (E )

(65)H ∈ SEP∗.

(66)H − ηiρi = −ηiρi ∈ SEP∗i (E )

(67)qSEP(E ) � TrH = 0,

(68)
D∑
i=1

Tr(E|ei��ei|) = Tr(E1) = TrE = 0,

(69)Tr(E|ei��ei|) � 0 ∀i = 1, . . . ,D.

(70)Tr(EF) = 0 ∀F ∈ SEP.
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where Al,k is a Hermitian operator on Hk for each k = 1, . . . ,m . Therefore, Eq. (70) leads us to Tr(EF) = 0 for 
any Hermitian operator F on H . This means E = 0H , a contradiction. Thus, TrE > 0 .   �

Let us consider the set,

where R is the set of all real numbers and H is the set of all Hermitian operators on the multipartite Hilbert space 
H . We note that S(E ) is a convex set due to the convexity of SEP and SEPi(E )(i = 1, . . . , n ) in Eqs. (2) and 
(10). Moreover, S(E ) does not have the origin (0, 0H) of R×H otherwise there exists a separable unambigu-
ous measurement {Mi}ni=0 with 

∑n
i=1 ηiTr(ρiMi) > pSEP(E ) , and this contradicts the optimality of pSEP(E ) in 

Eq. (12). We also note that the Cartesian product R×H can be considered as a real vector space with an inner 
product defined as

Since S(E ) in Eq. (72) and the single-element set {(0, 0H)} are disjoint convex sets, it follows from separating 
hyperplane  theorem31,32 that there is (γ ,Ŵ) ∈ R×H such that 

Suppose 

where SEP∗ and SEP∗i (E ) are defined in Eq. (16). From Conditions (75b), (75c), and (75d), the Hermitian 
operator H = Ŵ/γ satisfies Condition (15). Thus, the definition of qSEP(E ) in Eq. (14) leads us to

Moreover, Condition (75a) and the definition of H = Ŵ/γ imply

Inequalities (76) and (77) complete the proof of Inequality (58b).
The rest of this section is to prove Conditions (75a), (75b), (75c), and (75d).

Proof of (75a) From Eq. (73), Inequality (74b) can be rewritten as,

for all p > pSEP(E ) and all {Mi}ni=0 satisfying Condition (11). If Mi = 0H for all i = 0, 1, . . . , n , Inequality (78) 
becomes Inequality (75a) by taking the limit of p to pSEP(E ) .   �

Proof of (75b) For an arbitrary M0 ∈ SEP and Mi = 0 for all i = 1, . . . , n , {Mi}ni=0 clearly satisfies Condition (11). 
In this case, Inequality (78) becomes

by taking the limit of p to pSEP(E ).
Suppose Ŵ /∈ SEP∗ , then there exists M ∈ SEP with Tr(MŴ) < 0 . We note that M ∈ SEP implies tM ∈ SEP 

for any t > 0 . Thus, {Mi}ni=0 with M0 = tM for t > 0 and Mi = 0 for all i = 1, . . . , n also satisfies Condition (11). 
Now, Inequality (79) can be rewritten as,

Since Inequality (80) is true for arbitrary large t > 0 , γ pSEP(E ) can also be arbitrary large. However, this con-
tradicts that both γ and pSEP(E ) are finite. Thus, Ŵ ∈ SEP∗ , which completes the proof of (75b).   �

(71)A =
∑

l

⊗m
k=1 Al,k ,

(72)

S(E ) =
{(

n∑
i=1

ηiTr(ρiMi)− p,1−
n∑

i=0
Mi

)
∈ R×H

∣∣ p > pSEP(E ), M0 ∈ SEP, Mi ∈ SEPi(E ) ∀i = 1, . . . , n

}
,

(73)�(a,A), (b,B)� = ab+ Tr(AB), (a,A), (b,B) ∈ R×H.

(74a)(γ ,Ŵ)  = (0, 0H),

(74b)�(γ ,Ŵ), (r,G)� � 0 ∀(r,G) ∈ S(E ).

(75a)TrŴ � γ pSEP(E ),

(75b)Ŵ ∈ SEP∗,

(75c)Ŵ − γ ηiρi ∈ SEP∗i (E ) ∀i = 1, . . . , n,

(75d)γ > 0,

(76)qSEP(E ) � TrH .

(77)TrH � pSEP(E ).

(78)TrŴ − Tr(M0Ŵ)−
n∑

i=1
Tr[Mi(Ŵ − γ ηiρi)] � γ p

(79)TrŴ − Tr(M0Ŵ) � γ pSEP(E )

(80)TrŴ − Tr(tMŴ) � γ pSEP(E ).
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Proof of (75c) The proof method is analogous to that of (75b). For each j ∈ {1, . . . , n} , let us consider an arbitrary 
Mj ∈ SEPj(E ) and Mi = 0 for all i = 0, 1, . . . , n with i  = j . In this case, {Mi}ni=0 clearly satisfies Condition (11) 
and Inequality (78) becomes

by taking the limit of p to pSEP(E ).
Suppose Ŵ − γ ηjρj /∈ SEP∗j (E ) , then there exists M ∈ SEPj(E ) with Tr[M(Ŵ − γ ηjρj)] < 0 . We note that 

M ∈ SEPj(E ) implies tM ∈ SEPj(E ) for any t > 0 . Thus, {Mi}ni=0 consisting of Mj = tM for t > 0 and Mi = 0 
for all i = 0, 1, . . . , n with i  = j also satisfies Condition (11). Now, Inequality (81) can be rewritten as,

Since Inequality (82) is true for arbitrary large t > 0 , γ pSEP(E ) can also be arbitrary large. However, this con-
tradicts that both γ and pSEP(E ) are finite. Thus, Ŵ − γ ηjρj ∈ SEP∗j (E ) , which completes the proof of (75c).  
 �

Proof of (75d) Suppose Ŵ  = 0H . From Lemma 1 together with Inequality (75b), we have TrŴ > 0 . Thus, Inequal-
ity (75a) and the fact that TrŴ > 0 guarantee γ > 0.

Now, suppose Ŵ = 0H . We have γ  = 0 , otherwise a contradiction to Condition (74a). The strict positivity of γ 
follows from Inequality (75a) with TrŴ = 0 and pSEP(E ) > 0 . Thus, Inequality (75d) holds regardless of Ŵ .  �

Data availability
All data generated or analysed during this study are included in this published article.

Received: 27 April 2022; Accepted: 12 August 2022

References
 1. Chitambar, E., Leung, D., Mančinska, L., Ozols, M. & Winter, A. Everything you always wanted to know about LOCC (but were 

afraid to ask). Commun. Math. Phys. 328, 303 (2014).
 2. Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009).
 3. Chitambar, E. & Gour, G. Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019).
 4. Chefles, A. Quantum state discrimination. Contemp. Phys. 41, 401 (2000).
 5. Barnett, S. M. & Croke, S. Quantum state discrimination. Adv. Opt. Photon. 1, 238 (2009).
 6. Bergou, J. A. Discrimination of quantum states. J. Mod. Opt. 57, 160 (2010).
 7. Bae, J. & Kwek, L.-C. Quantum state discrimination and its applications. J. Phys. A: Math. Theor. 48, 083001 (2015).
 8. Bennett, C. H. et al. Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999).
 9. Peres, A. & Wootters, W. K. Optimal detection of quantum information. Phys. Rev. Lett. 66, 1119 (1991).
 10. Duan, R., Feng, Y., Ji, Z. & Ying, M. Distinguishing arbitrary multipartite basis unambiguously using local operations and classical 

communication. Phys. Rev. Lett. 98, 230502 (2007).
 11. Chitambar, E. & Hsieh, M.-H. Revisiting the optimal detection of quantum information. Phys. Rev. A 88, 020302(R) (2013).
 12. Ghosh, S., Kar, G., Roy, A., Sen, A. & Sen, U. Distinguishability of bell states. Phys. Rev. Lett. 87, 277902 (2001).
 13. Walgate, J. & Hardy, L. Nonlocality, asymmetry, and distinguishing bipartite states. Phys. Rev. Lett. 89, 147901 (2002).
 14. Fan, H. Distinguishability and indistinguishability by local operations and classical communication. Phys. Rev. Lett. 92, 177905 

(2004).
 15. Duan, R., Feng, Y., Xin, Y. & Ying, M. Distinguishability of quantum states by separable operations. IEEE Trans. Inf. Theory 55, 

1320 (2009).
 16. Chitambar, E., Duan, R. & Hsieh, M.-H. When do local operations and classical communication suffice for two-qubit state dis-

crimination?. IEEE Trans. Inf. Theory 60, 1549 (2014).
 17. Bandyopadhyay, S. et al. Limitations on separable measurements by convex optimization. IEEE Trans. Inf. Theory 61, 3593 (2015).
 18. Bandyopadhyay, S. & Russo, V. Entanglement cost of discriminating noisy bell states by local operations and classical communica-

tion. Phys. Rev. A 104, 032429 (2021).
 19. Zhang, J.-H., Zhang, F.-L., Wang, Z.-X., Lai, L.-M. & Fei, S.-M. Discriminating bipartite mixed states by local operations. Phys. 

Rev. A 101, 032316 (2020).
 20. Ha, D. & Kim, J. S. Bound on local minimum-error discrimination of bipartite quantum states. Phys. Rev. A 105, 032421 (2022).
 21. Ivanovic, I. D. How to differentiate between non-orthogonal states. Phys. Lett. A 123, 257 (1987).
 22. Peres, A. How to differentiate between non-orthogonal states. Phys. Lett. A 128, 19 (1988).
 23. Dieks, D. Overlap and distinguishability of quantum states. Phys. Lett. A 126, 303 (1988).
 24. Zhang, J.-H., Zhang, F.-L., Wang, Z.-X., Yang, H. & Fei, S.-M. Unambiguous state discrimination with intrinsic coherence. Entropy 

24, 18 (2022).
 25. Eldar, Y. C., Stojnic, M. & Hassibi, B. Optimal quantum detectors for unambiguous detection of mixed states. Phys. Rev. A 69, 

062318 (2004).
 26. Chefles, A. & Barnett, S. M. Strategies for discriminating between non-orthogonal quantum states. J. Mod. Opt. 45, 1295–1302 

(1998).
 27. Zhang, C.-W., Li, C.-F. & Guo, G.-C. General strategies for discrimination of quantum states. Phys. Lett. A 261, 25–29 (1999).
 28. Fiurášek, J. & Ježek, M. Optimal discrimination of mixed quantum states involving inconclusive results. Phys. Rev. A 67, 012321 

(2003).
 29. Bagan, E., Muñoz-Tapia, R., Olivares-Rentería, G. A. & Bergou, J. A. Optimal discrimination of quantum states with a fixed rate 

of inconclusive outcomes. Phys. Rev. A 86, 040303 (2012).
 30. Herzog, U. Optimal measurements for the discrimination of quantum states with a fixed rate of inconclusive results. Phys. Rev. A 

91, 042338 (2015).
 31. Boyd, S. & Vandenberghe, L. Convex optimization (Cambridge University Press, Cambridge, 2004).

(81)TrŴ − Tr
[
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(
Ŵ − γ ηjρj

)]
� γ pSEP(E )

(82)TrŴ − Tr
[
tM

(
Ŵ − γ ηjρj

)]
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 32. When A and B are disjoint convex sets in a real vector space V  with an inner product �·, ·� , there exist x ∈ R and �v ∈ V  such that 
�v �= �0 and 〈�a, �v〉 � x � 〈�b, �v〉 for all �a ∈ A and all �b ∈ B.
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