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Assessing preoperative risk of STR 
in skull meningiomas using MR 
radiomics and machine learning
Manfred Musigmann1, Burak Han Akkurt1, Hermann Krähling1, Benjamin Brokinkel2, 
Dylan J. H. A. Henssen3, Thomas Sartoretti4,5,6, Nabila Gala Nacul1, Walter Stummer2, 
Walter Heindel1 & Manoj Mannil1*

Our aim is to predict possible gross total and subtotal resections of skull meningiomas from pre-
treatment T1 post contrast MR-images using radiomics and machine learning in a representative 
patient cohort. We analyse the accuracy of our model predictions depending on the tumor location 
within the skull and the postoperative tumor volume. In this retrospective, IRB-approved study, 
image segmentation of the contrast enhancing parts of the tumor was semi-automatically performed 
using the 3D Slicer open-source software platform. Imaging data were split into training data and 
independent test data at random. We extracted a total of 107 radiomic features by hand-delineated 
regions of interest on T1 post contrast MR images. Feature preselection and model construction were 
performed with eight different machine learning algorithms. Each model was estimated 100 times 
on new training data and then tested on a previously unknown, independent test data set to avoid 
possible overfitting. Our cohort included 138 patients. A gross total resection of the meningioma 
was performed in 107 cases and a subtotal resection in the remaining 31 cases. Using the training 
data, the mean area under the curve (AUC), mean accuracy, mean kappa, mean sensitivity and mean 
specificity were 0.901, 0.875, 0.629, 0.675 and 0.933 respectively. We obtained very similar results 
with the independent test data: mean AUC = 0.900, mean accuracy = 0.881, mean kappa = 0.644, 
mean sensitivity = 0.692 and mean specificity = 0.936. Thus, our model exposes good and stable 
predictive performance with both training and test data. Our radiomics approach shows that with 
machine learning algorithms and comparatively few explanatory factors such as the location of the 
tumor within the skull as well as its shape, it is possible to make accurate predictions about whether 
a meningioma can be completely resected by surgery. Complete resections and resections with larger 
postoperative tumor volumes can be predicted with very high accuracy. However, cases with very 
small postoperative tumor volumes are comparatively difficult to predict correctly.

Meningiomas are mostly benign, extra-axial tumors originating from the arachnoid cap cells. They represent 
13–26% of all intracranial  tumors1. The annual incidence of meningiomas in the United States is 5.3 per 100,000 
people and increases steadily with  age2.

According to international guidelines and current literature, primary therapy of meningiomas consists of 
surgery and adjuvant  radiotherapy3. Further treatment modalities include systemic and targeted therapies. Fol-
lowing the National Comprehensive Cancer Network (NCCN) guidelines for meningiomas (http:// nccn. org/), 
chemotherapy is only recommended for recurrent (progressive) disease when radiation therapy or further surgi-
cal resection is not  feasible4.

An important aspect impacting the further prognosis and therapy planning concerns the extent of resection 
(EOR) during initial surgical treatment of the tumor. Specifically, subtotal resection is often associated with 

OPEN

1University Clinic for Radiology, Westfälische Wilhelms-University Muenster and University Hospital Muenster, 
Albert-Schweitzer-Campus 1, E48149 Muenster, Germany. 2Department of Neurosurgery, Westfälische 
Wilhelms-University Muenster and University Hospital Muenster, Albert-Schweitzer-Campus 1, E48149 Muenster, 
Germany. 3Department of Medical Imaging, Radboud University Medical Center, Radboud University, 
6500HB Nijmegen, The Netherlands. 4Faculty of Medicine, University of Zürich, Zürich, Switzerland. 5 The 
Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, 
Switzerland. 6Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht 
University, Maastricht, The Netherlands. *email: manoj.mannil@ukmuenster.de

http://nccn.org/
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-18458-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14043  | https://doi.org/10.1038/s41598-022-18458-4

www.nature.com/scientificreports/

recurrent tumor growth and thus with the risk of disease  progression5. For further therapy planning, it is therefore 
important to determine as early as possible whether a tumor can be completely resected or not.

Recent studies suggest that machine learning algorithms can be very helpful in answering such clinical ques-
tions. For example, machine learning algorithms can improve long-term outcome prediction for patients with 
ischemic  stroke6 or predict malaria disease based on patient  information7. Machine learning algorithms can also 
be used for a preoperative, non-invasive determination of meningioma  grade8.

Given the considerations outlined above, the aim of our study is to predict possible gross total resections 
(GTR) of meningiomas based on pre-treatment MR images and machine learning backed radiomics, and to 
distinguish these cases from those in which only subtotal resection (STR) can be performed.

Materials and methods
This study was performed in compliance with the Declaration of Helsinki and approved by the local ethics com-
mittee (Ethikkommission der Ärztekammer Westfalen Lippe and University of Muenster, Muenster, Germany). 
Due to the retrospective nature of the study, written informed consent was waived by Ethikkommission der 
Ärztekammer Westfalen Lippe and University of Muenster, Muenster, Germany.

Our aim was to distinguish meningioma cases in which a gross total resection of the tumor was possible from 
those in which only a subtotal resection could be performed. Therefore, we retrospectively searched our data-
base for patients diagnosed with meningioma followed by resection between February 2015 and July 2018. 167 
patients were initially screened of which 138 (mean age of 58.86 years) were finally included in our analyses. We 
excluded 29 patients with (1) missing or non-diagnostic pre-treatment cerebral magnetic resonance imaging, (2) 
insufficient diagnostic imaging quality, (3) incomplete clinical data, (4) inconsistent histopathology and (5) insuf-
ficient follow-up examinations. Most of these 29 patients excluded had incomplete or inconsistent clinical data.

Our final cohort of 138 patients comprises 100 females and 38 males. A gross total meningioma resection 
(GTR) was achieved in 107 cases. The remaining 31 of the 138 patients had a subtotal resection (STR). We clas-
sify GTR cases as those with a postoperative tumor volume (POTV) = 0  cm3 and correspondingly STR cases 
with POTV > 0  cm3. Usually, GTR and STR cases are distinguished using the Simpson grade. GTR cases have 
the Simpson grades I, II and III and STR cases have grades IV and V. In addition to this purely binary distinc-
tion between GTR cases (POTV = 0  cm3) and STR cases (POTV > 0  cm3), we also examine the 138 cases as a 
function of their exact POTV.

Image data. We searched the Picture Archiving and Communication System (PACS) of our hospital for 
cases of meningiomas between February 2015 and July 2018. As a tertiary referral centre, around 33% of patients 
had external MR imaging. The images were obtained on common 1.5 and 3  T MR scanners of the vendors 
Philipps Healthcare, Siemens Healthineers and GE Healthcare. We downloaded 3D T1 post Gadolinium images 
in DICOM format and pseudonymized the DICOM header.

Radiomics. For purpose of pre-processing, the following parameters were selected: normalize: true, normal-
izeScale: 100, resampledPixelSpacing: [2, 2, 2], binWidth: 5, voxelArrayShift: 300.

Segmentation of the contrast enhancing parts of the tumor was semi-automatically performed using the 
3D Slicer open-source software platform (version 4.10, www. slicer. org) and utilizing the Segmentation Wizard 
plugin. As an example, Fig. 1 shows a meningioma of the skull base. The figure includes the semi-automatic seg-
mentation with 3D Slicer. Two readers with 5 and 9 years of experience in neuroradiology drew the segmentation. 
Consensus was achieved in cases of differing extent of segmentation. We performed a standardized preprocessing 
step on all images: first spatial resampling to 2 × 2 × 2 voxels, then a bin width of 64 was set. For the computation 
of the radiomics features we used the open source PyRadiomics package available as an implementable plugin 
into the 3D Slicer platform. The segmentation tool allows the segmentation as a volume of interest (VOI). The 
open source software allows for direct calculation of 3D features. No combination or averaging across slices is 
necessary. We extracted a total of 107 radiomic features by hand-delineated regions of interest (ROI) from the 
MRI images of each patient. These 107 radiomic features belong to seven different features classes: 18 first order 
statistics, 14 shape-based features, 24 Gy level co-occurrence matrix, 16 Gy level run length matrix, 16 Gy level 
size zone matrix, 5 neighbouring gray tone difference matrix and 14 Gy level dependence matrix. In addition, our 
database contained further factors, such as gender and age, the location of the meningioma, shape and subtype 
of the tumor, the distinction between a first diagnosis of the tumor and a relapse and the Karnofsky Performance 
scale Index (KPI). All categorical variables were used in binary form. For example, if a meningioma was located 
in the falx, the value of the feature "Tumor.location.falx" was equal to 1, otherwise equal to 0. All features were 
z-score transformed and then subjected to a 95% correlation filter to account for redundancy between the fea-
tures. Highly correlated features contain a significant amount of identical information. Therefore, considering 
highly correlated variables simultaneously in a model does not add significant value compared to considering 
only one of the features from this group. We analyzed the discriminatory power (p-value) for each feature.

Statistical analysis. Statistical analysis was performed using R software (version 3.5.3). As mentioned 
above, contrast-enhanced T1-weighted images before meningioma resection were available for 138 patients. 
These 138 patients were allocated to training data and independent test data at random. Specifically, a stratified 
4:1 ratio (training data: 111 patients, test data: 27 patients) was used with a balanced distribution of GTR/STR 
and gender (female/male) between the two samples (Table 1). The stratified division of the data into the two 
groups was performed using the “splitstackshape” package in R. Importantly, patients were split into training and 
test data 100 times for each model. Thus, in total, we used 100 different training and 100 different test samples. 
The training data sets were used to construct different machine learning models and to optimize the tuning 
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parameters included in these models. The performance of the models was then determined with the correspond-
ing test data sets (i.e. using unknown/independent data).

Feature preselection and model construction. We used a four-step approach to construct and test 
our models (see Fig. 2). In the first step, the full dataset was split into a training and a test sample. In the second 
step, the feature preselection of the most important features was performed. Therein, the “varImp” function in R 
was used to identify these most important (most discriminant) features. This function determines the additional 

Figure 1.  Meningioma of the skull base (above); semi-automatic segmentation with 3D Slicer (below).



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14043  | https://doi.org/10.1038/s41598-022-18458-4

www.nature.com/scientificreports/

performance of each feature included in a model, i.e. the performance of a model is calculated with and without 
this feature. The difference in the performance of these two models then determines the performance gain result-
ing from this feature. The feature that causes the highest performance loss when removed from the model has 
the highest importance. In the third step, the models containing the features identified in the second step were 
estimated, using the same machine learning method. Finally, in the fourth step, the models were tested using the 
corresponding unknown/ independent test sample. This four-step approach was completely repeated 100 times 
for each model using the 100 different training and test data sets as explained above. The 100 repetitions were 
performed to exclude possible overfitting of the models and random effects related to data partitioning.

Feature preselection (step 2) and subsequent model construction (step 3) was performed with eight different 
machine learning algorithms using only the training data:

Table 1.  Clinical and demographic characteristics.

Training Independent Total

Data Test data Data

Number of patients 111 27 138

Resection status (in %)

GTR 77.48 77.78 77.54

STR 22.52 22.22 22.46

Mean age (in years) 58.80 59.12 58.86

Gender (in %)

Male 27.93 25.93 27.54

Female 72.07 74.07 72.46

Tumor location (in %)

Convexity 33.32 33.41 33.33

Falx 12.35 12.19 12.32

Skull base 46.57 45.59 46.38

Posterior fossa 7.77 8.81 7.97

Tumor shape (in %)

Irregular 37.87 36.89 37.68

Regular 62.13 63.11 62.32

Figure 2.  Development and test of a model with 100 repetitions (100 cycles), fixed number of features und a 
fixed machine learning algorithm used for feature preselection and for the subsequent model estimation.
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(1) Logistic regression
(2) Lasso regression
(3) Ridge regression
(4) Random forest
(5) Bagged trees
(6) Gradient Boosting Machine (GBM)
(7) Naive Bayes
(8) Linear Discriminant Analysis (LDA)

We created our models with an increasing number of the most important features identified in each second 
step. Initially, each model contained only the most important feature, followed by a model with the two most 
important features, followed by a model with the three most important features, and so on. The model with the 
highest mean performance with respect to the independent test data was used as the final model. This step-by-
step approach determined the final number of features included in the model. The approach described here was 
performed independently for each of the eight machine learning algorithms listed above. The aim of this approach 
with an increasing number of features was to find and select the most highly discriminating multivariate feature 
combination with as few features as possible. The model optimization was performed for all models by maximiz-
ing of the Area Under the Curve (AUC) of the Receiver Operator Characteristic (ROC). The predictive power 
of each model was analysed using AUC, accuracy, sensitivity, specificity and Cohen’s Kappa (kappa = (observed 
accuracy – expected accuracy) / (1- expected accuracy)). Given the large imbalance in our class distribution of 
more than 3:1 (GTR vs. STR cases), Cohen’s Kappa provides a more objective description of model performance 
than accuracy. Higher, i.e. better values (closer to the + 1 value) for Cohen’s Kappa are much more difficult to 
achieve if the class distribution is unbalanced. The opposite is true for accuracy. In addition to the aforementioned 
performance measures, the performance of the final model was analysed in relation to the location of the tumor 
in the skull and the postoperative tumor volume.

For both, the eight different methods of feature preselection and subsequent model constructions only the 
training data were used. The tuning parameters of our models were determined using a tenfold cross validation 
(i.e. we divided the training data 10 times into groups with 90% and 10% of the training data, respectively). 
This technique ensures that the subgroups of the training data do not overlap. It is a methodology often used 
to obtain robust results with small datasets. We thus performed a double cross-validation overall, so to speak. 
On a first level for the division of the data into training and test data and the subsequent determination of the 
performance with the independent test data and on a second level for the determination of the hyperparameters 
using only the training data.

In summary, each of our models with a fixed number of features and a fixed machine learning algorithm was 
fully constructed, estimated and tested 100 times. For this purpose, first the stratified division of the full dataset 
into training data (80% of data) and test data (20% of data) described above was repeated i = 100 times (step 1 
in Fig. 2) using different seeds for the data partitioning. This means that we used 100 different training samples 
and 100 different test samples with unknown data to develop and test each model. Variable preselection was then 
performed with each of these training samples (step 2), then each of the 100 models was estimated using the 
respective training sample number i (step 3), and finally each final model number i was tested with the respec-
tive independent test sample number i (step 4). The complete process for developing and testing a single model 
with a fixed number of features and a fixed machine learning algorithm is shown in Fig. 2. We performed this 
complex approach with 100 replicates, firstly to eliminate overfitting as far as possible and secondly to be able 
to determine how sensitively the performance of the models, as well as the selection of the features included in 
the models, depend on the samples used.

Results
Determination of the most important features. First, we analysed the importance of the different 
features depending on the algorithm used for the feature preselection. The five most important features for each 
of the eight different algorithms are listed in Table 2. The features with the ranks of importance 6 to 10 can be 
found in the supplemental (Supplementary Table 1). It is interesting to note that the eight different methods used 
to determine the most important (most discriminant) features yield almost the same features. Most of the first 
features are non-radiomic features.

Almost all of the features listed in Table 2 are assumed to be statistically significant discriminant. Using chi-
square test (Fisher’s exact test) for binary and categorical features we received p-values < 0.001 for the tumor 
locations skull base and convexity, the tumor shape (irregular or regular) and the feature “fd_vs_re” (first diagnose 
or relapse). The p-values for the location = falx and the Karnofsky Performance scale Index (KPI) were 0.039 and 
0.046. Using Wilcoxon test (Mann–Whitney-U-Test), the p values for the non-normally distributed continuous 
features “orig.glszm.SmallAreaEmphasis”, “orig.shape.Elongation” and “orig.glszm.SizeZoneNonUniformity” 
were 0.048, 0.059 and 0.128 respectively. The two additional features "age" and "gender" in Table 1, on the other 
hand, have no univariate statistically relevant (p values > 0.05) discriminatory power.The shape of the tumour 
(irregular or regular) and its location are particularly important. In our database, we distinguish the following 
four locations of meningiomas in the brain: convexity, falx, skull base (see Fig. 1) and posterior fossa. Other 
multivariate important features are the distinction between a first diagnosis of the tumor and a relapse (variable 
“fd_vs_re”), the KPI and the radiomic features “orig.shape.Elongation”, “orig.glszm.SmallAreaEmphasis” and 
“orig.glszm.SizeZoneNonUniformity. “The correlation matrix for these 10 most frequently selected features 
is shown in Fig. 3. Most of the correlation coefficients are small. This means that most of the features are only 
slightly dependent on each other. The variables “orig.shape.Elongation” and “orig.glszm.SizeZoneNonUniformity 
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“show the highest positive correlation ( ̺  = 0.65) and the locations convexity and skull base the highest negative 
correlation ( ̺  = – 0.66). The reason for the comparatively high negative correlation coefficient with respect to 
the locations convexity and skull base is simply that the individual tumor locations are mutually exclusive, and 
tumor locations convexity and skull base occur most frequently in our data. In general, variables with high cor-
relation coefficients should not be used together in a multivariate model.

Performance results of the different models. Next, we determined the performance of our different 
multivariate models. Figure 4 shows the obtained AUC values for the eight different machine learning algo-
rithms as a function of the number of model features included. Table 2 and Supplementary Table1 indicate which 
features are most frequently included in each model. A model with n features contains the first/most important 
n features in each case. Since each model was re-estimated 100 times, the features used in the individual model 
(per cycle) may differ from the tables. All values in Fig. 4 are calculated as means of the 100 cycles/repetitions 
using the independent test samples. The best value of mean AUC = 0.900 [0.786, 0.976] is obtained with the 

Table 2.  Most important five features for each of the eight feature preselection methods.

Feature pre-selection method

Rank of feature importance

1 2 3 4 5

Stepwise logistic Tumor shape:
irregular or regular

Tumor location:
convexity

Tumor location:
falx orig.shape.Elongation fd_vs_re: first

diagnose or relapse

Lasso Tumor shape:
irregular or regular

Tumor location:
skull base orig.shape.Elongation fd_vs_re: first

diagnose or relapse
Tumor location:
posterior fossa

Ridge Tumor shape:
irregular or regular

Tumor location:
convexity

Tumor location:
falx

Tumor location:
skull base orig,shape,Elongation

GBM Tumor shape:
irregular or regular

Tumor location:
skull base

Tumor location:
convexity

orig,glszm.SizeZone NonUni-
formity orig,shape,Elongation

Random forest Tumor location:
convexity

Tumor location:
skull base

orig.glszm.SizeZone NonUni-
formity

Shape:
irregular or regular

fd_vs_re: first
diagnose or relapse

Bagged trees Tumor location:
skull base

Tumor location:
convexity orig.shape.Sphericity Shape:

irregular or regular orig.shape.Elongation

LDA Tumor shape:
irregular or regular

Tumor location:
convexity

Tumor location:
skull base KPI orig.glszm.Small AreaEmphasis

Naive Bayes Tumor shape:
irregular or regular

Tumor location:
convexity

Tumor location:
skull base KPI orig.glszm.Small AreaEmphasis

Figure 3.  Pearson correlation matrix for the 10 most frequently selected features.
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stepwise logistic regression model, which contains only three features. The values in the brackets indicate the 
95% confidence interval (CI). For almost all model approaches shown here, the use of more than about 6 features 
does not lead to a further significant increase in the discriminatory power. In Fig. 5 the received values for the 
mean accuracy and for the mean kappa are shown. Again, the best performance is obtained with the logistic 
model containing only three features. For this model, the mean accuracy is 0.881 und the mean kappa is 0.644. 
Finally, Fig. 6 summarises the results for the mean sensitivity (this means correct prediction of the STR cases) 
and the mean specificity (this means correct prediction of the GTR cases). In terms of the mean sensitivity, the 

1 2 3 4 5 6 7 8 9 10

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

AUC

Number of model features included

M
ea

n
va

lu
e

Stepw. logistic
Rand. forest

Lasso
Bag. trees

Ridge
LDA

GBM
Naive Bayes

Figure 4.  Area Under the Curve (AUC) for the test samples, calculated as means of 100 repetitions (100 cycles).
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logistic model with three features is only the second best of our models. The Naive Bayes approach with only 
two features leads here to an even slightly higher value with a mean sensitivity of 0.745. High mean specificities 
are obtained with almost all models. Overall, we obtained our worst results in terms of AUC, accuracy, kappa, 
sensitivity, and specificity with the bagged trees algorithm and the random forest model. It is interesting to note 
that the radiomic features have only a minor influence on the logistic model with three variables. For the other 
algorithms, however, their significance is higher. This is especially true for the Ridge regression, random forest 
and bagged trees algorithm.

Classification results of the final model: logistic model with three features. The logistic model, 
which contains only three variables, performed well on all our performance measures. The classification results 
with the training data and the test data, calculated as the means of the 100 repetitions, are summarized together 
with their 95% confidence intervals in Table 3. It is interesting to note that our technique with 100 repetitions 
produces very robust results for the logistic model used here. For the training data and the test data, the mean 
results are extremely similar. As follows from Fig. 4, performance with the independent test data is worse with 
both more than three and less than three variables. It is therefore very likely that there is no overfitting in the 
model with three variables.

Regarding the patients in our database, meningiomas with location convexity and falx could be completely 
resected (i.e. GRT cases) without exceptions. However, most meningiomas with location skull base and pos-
terior fossa could not be completely resected (i.e. STR cases) if they had an irregular shape and could also be 
completely resected (i.e. GTR cases) if they had a regular shape. These usual clinical outcomes, as well as the 
prediction error rates of our three-factor model using the independent test samples, are summarized in Table 4. 
Almost all prediction errors of our relatively simple model occur for meningiomas localised in the skull base 
or posterior fossa. Here, the model predicts usually incorrectly if a meningioma with irregular shape could be 
completely resected as well as if a meningioma with regular shape could not be completely resected. All other 
cases are almost always correctly predicted.

We analysed these misclassified cases in even more detail. Regarding the GTR cases, the error rate using 
the independent test data is only 6.43%, which means that the model has a very high specificity of 0.9357. 
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Figure 6.  Sensitivity and Specificity for the test samples, calculated as means of 100 repetitions (100 cycles).

Table 3.  Classification results of the logistic regression model with three features for training data and 
independent test data, calculated as means of 100 repetitions (100 cycles). Values in brackets: 95% confidence 
interval.

Training data Test data

AUC 0.901 [0.879, 0.926] 0.900 [0.786, 0.976]

Accuracy 0.875 [0.856, 0.896] 0.881 [0.778, 0.963]

Kappa 0.629 [0.562, 0.692] 0.644 [0.348, 0.899]

Sensitivity 0.675 [0.600, 0.760] 0.692 [0.333, 1.000]

Specificity 0.933 [0.919, 0.953] 0.936 [0.857, 1.000]
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However, the prediction error for the STR cases shows a strong dependence on the postoperative tumor volume 
(POTV). With respect to the cases with the smallest eleven POTVs, a total of eight cases were misclassified by 
our model. These eight patients had only small POTVs: 4 cases with a POTV < 1.0  cm3, another 3 cases with a 
POTV < 2.25cm3 and one more case with a POTV = 3.78  cm3. All other 21 STR cases were correctly classified, 
except for 2 additional cases (POTVs = 13.1  cm3 and 17.9  cm3). Figure 7 shows the classification results as a func-
tion of postoperative tumor volume for the STR cases. The POTV is shown logarithmically scaled according to 
the vertical lines. The small dots in the figure indicate whether the respective case was correctly or incorrectly 
classified. It is obvious that the prediction error for the STR cases depends strongly on the POTV. The sensitivity 
for the correct prediction of STR cases is 0.6917. However, the sensitivity in predicting cases with a POTV > 4 
 cm3 is as high as 0.8980. Thus, our model is able to correctly predict almost all cases except those with a very 
small POTV.

Discussion
Our results show that it is possible to predict possible complete tumor resections (GTR) or subtotal tumor 
resections (STR) before treatment with good discriminatory power using machine learning algorithms. Using 
a three-factor logistic model, we achieved a very high and stable performance in discriminating GTR and STR 
cases with independent test data (AUC = 0.900, accuracy = 0.881, kappa = 0.644, sensitivity = 0.692 and specific-
ity = 0.936). In multivariate logistic models, the features included in a model can be interpreted easily in terms of 
their direction of effect. As explained, every model was created 100 times, estimated with 100 different training 
samples and subsequently tested with 100 sets of independent test samples. Each of our 100 models with three 
features created with stepwise logistic regression contained the shape of the tumor (feature “Tumor.shape”) and 
different possible locations of the meningiomas. In most models, the locations convexity and falx were included. 
Sometimes, locations skull base and posterior fossa were included instead. Our model shows that even with these 
few features, a fairly accurate statement can be made about whether a meningioma can be completely resected 
or not. However, cases with very small postoperative tumor volumes (< 4  cm3) are difficult to predict.

The tumors in our database that could only be resected subtotally were located at the skull base and in the 
posterior fossa. Wang et al. found that the extent of the surgical resection of a meningioma located at the skull 
base significantly influenced the prognosis. GTR of meningioma improved progression-free survival compared to 
 STR9. As early as 1957, Simpson described the extent of meningioma resections in a grading system. He showed 
that the extent of surgical resection and tumor recurrence are  correlated10. According to Voß et al., increasing 
Simpson grade and subtotal resection are still generally correlated with tumor  recurrence11. Gallagher et al. also 
found, that Simpson grade remains a predictive factor for recurrence/progression free survival (RPFS). However, 
the meningioma location no longer appears to be a significant predictor of RPFS. They hypothesize that this may 
be due to the increased use of adjuvant therapies for skull base meningiomas, as well as advances in technology 
and surgical  techniques12. Lemée et al. analyzed risk factors for incomplete resections, using a cohort of 1469 
patients. In line with our results, they found that a location of the tumor at the skull base was one of the most 
important risk factors. In addition, they identified two further important factors which were not included in our 
database: symptoms at presentation (seizure, intracranial hypertension and/or a neurological deficit) and associ-
ated bone  invasion13. In our study, we found that in addition to meningiomas located at the skull base, tumors in 
the posterior fossa could comparatively often not be completely resected. Specifically, in our final dataset 40.6% 
of skull base meningiomas and 45.5% of posterior fossa meningiomas were STR cases. This finding is also in line 

Table 4.  Usual clinical outcomes and prediction error rates (using the test samples) for the stepwise logistic 
regression model with three features.

Tumor location Usual clinical outcome Prediction error rate

Shape: irregular Shape: regular Shape: irregular Shape: regular

Convexity GTR GTR 0.00% 0.00%

Falx GTR GTR 2.48% 0.00%

Skull base STR GTR 24.25% 21.55%

Posterior fossa STR GTR 22.32% 11.90%

Figure 7.  Classification results of the logistic regression model with three features for the STR cases, calculated 
with the test samples.
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with several other  studies14,15. Corniola et al. identified factors and provided a classification tree to predict the 
EOR in posterior fossa meningiomas, based upon preoperative demographic, clinical, and radiological  variables16.

These studies underline the well-known fact that the degree of resection is an important parameter for 
early further therapy planning. In our study, we presented a methodology to develop stable models with high 
discriminatory power using machine learning methods to predict and discriminate between gross total and 
subtotal resections. We used an algorithm with 100 cycles/repetitions and a variable number of features to avoid 
both underfitting and overfitting. As the comparison of the performance values achieved with the training data 
and the test data shows (Table 3), this methodology achieved extremely stable results. Specifically, our method 
resulted in a model with high discriminative power using only three features.

Our study has some limitations. First of all, the final cohort was relatively small including only 138 patients. 
This is especially true for the STR cases. In order to be able to classify these cases even more precisely, more cor-
responding STR cases are needed to train the model. In addition, further information concerning the patients 
would be beneficial, e.g. whether there is bone invasion of the tumor. Finally, the retrospective character should 
be mentioned. Regardless of these limitations, this study demonstrates how machine learning algorithms can be 
used to predict clinical resection outcomes, potentially accelerating further treatment planning.

Conclusion
Our results show that with machine learning algorithms and comparatively few explanatory factors, it is pos-
sible to make accurate predictions about whether a meningioma can be completely resected by surgery or not. 
Complete resections as well as resections with larger postoperative tumor volumes can be predicted with very 
high accuracy. However, cases with very small postoperative tumor volumes are comparatively difficult to predict 
correctly.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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