
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14019  | https://doi.org/10.1038/s41598-022-18455-7

www.nature.com/scientificreports

Design, synthesis, 
and in silico studies 
of quinoline‑based‑benzo[d]
imidazole bearing different 
acetamide derivatives as potent 
α‑glucosidase inhibitors
Milad Noori1, Ali Davoodi2, Aida Iraji3,4, Navid Dastyafteh1, Minoo Khalili1, Mehdi Asadi2, 
Maryam Mohammadi Khanaposhtani5, Somayeh Mojtabavi6, Mehdi Dianatpour3, 
Mohammad Ali Faramarzi6, Bagher Larijani1, Massoud Amanlou2* & Mohammad Mahdavi1*

In this study, 18 novel quinoline‑based‑benzo[d]imidazole derivatives were synthesized and screened 
for their α‑glucosidase inhibitory potential. All compounds in the series except 9q showed a significant 
α‑glucosidase inhibition with  IC50 values in the range of 3.2 ± 0.3–185.0 ± 0.3 µM, as compared to the 
standard drug acarbose  (IC50 = 750.0 ± 5.0 µM). A kinetic study indicated that compound 9d as the most 
potent derivative against α‑glucosidase was a competitive type inhibitor. Furthermore, the molecular 
docking study revealed the effective binding interactions of 9d with the active site of the α‑glucosidase 
enzyme. The results indicate that the designed compounds have the potential to be further studied as 
new anti‑diabetic agents.

Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia, with the disorder in 
carbohydrate, fat, and protein metabolism in the  body1. DM is known as an important public health threat with 
around 450 million cases worldwide in 2019. This number is expected to rise to 700 million by 2045 worldwide 
confirming further action is required in this  field2,3. Long-term DM can increase the risk of various health com-
plications including blindness, renal failure, foot amputation, as well as cardiovascular, retinopathy, and renal 
 diseases4. Type 2 diabetes mellitus (T2DM) with around 90% of all cases is categorized as a major sub-type of 
DM. It was considered that glycemic control could be effective prevention and treatment for  T2DM5–7.

α-Glucosidase (EC 3.2.1.20) is a catalytic hydrolase enzyme present on the brush border of the small intestine 
which hydrolyzes oligosaccharides, trisaccharides, and disaccharides to glucose and other monosaccharides at 
their non-reducing  ends7–10. The produced monosaccharides especially glucose enter the bloodstream, result-
ing in postprandial hyperglycemia thus causing  diabetes11–13. Therefore, the inhibition of α-glucosidase might 
reduce carbohydrate digestion, delay glucose uptake, and consequently, decrease blood sugar  levels14,15. The 
α-glucosidase enzyme can be inhibited by acarbose, voglibose, and miglitol with sub-optimal  efficacy16. Also, 
long-term administration of mentioned inhibitor may cause several side effects, such as abdominal pain, diarrhea, 
and flatulence. As a result, a need of effective inhibitors to target α-glucosidase is highly  needed17–19.

In the last few decades, different synthetic small molecules including  benzo[d]imidazole20,  isatin21  benzo[b]
thiophene22  pyrimidine23,  xanthone24,  chromene6,  azole18,25 against α-glucosidase attracted increasing attention.
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Regarding promising anti-diabetic properties of quinolone heterocyclic scaffold and benzo[d]imidazole moi-
ety, in this study, the novel series of quinoline-based-benzo[d]imidazole bearing different acetamide derivatives 
were synthesized, and evaluated for their inhibition potential against the α-glucosidase enzyme. Also, kinetic 
as well as molecular docking studies of the most potent compound were performed to evaluate their inhibition 
pattern against α-glucosidase.

Results and discussion
Design of quinoline‑based‑benzo[d]imidazole derivatives. During the last years, several non-
sugar-based α-glucosidase inhibitors were identified. The random screening of the in-house library resulted in 
introducing compound A (Fig. 1) bearing benzo[d]imidazole moiety with good potency against α-glucosidase20. 
The follow-up structural optimization of A resulted in a series of novel 2-phenyl-1H-benzo[d]imidazole deriva-
tives (compound B and C) with  IC50 values in the range of 0.71 to > 100 µM compared to the acarbose as a posi-
tive control with an  IC50 value of 258.53 ± 1.27 µM. Preliminary structure–activity relationships (SARs) study 
revealed that the benzo[d]imidazole core played key role in the inhibition of α-glucosidase  activity17.

Also, recent studies demonstrated the α-glucosidase inhibitory activity of quinoline-containing compounds. 
The preliminary bioassay results revealed that compounds D and E (Fig. 1) had significant inhibitory potency 
compared to acarbose  (IC50 = 66.5 ± 1.5 µg/mL)26. To further improve the α-glucosidase inhibitory activity of 
quinolone derivatives, the structural modification was carried out. These analogs exhibited inhibitory potential 
with  IC50 values in the ranges between 2.60 and 102.12 μM (Compound F, Fig. 1)27.

Furthermore, it was reported that methyl-thioacetamide moiety (compounds G and H) can not only improve 
α-glucosidase inhibition through generating optimum structure to effectively participate within the active site 
but also provide a suitable site for  derivatization28–30.

In this context, molecular hybridization as a powerful tool for drug designing was applied so that benzo[d]
imidazole and quinoline as potent heterocyclic pharmacophores were conjugated to different acetamide deriva-
tives. Novel designed compounds were synthesized and evaluated for their α-glucosidase inhibitory activities. 
Preliminary SAR studies were conducted. Further, kinetic study plus in silico assessments were performed to 
evaluate the binding of the active compound to the enzyme.

Chemistry. The synthesis of compounds 9a–r is schematically shown in Fig. 2. Briefly, phosphoryl chloride 
in N,N-dimethylformamide (DMF) was added dropwise to the cold N-phenylacetamide (1) under reflux condi-
tions for 15 h to obtain 2-chloroquinoline-3-carbaldehyde (2)31. Compound 2 and sodium sulfide were then 
dissolved in DMF and stirred at room temperature for 2 h to achieve 3-formyl-2-mercaptoquinoline (3)32. Then, 
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Figure 1.  Schematic illustration of previously reported α-glucosidase inhibitors and newly designed compound.
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the reaction of O-phenylenediamines (4) and 3-formyl-2-mercaptoquinoline (3) in the presence of sodium met-
abisulfite in DMF at 150 °C for 2 h afforded the target compound 533. Synthesis of desired compounds 8a–r was 
performed through the reaction of aniline derivatives (6a–r) with chloroacethylchloride (7) in  DMF34. Finally, 
the reaction of compounds 8a–r and compound 5 in acetone in presence of  K2CO3 led to the formation of prod-
ucts 9a–r35. The structure of all compounds was confirmed using NMR and IR spectroscopy as well as elemental 
analysis.

Structure–activity relationship (SAR) exploration. The results of the α-glucosidase inhibitory assay 
are displayed in Table 1. In general, all compounds showed significant α-glucosidase inhibition with  IC50 values 
in the range of 3.2 ± 0.3 to 185.0 ± 0.3 µM in comparison to acarbose with an  IC50 value of 750.0 ± 5.0 µM. The 
exception come back to 9q which showed  IC50 > 750.

As can be seen in Table 1, benzimidazole-thioquinoline structure bearing phenylacetamide exhibited good 
inhibitory activities against α-glucosidase (9a,  IC50 = 30.2 ± 0.4 µM). The incorporation of a fluorine atom at 
the ortho position of phenylacetamide (9b) resulted in an around the twofold loss of potency compared to 9a. 
Furthermore, changing the position from ortho to para in compound 9c  (IC50 = 13.5 ± 0.6 µM) resulted in the 
second potent derivative in the halogen-substituted set.

Impotently, the introduction of 3-chlorophenyl at R position, compounds 9d, displayed a significant 
α-glucosidase inhibition  (IC50 = 3.2 ± 0.3 µM) with around 250-fold improvement in the potency compared to the 
positive control, acarbose. Indeed, compound 9e (R = 4-chlorophenyl,  IC50 = 110.4 ± 0.2 µM) had inferior activity 
compared to 9d. Replacement of chlorine substitution with bromine resulted in compounds 9f and 9g. Com-
pound 9f (R = 2-Bromophenyl) was another potent derivative in halogen-substituted set  (IC50 = 23.4 ± 0.2 µM). 
However converting 2-Br substitution to 4-Br was not favorable (9g,  IC50 = 185.0 ± 0.3 µM) compared to 9f. 
Additionally, 9h as the multi-substituted chlorine derivative with inferior activities compared with 9c, still 
exhibited promising potency compared to acarbose.

Overall, the mono-electron withdrawing group (EWG) at para position had a destructive effect against 
α-glucosidase while ortho and meta position seems more favorable. The exception in this trend came back to 
9c bearing 4-fluorine. This could be due to the smaller size and better electronegativity compared to the rest of 
halogen derivatives.

The evaluations on 9j–m as the mono electron-donating-substituted group (EDG) showed overall improve-
ment in the potency so that 9l (R = 4-methoxyphenyl) with an  IC50 of 5.7 ± 0.3 μM was categorized as the top 
potent inhibitor in this group and second top potent entry among all derivatives followed by 9k (R = 4-methyl 
phenyl) and 9j (R = 2-methyl phenyl). Next, the assessment of compounds 9n and 9o were performed and, 
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Figure 2.  Synthesis of compounds 9a–r.
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disappointingly, 9o bearing symmetric multi-substituted moiety (R = 2,6-diCH3,  IC50 = 147.0 µM) recorded the 
reduction in the activity compared to 9n. However, 9o derivative still demonstrated around eightfold improve-
ment in the potency compared to acarbose with  IC50 of 750.0 µM.

Precise assessments on the 9j–o derivatives also indicated that the position of substitutions seems to have the 
most dominant role in the inhibition compared to the lipophilicity of moiety.

Ring substitution assessments were also performed in which phenyl (9a) was replaced with naphthyl (9p). 
An improvement in the activity showed that a bulk structure is more favorable.

Next, the investigation of SAR indicated that nitro (9i,  IC50 = 19.7 ± 0.2  µM) and methoxy (9l, 
 IC50 = 5.7 ± 0.3 µM) moieties were optimal substituents at the para position of phenylacetamide which improved 
the α-glucosidase inhibition. These results suggested that such substitution may probably enhance the ligand–pro-
tein interaction with the α-glucosidase active site.

9q and 9r were also synthesized to evaluate the role of elongation of the linker between aryl substitutions 
and thioacteamide moiety. Compound 9q with benzyl substitution exhibited dramatically reduction in the 
α-glucosidase inhibition compared to 9a which exhibited the destructive effect of elongation of the linker in the 
unsubstituted derivatives. Also, there was a similar trend in the potency in 9r bearing 4-fluorobenzyl compared 
to 9c (R = 4-Fluorophenyl).

The summary of the SARs to improve α-glucosidase inhibitory activity was depicted in Fig. 3. Overall, it can 
be understood that the most potent derivative (9d) exhibited better inhibitory activity against a-glucosidase 
compared to lead compounds including A to G reported in Fig. 1 concerning their positive control.

Enzyme kinetic studies. To gain insight into the mechanism of action of 9d as the most potent 
α-glucosidase inhibitor, kinetic measurements were performed. According to Fig. 4a, the Lineweaver–Burk plot 
showed that the Km gradually increased and Vmax remained unchanged with increasing inhibitor concentration 
indicating a competitive inhibition. The results show 9d bonded to the active site on the enzyme and compete 
with the substrate for binding to the active site. Furthermore, the plot of the Km versus different concentrations 
of inhibitor gave an estimate of the inhibition constant, Ki of 3.2 µM (Fig. 4b).

Docking analyses. To identify the accuracy and validation of docking procedures, the self-docking of acar-
bose (as a crystallographic ligand) was performed through induced fit docking of Schrödinger software. Align-
ment of the best pose of acarbose in the active site of α-glucosidase and crystallographic ligand recorded an 
RMSD value of 1.73 Å (RMSD should be less than 2 Å) which confirms the accuracy of docking. Next, the same 

Table 1.  α-Glucosidase inhibitory activity of compounds 9a–r. a Data represented in terms of mean ± SD.

Compound R IC50 (μM)a Concentrations of precipitation (µM)

9a Phenyl 30.2 ± 0.4  ≥ 200

9b 2-Fluorophenyl 61.3 ± 0.4  ≥ 200

9c 4-Fluorophenyl 13.5 ± 0.6  ≥ 200

9d 3-Chlorophenyl 3.2 ± 0.3  ≥ 200

9e 4-Chlorophenyl 110.4 ± 0.2  ≥ 200

9f 2-Bromophenyl 23.4 ± 0.2  ≥ 200

9g 4-Bromophenyl 185.0 ± 0.3  ≥ 200

9h 2,6-Dichlorophenyl 100.8 ± 0.1  ≥ 200

9i 4-Nitrophenyl 19.7 ± 0.2  ≥ 200

9j 2-Methylphenyl 16.5 ± 0.4  ≥ 200

9k 4-Methylphenyl 12.3 ± 0.2  ≥ 200

9l 4-Methoxyphenyl 5.7 ± 0.3  ≥ 200

9m 4-Ethylphenyl 55.6 ± 0.2  ≥ 200

9n 2,3-Dimethylphenyl 9.8 ± 0.5  ≥ 200

9o 2,6-Dimethylphenyl 147.0 ± 0.2  ≥ 200

9p Naphthalene 17.7 ± 0.8  ≥ 200

9q Benzyl 750 <  ≥ 200

9r 4-Fluorobenzyl 33.0 ± 0.1  ≥ 200

Acarbose – 750.0 ± 5.0 –
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Figure 3.  Summary of the SARs.

Figure 4.  Kinetics of α-glucosidase inhibition by 9d. (a) The Lineweaver–Burk plot in the absence and presence 
of different concentrations of 9d; (b) the secondary plot between Km and various concentrations of 9d.
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docking procedure was repeated with all derivatives and their binding to α-glucosidase was analyzed. Results 
are summarized in Table 2.

The in silico studies showed the binding energy of acarbose was − 6.14 kcal/mol while the glide score value 
of 9a–r ranges from − 4.65 to − 6.92 kcal/mol. As can be seen, the most potent derivative in in vitro assay was 
9d  (IC50 = 3.2 ± 0.3) > 9l  (IC50 = 5.7 ± 0.3 µM) > 9n  (IC50 = 9.8 ± 0.5 µM) > 9k  (IC50 = 12.3 ± 0.2 µM) exhibited the 
best in silico results with glide score value of − 6.92, − 6.33, − 6.90 and − 6.72 kcal/mol, respectively. Assessments 
on lest potent derivatives, 9q  (IC50 > 750), 9g  (IC50 = 185.0 ± 0.3) and 9o  (IC50 = 147.0 ± 0.2) reveal low binding 
interaction with the targeted enzyme with binding energy of − 4.30, − 4.65 and − 4.99 value.

The docking results between α-glucosidase and compound 9d was shown in Fig. 5. Compound 9d was well 
inserted into the active site and recorded a Glide score of − 6.92. Compound 9d established critical hydrogen 
bond interaction with Trp481 and benzimidazole. Also, benzimidazole participated in pi–cation interaction 
with Arg600. On the other side of the molecule, 3-chlorophenylacetamide established H-bound interaction 
with Asp616 and halogen-bound interaction with Leu677. Notably, in most derivatives, the designed scaffold 
participated in the critical interactions within the active site of the enzyme and showed similar kinds of interac-
tions to the native ligand.

Conclusion
In this study, a series of novel quinoline-based-benzo[d]imidazole bearing different acetamide derivatives were 
designed, synthesized and their inhibitory activity against α-glucosidase was performed. Most of these deriva-
tives showed increased activity compared to acarbose as the positive control. The analysis of the SAR indicated 
that meta-chlorine substitution, as well as polar group with potential hydrogen interactions at the R position, 
was beneficial to α-glucosidase inhibition. The most potent candidate in this series 9d  (IC50 = 3.2 ± 0.3 µM) was 
chosen for further biological evaluation. The enzyme kinetics assessments indicated that compound 9d inhibited 
α-glucosidase in a competitive inhibition manner (Ki = 3.2 µM). According to the docking study, compound 9d 
was well fitted in the active site of α-glucosidase through both hydrophobic and hydrogen interactions. Overall, it 
can be understood that the most potent derivative (9d) exhibited better inhibitory activity against a-glucosidase 
compared to lead compounds including A, to G reported compared to positive control reported in Fig. 1. In 
silico assessments confirmed the critical role of benzimidazole and aryl-acetamides to participate in interactions 
with the binding site of an enzyme.

Regarding that T2DM is public health concern nowadays, the inhibition of α-glucosidase is considered an 
efficient approach to target T2DM. It was shown that quinoline-based-benzo[d]imidazole bearing different 
acetamides constructed a new nucleus which provided a significant role for α-glucosidase inhibition. However, 
to better extract the SARs of this set of compounds, in the future project, heteroaryl or aliphatic substituents at 
the R position will be synthesized. Also, bioisosteric replacement of benzo[d]imidazole with other heteroaromatic 
rings will increase our insight into the design of more potent α-glucosidase inhibitors.

Experimental
Chemistry. All the reagents were purchased from commercial sources. 1H and 13C NMR spectra were deter-
mined by a Bruker FT-400 MHz spectrometer in DMSO-d6. All the chemical shifts were reported as (δ) values 
ppm. The MS spectra were recorded using an Agilent 7890A spectrometer at 70 eV. CHNOS analysis was per-
formed using ECS4010 Costech Company. IR spectra were obtained with a Nicolet, FR -IR Magna 550. Melting-
point were also recorded using Kofler hot-stage apparatus.

Synthesis of 2‑chloroquinoline‑3‑carbaldehyde (2)31. To N, N-dimethylformamide (70.0 mmol) in the round-
bottomed flask, phosphorus oxychloride (120.0 mmol) was added dropwise and the reaction mixture was stirred 
for 1 h at 0–5 °C. To this flask, N-phenylacetamide (30.0 mmol) was added and stirred for an extra 30 min fol-
lowed by refluxing for 5–4 h under  N2 atmosphere. After the reaction was completed (TLC monitoring), the 
mixture was poured into crushed ice under constant stirring. The precipitate obtained was vacuum filtered, 
washed with water, air-dried, and recrystallized from EtOAc to give the 2-chloroquinoline-3-carbaldehyde.

Synthesis of 2‑mercaptoquinoline‑3‑carbaldehyde (3)32. The reaction was initiated by stirring the mixture of 
2-chloroquinoline-3-carbaldehyde 2 (1 mmol) and sodium sulfide (1 mmol) for 2 h at room temperature in dry 
DMF (50 mL). Then, the reaction mixture was poured into crushed ice and made acidic with acetic acid. The 
product was filtered off, washed with water, and dried to give the desired 2-mercaptoquinoline-3-carbaldehyde 
that was further purified by recrystallization in ethanol.

Synthesis of 3‑(1H‑benzo[d]imidazol‑2‑yl)quinoline‑2‑thiol (5)33. 2-Mercaptoquinoline-3-carbaldehyde 
(1 mmol) and o-phenylenediamine (1.2 mmol) were dissolved in 2 mL DMF. Under stirring at room tempera-
ture, 1 mmol of sodium metabisulfite is added and allowed to react at 120 °C for about 4 h. After completion of 
the reaction, the mixture was precipitated in ice water, filtered, and dried at room temperature.

Synthesis of 2‑chloro‑N‑phenylacetamide derivatives (8a–r)34. To a solution of aniline derivatives (1 mmol) in 
DMF (4 mL), chloroacetylchloride was added at 0 °C. The mixture was stirred at room temperature for 5 h and 
poured into water and then filtered to get the 8a–r. The obtained solids were then filtered, dried, and recrystal-
lized from ethanol.
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Compound R Glide score Amino acid Type of interaction

9a Phenyl  − 6.43

Asp616 H-bound

Leu678 H-bound

Phe649 Pi–pi stacking

9b 2-Fluorophenyl  − 5.81
Asp616 H-bound

Asp282 H-bound

9c 4-Fluorophenyl  − 6.59

Trp376 Pi–pi stacking

Trp481 Pi–pi stacking

Leu677 H-bound

Asp616 H-bound

Arg600 Pi–cation

Asp518 Salt bridge

9d 3-Chlorophenyl  − 6.92

Arg600 Pi–cation

Trp481 H-bound

Asp616 H-bound

Asp616 H-bound

Leu677 Halogen bound

9e 4-Chlorophenyl  − 5.39

Arg600 Pi–cation

Asp282 H-bound

Trp481 H-bound

9f 2-Bromophenyl  − 6.14

Arg600 Pi–cation

Asp282 H-bound

Trp481 H-bound

9g 4-Bromophenyl  − 4.65

Asp282 H-bound

Trp481 Pi–pi stacking

Phe649 Pi–pi stacking

9h 2,6-Dichlorophenyl  − 4.99

Trp481 Pi–pi stacking

Trp481 Pi–pi stacking

Trp481 Pi–pi stacking

Phe649 Pi–pi stacking

Phe649 Pi–pi stacking

9i 4-Nitrophenyl  − 6.31

Asp616 H-bound

Asp282 H-bound

Arg281 Pi–cation

9j 2-Methylphenyl  − 6.13

Asp616 H-bound

Asp282 H-bound

Phe525 Pi–pi stacking

9k 4-Methylphenyl  − 6.72

Phe649 Pi–pi stacking

Phe649 Pi–pi stacking

Asp616 H-bound

Ser676 H-bound

9l 4-Methoxyphenyl  − 6.33

Leu677 H-bound

Asp616 H-bound

Phe649 Pi–pi stacking

Trp481 Pi–pi stacking

9m 4-Ethylphenyl  − 6.54

Asp282 H-bound

Asp282 H-bound

Trp481 H-bound

9n 2,3-Dimethylphenyl  − 6.900

Asp616 H-bound

Trp481 H-bound

Phe649 Pi–pi stacking

9o 2,6-Dimethylphenyl  − 5.53
Asp616 H-bound

Asp282 H-bound

Continued
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General method for synthesis of 2‑((3‑(1H‑benzo[d]imidazol‑2‑yl)quinolin‑2‑yl)thio)‑N‑phenylacetamide deriva‑
tives (9a–r)35. A mixture of 3-(1H-benzo[d]imidazol-2-yl)quinoline-2-thiol (1 mmol) and potassium carbon-
ate (1.5 mmol) in DMF were stirred at room temperature for 15–20 min. Afterward, N-chloroacetyl-aniline 
(1.2 mmol) was added to the above reaction mixture and stirred for an extra 4–5 h. After completion of the reac-
tion, ice-cold water was added to the reaction mixture and stirred for 20 min. The obtained solid was filtered and 
washed with cold water several times. The acquired crude solid was purified by recrystallization from ethanol.

2-((3-(1H-benzo[d]imidazol-2-yl)quinolin-2-yl)thio)-N-phenylacetamide (9a). Brown solid; Yield: 93%; 
MP = 180–182 °C; IR (KBr,  vmax) 3310 (NH), 3025 (C–H Aromatic), 2970  (CH2 Aliphatic), 1675 (C=O)  Cm−1; 
1H NMR (400 MHz, DMSO-d6) δ 10.71 (s, 1H, NH), 9.07 (s, 1H,  H3), 8.47 (s, 1H,  H4), 8.19 (d, J = 8.00 Hz, 1H, 
 H8), 8.10 (d, J = 8.60 Hz, 1H,  H5), 7.86 (t, J = 8.40 Hz, 1H,  H7), 7.81(d, J = 7.6 Hz, 2H,  H2,  H6), 7.65 (t, J = 8.00 Hz 
1H,  H4), 7.41 (t, J = 7.90 Hz, 2H,  H3,  H5), 7.16 (t, J = 7.40 Hz, 1H,  H3) ppm. 13C NMR (100 MHz, DMSO-d6): 
δ 167.80, 157.98, 148.94, 147.10, 143.98, 139.79, 136.69, 135.03, 131.63, 129.24, 128.79, 127.65, 126.76, 125.08, 

Compound R Glide score Amino acid Type of interaction

9p Naphthalene  − 6.25

Asp616 H-bound

Asp616 H-bound

Trp481 H-bound

Phe525 Pi–pi stacking

Trp376 Pi–pi stacking

9q Benzyl  − 4.30
Trp376 Pi–pi stacking

Phe525 Pi–pi stacking

9r 4-Fluorobenzyl  − 5.90

Asp282 H-bound

Asp282 H-bound

Trp376 Pi–pi stacking

Trp481 Pi–pi stacking

Trp481 Pi–pi stacking

Trp481 Pi–pi stacking

Acarbose –  − 6.14

Asp616 H-bound

Asp616 Salt bridge

Asp518 H-bound

Phe525 H-bound

Table 2.  Docking scores and interactions of compounds against the α-glucosidase (PDB ID: 5NN8).

Figure 5.  3D and 2D proposed binding modes of compounds 9d (blue color) with α-glucosidase.
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123.74, 123.63, 123.20, 123.40, 119.78, 119.48, 112.01, 36.55 ppm; ESI–MS  (C24H18N4OS): calculated m/z 410.15 
[M +  H]+, observed m/z 410.10 [M +  H]+ Anal. Calcd. For  C24H18N4OS C, 70.22; H, 4.42; N, 13.65; Found: C, 
70.39; H, 4.60; N, 13.76;

2-((3-(1H-benzo[d]imidazol-2-yl)quinolin-2-yl)thio)-N-(2-fluorophenyl)acetamide (9b). Brown solid; Yield: 
87%; MP = 183–185 °C; IR (KBr,  vmax) 3325 (NH), 3060 (C–H Aromatic), 2950  (CH2 Aliphatic), 1680 (C=O) 
 Cm−1; 1H NMR (400 MHz, DMSO-d6) δ 13.15 (s, 1H), 10.21 (s, 1H), 8.79 (s, 1H), 8.03 (d, J = 7.9 Hz, 1H), 7.98 (d, 
J = 8.4 Hz, 1H), 7.96–7.88 (m, 1H), 7.82 (t, J = 8.2 Hz, 1H), 7.61 (t, J = 7.4 Hz, 1H), 7.35–7.21 (m, 4H), 7.15–7.00 
(m, 3H), 4.23 (s, 2H) ppm. 13C NMR (100 MHz, DMSO-d6): δ 168.45, 157.90, 154.95, 152.52 (CF, 1JCF = 243 Hz), 
148.91, 147.12, 136.82, 131.63, 128.77, 127.64, 126.90, 126.84, 126.78, 125.48, 125.40, 125.14, 124.86, 124.04, 
123.22, 116.00, 115.81, 35.95  ppm; ESI–MS  (C24H17FN4OS): calculated m/z 428.11 [M +  H]+, observed m/z 
428.20 [M +  H]+, Anal. Calcd. for  C24H17FN4OS: C, 67.27; H, 4.00; N, 13.08; Found: C, 67.45; H, 4.18; N, 13.24;

2-((3-(1H-benzo[d]imidazol-2-yl)naphthalen-2-yl)thio)-N-(4-fluorophenyl)acetamide (9c). Brown solid; 
Yield: 89%; MP = 189–191  °C; IR (KBr,  vmax) 3330 (NH), 3025 (C–H Aromatic), 2915  (CH2 Aliphatic),1640 
(C=O)  Cm−1; 1H NMR (400 MHz, DMSO-d6) δ 13.70 (s, 1H), 10.49 (s, 1H), 8.78 (s, 1H), 8.01 (d, J = 8.00 Hz, 
1H), 7.92 (d, J = 8.30 Hz, 1H), 7.79 (t, J = 7.70 Hz, 1H), 7.73–7.56 (m, 5H), 7.33–7.26 (m, 2H), 7.15 (t, J = 8.8, 2H), 
4.17 (s, 2H), ppm. 13C NMR (100 MHz, DMSO-d6): δ159.57, 157.95 (CF, 1JCF = 238.1 Hz), 157.19, 148.96, 147.09, 
136.68, 136.21, 131.63, 128.79, 127.3, 126.76, 125.08, 123.19, 121.25, 121.17, 115.92, 115.70, 36.49 ppm; ESI–MS 
 (C24H17FN4OS): calculated m/z 428.11 [M +  H]+, observed m/z 428.30 [M +  H]+, Anal. Calcd. for  C25H18FN3OS: 
C, 70.24; H, 4.24; N, 9.83; Found: C, 70.41; H, 4.47; N, 9.99.

2-((3-(1H-benzo[d]imidazol-2-yl)quinolin-2-yl)thio)-N-(3-chlorophenyl)acetamide (9d). Brown solid; Yield: 
89%; MP = 190–192°; IR (KBr,  vmax) 3310 (NH), 3015 (C–H Aromatic), 2880  (CH2 Aliphatic), 1645 (C=O)  Cm−1; 
1H NMR (400 MHz, DMSO-d6) δ 13.6 (s, 1H), 10.65 (s, 1H), 8.79 (s, 1H), 8.01 (d, J = 8.10 Hz, 1H), 7.93–7.77 (m, 
4H), 7.66–7.50 (m, 3H), 7.10 (d, J = 8.00 Hz, 1H), 4.18 (s, 3H) ppm. 13C NMR (100 MHz, DMSO-d6): δ 168.42, 
167.60, 166.09, 162.75, 157.90, 150.04, 149.10, 147.06, 143.03, 141.29, 136.63, 136.21, 133.61, 131.56, 130.39, 
128.76, 127.59, 126.73, 125.12, 123.23, 123.24, 123.02, 118.97, 117.86, 31.22  ppm; ESI–MS  (C24H17ClN4OS): 
calculated m/z 444.08, [M +  H]+, observed m/z 444.20, [M +  H]+; Anal. Calcd.  C24H17ClN4OS, C, 64.79; H, 3.85; 
N, 12.59; Found: C, 64.95; H, 4.02; N, 12.77.

2-((3-(1H-benzo[d]imidazol-2-yl)quinolin-2-yl)thio)-N-(4-chlorophenyl)acetamide (9e). Brown solid; Yield: 
90%; MP = 185–187 °C IR (KBr,  vmax) 3275 (NH), 3030 (C–H Aromatic), 2980  (CH2 Aliphatic), 1680 (C=O) 
 Cm−1; 1H NMR (400 MHz, DMSO-d6) δ 13.14 (s, 1H), 10.57 (s, 1H), 8.78 (s, 1H), 8.01 (d, J = 8.00 Hz, 1H), 7.89 
(d, J = 8.40 Hz, 1H), 7.78 (t, J = 7.70 Hz, 2H), 7.68 (d, J = 8.50 Hz, 3H), 7.59 (t, J = 7.50 Hz, 1H), 7.37 (d, J = 8.50 Hz, 
2H), 7.29 (d, J = 7.20 Hz, 2H) ppm. ESI–MS  (C24H17ClN4OS): calculated m/z 444.08, [M +  H]+, observed m/z 
444.20,[M +  H]+, 13C NMR (100  MHz, DMSO-d6): δ 168.06, 157.91, 148.93, 147.07, 138.77, 136.66, 131.64, 
129.16, 128.79, 127.59, 127.14, 126.78, 125.05, 123.15, 120.99, 36.58 ppm; Anal. Calcd. for  C24H17ClN4OS; C, 
64.79; H, 3.85; N, 12.59; Found: C, 64.95; H, 3.99; N, 12.79.

2-((3-(1H-benzo[d]imidazol-2-yl)quinolin-2-yl)thio)-N-(2-bromophenyl)acetamide (9f). Brown solid; Yield: 
93%; MP = 181–183 °C; IR (KBr,  vmax) 3300(NH), 3030 (C–H Aromatic), 2965  (CH2 Aliphatic), 1655 (C=O) 
 Cm−1; 1H NMR (400 MHz, DMSO-d6) δ 13.14 (s, 1H), 10.43 (s, 1H), 8.77 (s, 1H), 8.01 (d, J = 7.90 Hz, 1H), 7.93 
(d, J = 8.40 Hz, 1H), 7.80 (d, J = 5.50 Hz, 1H), 7.78 (d, J = 6.1 Hz, 1H), 7.67–7.56 (m, 3H), 7.35–7.24 (m, 4H), 
7.04 (t, J = 7.3 Hz, 1H) ppm. ESI–MS  (C24H17BrN4OS): calculated m/z 490.03, [M +  H]+, observed m/z 488.10, 
[M +  H]+, 13C NMR (100  MHz, DMSO-d6): δ 168.25, 157.53, 149.29, 147.09, 136.81, 136.69, 133.05, 131.53, 
128.75, 128.52, 127.87, 126.91, 126.84, 125.93, 125.25, 123.60, 122.90, 116.69, 115.96, 35.84 ppm; Anal. Calcd. 
for  C24H17BrN4OS C, 58.90; H, 3.50; N, 11.45; Found: C, 59.11; H, 3.69; N, 11.75.

2-((3-(1H-benzo[d]imidazol-2-yl)quinolin-2-yl)thio)-N-(4-bromophenyl)acetamide (9g). Brown solid; Yield: 
95%; MP = 185–187°; IR (KBr,  vmax) 3340 (NH), 3025 (C–H Aromatic), 2870  (CH2 Aliphatic), 1640 (C=O)  Cm−1; 
1H NMR (400 MHz, DMSO-d6) δ 13.15 (s, 1H), 10.58 (s, 1H), 8.01 (d, J = 7.90 Hz, 1H), 7.90 (d, J = 8.10 Hz, 1H), 
7.78 (t, J = 7.70 Hz, 2H), 7.64 (d, J = 8.50 Hz, 3H), 7.60–7.56 (m, 1H), 7.49 (d, J = 8.50 Hz 2H), 7.35–7.25 (m,2H), 
4.17 (s, 2H) ppm. ESI–MS  (C24H17BrN4OS): calculated m/z 490.03, [M +  H]+, observed m/z 488.10, [M +  H]+, 
13C NMR (100 MHz, DMSO-d6): δ 168.10, 157.91, 148.94, 147.08, 143.98, 139.19, 136.66, 135.04, 132.07. 131.63, 
128.78, 127.60, 126.77, 125.08, 123.76, 123.16, 122.41, 121.49, 121.40, 119.78, 115.18, 112.02, 36.62 ppm; Anal. 
Calcd. for  C24H17BrN4OS; C, 58.90; H, 3.50; N, 11.45; Found: C, 59.05; H, 3.70; N, 11.62.

2-((3-(1H-benzo[d]imidazol-2-yl)quinolin-2-yl)thio)-N-(2,6-dichlorophenyl)acetamide (9h). Brown solid; 
Yield: 86%; MP = 188–190 °C; IR (KBr,  vmax) 3340 (NH), 3035 (C–H Aromatic), 2960  (CH2 Aliphatic), 1675 
(C=O)  Cm−1; 1H NMR (400 MHz, DMSO-d6) δ 13.15 (s, 1H), 9.92 (s, 1H), 8.81 (s, 1H), 8.03 (d, J = 8.00 Hz, 1H), 
7.97 (d, J = 8.40 Hz, 1H), 7.86 (d, J = 8.80 Hz, 1H), 7.81 (t, J = 7.30 Hz, 1H), 7.75–7.57 (m, 4H), 7.37 (d, J = 8.80 Hz, 
1H), 7.33–7.25 (m, 2H) 4.26 (s, 2H) ppm. ESI–MS  (C24H17Cl2N4OS): calculated m/z 478.10, [M +  H]+, observed 
m/z 444.20, [M +  H]+, 13C NMR (100 MHz, DMSO-d6): δ 168.85, 157.60, 148.88, 147.10, 136.88, 134.69, 131.65, 
129.30, 129.25, 128.79, 128.08, 127.77, 126.91, 126.45, 126.23, 125.19, 123.24, 35.80  ppm; Anal. Calcd. for 
 C24H16Cl2N4OS C, 60.13; H, 3.36; N, 11.69; Found: C, 60.24; H, 3.49; N, 11.85.
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2-((3-(1H-benzo[d]imidazol-2-yl)quinolin-2-yl)thio)-N-(4-nitrophenyl)acetamide (9j). Pale yellow solid; 
Yield: 93%; MP = 180–182 °C; IR (KBr,  vmax) 3320 (NH), 3020 (C–H Aromatic), 2965  (CH2 Aliphatic), 1670 
(C=O), 1555–1350  (NO2)  Cm−1; 1H NMR (400 MHz, DMSO-d6) δ 13.60 (s, 1H), 11.80 (s, 1H), 8.79(s, 1H), 8.24 
(d, J = 9.30 Hz, 1H), 8.01 (d, J = 7.70 Hz, 1H), 7.91 (d, J = 9.30, 2H), 7.86–7.74 (m, 3H), 7.63 (d, J = 7.70 Hz, 1H), 
7.57 (t, J = 8.00 Hz, 1H), 7.35–7.25 (m, 2H), 4.21 (s, 2H) ppm. ESI–MS  (C24H17N5O3S): calculated m/z 455.11, 
[M +  H]+, observed m/z 455.20, [M +  H]+, 13C NMR (100 MHz, DMSO-d6): δ 169.12, 157.79, 148.91, 147.01, 
145.99, 143.96, 142.54, 136.61, 135.04, 131.67, 128.80, 127.49, 126.81, 125.60, 125.08, 123.79, 123.04, 122.43, 
119.79, 119.08, 112.02, 36.80 ppm; ESI–MS  (C24H17N5O3S C): calculated m/z 455.11 [M +  H]+, observed m/z 
455.20 [M +  H]+; Anal. Calcd. for  C24H17N5O3S C, 63.29; H, 3.76; N, 15.38; N, 7.31; Found: C, 63.49; H, 3.96; N, 
15.55.

2-((3-(1H-benzo[d]imidazol-2-yl)naphthalen-2-yl)thio)-N-(o-tolyl)acetamide (9k). Brown solid; Yield: 86%; 
MP = 179–181 °C; IR (KBr,  vmax) 3360 (NH), 3070 (C–H Aromatic), 2980  (CH2 Aliphatic), 1680 (C=O)  Cm−1; 
1H NMR (400 MHz, DMSO-d6) δ 13.15 (s, 1H), 10.34 (s, 1H), 8.77 (s, 1H), 8.01 (d, J = 6.60 Hz, 1H), 7.93 (d, 
J = 7.10 Hz, 1H), 7.80 (d, J = 7.40 Hz, 2H), 7.66–7.46 (m, 4H), 7.30 (t, J = 9.50 Hz, 2H), 7.10 (d, J = 8.10 Hz, 2H), 
4.15 (s, 2H), 2.20 (s, 3H), ppm. 13C NMR (100 MHz, DMSO-d6): δ 167.54, 158.01, 148.96, 147.11, 137.30, 136.70, 
132.52, 131.61, 129.60, 128.77, 127.66, 126.74, 125.08, 123.23, 119.77, 119.51, 112.02, 36.54, 20.91 ppm; Anal. 
Calcd. for  C26H21N3OS: C, 73.73; H, 5.00; N, 9.92; Found: C, 73.92; H, 5.19; N, 10.11.

2-((3-(1H-benzo[d]imidazol-2-yl)naphthalen-2-yl)thio)-N-(p-tolyl)acetamide (9l). Cream solid; Yield: 91%; 
MP = 181–183 °C; IR (KBr,  vmax) 3345 (NH), 3040 (C–H Aromatic), 2900 (CH-Aliphatic), 1670 (C=O)  Cm−1; 
1H NMR (400 MHz, DMSO-d6) δ 13.15 (s, 1H), 10.34 (s, 1H), 8.77 (s, 1H), 8.01 (d, J = 7.30 Hz, 1H), 7.93 (d, 
J = 7.70 Hz, 1H), 7.79 (t, J = 7.70 Hz, 2H), 7.63–7.48 (m, 4H), 7.29 (s, 2H), 7.10 (d, J = 8.20 Hz, 2H), 4.16 (s, 2H), 
2.23 (s, 3H) ppm. ESI–MS  (C26H21N3OS): calculated m/z 424.14, [M +  H]+, observed m/z 424.10, [M +  H]+ 13C 
NMR (100 MHz, DMSO-d6): δ 162.6, 160.2, 147.4, 141.2, 140.1, 136.5, 133.7, 132.2, 131.0, 129.4, 128.4, 128.3, 
126.2, 126.0, 124.0, 120.9, 28.1, 16.1 ppm; Anal. Calcd. for  C26H21N3OS C, 73.73; H, 5.00; N, 9.92; Found: C, 
73.82; H, 5.14; N, 9.99.

2-((3-(1H-benzo[d]imidazol-2-yl)quinolin-2-yl)thio)-N-(4-methoxyphenyl)acetamide (9m). Cream solid; 
Yield: 93%; MP = 191–193  °C; IR (KBr,  vmax) 3340 (NH), 3030 (C–H Aromatic), 2910 (CH-Aliphatic), 1680 
(C=O)  Cm−1; 1H NMR (400 MHz DMSO-d6) δ 13.14 (s, 1H), 10.27 (s, 1H), 8.77 (s, 1H), 8.02 (d, J = 7.70 Hz, 1H), 
7.95 (d, J = 8.40 Hz, 1H), 7.80 (t, J = 8.30 Hz, 1H), 7.59 (t, J = 7.90 Hz, 1H), 7.54 (d, J = 9.00 Hz, 2H), 7.34–7.25 
(m, 2H), 6.88 (d, J = 9.10 Hz, 1H), 4.15 (s, 2H), 3.71 (s, 3H) ppm. 13C NMR (100 MHz, DMSO-d6): δ 167.23, 
158.02, 155.60, 148.96, 147.12, 136.71, 132.94, 131.62, 128.78, 127.68, 126.75, 125.08, 123.24, 121.03, 114.33, 
55.58, 36.43 ppm; ESI–MS  (C25H20N4O2S): calculated m/z 424.14 [M +  H]+, observed m/z 424.10 [M +  H]+; Anal. 
Calcd. for  C25H20N4O2S; C, 68.16; H, 4.58; N, 12.72; Found C, 68.35; H, 4.76; N, 12.90.

2-((3-(1H-benzo[d]imidazol-2-yl)quinolin-2-yl)thio)-N-(4-ethylphenyl)acetamide (9n). Brown solid;Yield:93%; 
MP = 178–180 °C; IR (KBr,  vmax) 3300 (NH), 3020 (C–H Aromatic), 2975(CH2 Aliphatic), 1670 (C=O)  Cm−1; 
1H NMR (400 MHz, DMSO-d6) δ 13.12 (s, 1H), 10.34 (s, 1H), 8.78 (s, 1H), 8.01 (d, J = 8.00 Hz, 1H), 7.95 (d, 
J = 8.40 Hz, 1H), 7.79 (t, J = 7.30 Hz, 1H), 7.75–7.65 (m, 2H), 7.58 (t, J = 7.60 Hz, 1H), 7.54 (d, J = 8.40 Hz, 2H), 
7.30 (d, J = 6.10 Hz, 2H), 7.13 (d, J = 8.30 Hz, 2H), 4.17 (s, 2H), 2.53 (d, J = 7.70 Hz, 2H), 1.14 (t, J = 7.30 Hz, 
3H) ppm. ESI–MS  (C26H22N4OS): calculated m/z 438.55, [M +  H]+, observed m/z 438.10,[M +  H]+, 13C NMR 
(100 MHz, DMSO-d6): δ 167.55, 158.00, 148.97, 147.11, 139.01, 137.47, 136.70, 131.61, 128.78, 128.41, 127.68, 
126.75, 125.08, 123.24, 119.61, 36.52, 28.06, 16.18, 16.12 ppm; Anal. Calcd. for  C26H22N4OS; C, 71.21; H, 5.06; N, 
12.78; Found: C, 71.39; H, 5.26; N, 12.97.

2-((3-(1H-benzo[d]imidazol-2-yl)quinolin-2-yl)thio)-N-(2,3-dimethylphenyl)acetamide (9o). Brown solid; 
Yield: 93%; MP = 185–187  °C IR; (KBr,  vmax) 3300 (NH), 3020 (C–H Aromatic), 2975  (CH2 Aliphatic) 1675 
(C=O)  Cm−1; 1H NMR (400 MHz, DMSO-d6) δ 13.6 (s, 1H), 9.76 (s, 1H), 8.79 (s, 1H), 8.03 (d, J = 8.90 Hz, 1H), 
8.01 (d, J = 7.90 Hz, 1H), 7.83 (t, J = 8.30 Hz, 1H), 7.61 (t, J = 7.90 Hz, 1H), 7.30 (d, J = 6.60, 2H), 7.15 (d, J = 7.50 Hz, 
1H), 7.06–6.92 (m, 4H), 4.22 (s, 1H), 2.20 (s, 3H), 2.02 (s, 3H), ppm. 13C NMR (100 MHz, DMSO-d6): δ 167.73, 
157.98, 149.00, 147.19, 137.38, 136.87, 136.66, 131.60, 131.57, 128.81, 127.77, 127.33, 126.77, 125.62, 125.15, 
123.78, 123.39, 35.74, 20.59, 14.47 ppm; ESI–MS  (C26H22N4OS): calculated m/z 438.15 [M +  H]+, observed m/z 
438.10 [M +  H]+; Anal. Calcd. for  C26H22N4OS C, 71.21; H, 5.06; N, 12.78; Found C, 71.39; H, 5.26; N, 12.91.

2-((3-(1H-benzo[d]imidazol-2-yl)quinolin-2-yl)thio)-N-(2,6-dimethylphenyl)acetamide (9p). Brown solid; 
Yield: 93%; MP = 185–187  °C; IR (KBr,  vmax) 3325 (NH), 3045 (C–H Aromatic), 2980(CH2 Aliphatic) 1665 
(C=O)  Cm−1; 1H NMR (400 MHz, DMSO-d6) δ 13.11 (s, 1H), 9.57 (s, 1H), 8.77 (s, 1H), 8.03 (t, J = 8.40 Hz, 
2H), 7.84 (t, J = 7.70 Hz, 1H), 7.62 (t, J = 7.20 Hz, 2H), 7.35–7.25 (m, 2H), 7.07–6.98 (m, 4H), 4.24 (s, 1H), 2.05 
(s, 6H) ppm. ESI–MS  (C26H22N4OS): calculated m/z 438.15 [M +  H]+, observed m/z 438.10 [M +  H]+; 13C NMR 
(100 MHz, DMSO-d6): δ 162.6, 161.6, 147.4, 140.9, 139.5, 133.7, 132.7, 132.3, 131.0, 129.4, 128.9, 128.3, 127.9, 
127.5, 126.3, 126.0, 123.3, 43.3 ppm; Anal. Calcd. for  C26H22N4OS C, 71.21; H, 5.06; N, 12.78; Found C, 71.39; 
H, 5.26; N, 12.91.

2-((3-(1H-benzo[d]imidazol-2-yl)quinolin-2-yl)thio)-N-(naphthalen-2-yl)acetamide (9q). Cream solid; 
Yield: 91%; MP = 182–184° C; IR (KBr,  vmax) 3340 (NH), 3030 (C–H Aromatic), 2900 (CH-Aliphatic), 1670 
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(C=O)  Cm−1; 1H NMR (400 MHz, DMSO-d6) δ 13.16 (s, 1H), 10.33 (s, 1H), 8.80 (s, 1H), 8.10 (d, J = 8.30 Hz, 1H), 
8.05 (d, J = 7.90 Hz, 2H), 7.92 (d, J = 7.8 Hz, 1H), 7.86–7.80 (m, 1H), 7.79–7.66 (m, 3H), 7.63 (d, J = 7.70 Hz, 2H), 
7.53–7.44 (m, 2H), 7.37 (t, J = 7.60 Hz, 1H), 7.34–7.24 (m, 2H), 4.36 (s, 2H), ppm. ESI–MS  (C28H20N4OS): cal-
culated m/z 460.14 [M +  H]+, observed m/z 460.10 [M +  H]+; 13C NMR (100 MHz, DMSO-d6): δ 168.50, 149.01, 
147.21, 136.87, 134.23, 134.13, 131.61, 128.84, 128.54, 128.40, 127.79, 126.80, 126.46, 126.10, 126.06, 125.83, 
125.18, 123.40, 122.18, 35.94 ppm; Anal. Calcd. for  C28H20N4OS; C, 73.02; H, 4.38; N, 12.17; Found: C, 73.32; 
H, 4.55; N, 12.34.

2-((3-(1H-benzo[d]imidazol-2-yl)quinolin-2-yl)thio)-N-benzylacetamide (9r). Brown solid; Yield: 94%; 
MP = 183–185 °C; IR (KBr,  vmax) 3310(NH) , 3045(C-H Aromatic), 2975  (CH2 Aliphatic) 1655 (C=O)  Cm−1; 
1H NMR (400 MHz, DMSO-d6) δ 13.11 (s, 1H), 8.76 (s, 1H), 8.71 (t, J = 6.00 Hz, 1H), 8.03 (d, J = 8.00 Hz, 1H), 
7.90 (d, J = 8.5 Hz, 1H), 7.81 (t, J = 7.70 Hz 1H), 7.62 (t, J = 7.60 Hz, 2H), 7.34–7.25 (m, 2H), 7.21–7.13 (m, 6H), 
4.31 (d, J = 6.00 Hz, 2H), 4.06 (s,1H) ppm. ESI–MS  (C26H22N4OS): calculated m/z 424.14 [M +  H]+, observed 
m/z 424.10 [M +  H]+; 13C NMR (100 MHz, DMSO-d6): δ 168.67, 157.83, 149.00, 147.15, 139.83, 136.79, 131.51, 
128.73, 128.55, 127.90, 127.45, 127.05, 126.73, 125.10, 123.39, 42.83, 35.17 ppm; Anal. Calcd. for  C25H20N4OS: 
C, 70.73; H, 4.75; N, 13.20; Found: C, 70.92; H, 4.90; N, 13.38.

2-((3-(1H-benzo[d]imidazol-2-yl)quinolin-2-yl)thio)-N-(4-fluorobenzyl)acetamide (9s). Brown solid;Yield:89%;  
MP = 186–188 °C; IR (KBr,  vmax) 3350 (NH), 3060 (C–H Aromatic), 2975  (CH2 Aliphatic), 1670 (C=O)  cm−1; 1H 
NMR (400 MHz, DMSO-d6) δ 8.74 (d, J = 14.20 Hz, 2H), 8.01 (d, J = 8.00 Hz, 1H), 7.90–7.75 (m, 2H), 7.70 (s, 2H), 
7.60 (s, 1H), 7.39–7.17 (m, 4H), 6.95 (t, J = 8.9, 2H), 4.29 (s, 2H), 4.04 (s, 2H), ppm. ESI–MS  (C25H19FN4OS): cal-
culated m/z 442.14 [M +  H]+, observed m/z 442.10 [M +  H]+; 13C NMR (100 MHz, DMSO-d6): δ 168.75, 162.67, 
160.27 (CF, 1JCF = 248.00 Hz), 157.81, 149.10, 147.10, 136.74, 136.04, 131.43, 129.49, 129.41, 128.71, 127.84, 
126.71, 125.10, 123.45, 122.98, 115.30, 115.10, 42.20, 35.21 ppm; Anal. Calcd. for  C25H19FN4OS: C, 67.86; H, 
4.33; N, 12.66; Found: C, 68.04; H, 4.52; N, 12.81.

α‑Glucosidase inhibitory assay. The α-glucosidase inhibitory activities of all synthesized derivatives 
were assayed according to the previously reported  procedure9,36.

Enzyme kinetic studies. The mode of inhibition of the most active compound (9c), identified with the low-
est  IC50, was investigated against α-glucosidase at different concentrations of p-nitrophenyl α-d-glucopyranoside 
(4–16 mM) as substrate in the absence and presence of 9c at different concentrations (0, 0.8, 1.6, and 3.2 µM). A 
Lineweaver–Burk plot was generated to identify the type of inhibition and the Michaelis–Menten constant (Km) 
value was determined from the plot between reciprocal of the substrate concentration (1/[S]) and reciprocal of 
enzyme rate (1/V) over various inhibitor concentrations. The experimental inhibitor constant (Ki) value was 
constructed by secondary plots of the inhibitor concentration [I] versus Km

6.

Molecular docking. To perform the molecular modeling investigations, the Maestro Molecular Modeling 
platform (version 10.5) by Schrödinger, LLC was used. The X-ray crystal structure of the receptor was down-
loaded from the PDB database (PDB ID: 5NN8). The protein is then prepared using a protein preparation wiz-
ard. At this point, all water molecules and co-crystallized ligands were removed, the missing side chains and 
loops were filled using the prime tool, and PROPKA assigned H-bonds at pH 7.4. To prepare the ligands, the 
2D structures of the ligands were drawn in ChemDraw (ver. 16) and converted into SDF files, which were used 
further by the ligprep module. Ligands were prepared by OPLS_2005 force field using EPIK at a target pH of 
7.0 ± 2. The grid box was generated for each binding site using entries with a box size of 25 Å, all derivatives were 
docked on binding sites using induced-fit docking, reporting 10 poses per ligand to form the final  complex9,37.

Data availability
All data generated or analyzed during this study are included in this published article and its Supplementary 
Information files.
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