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Multi‑temperature experiments 
to ease analysis of heterogeneous 
binder solutions by surface 
plasmon resonance biosensing
Jimmy Gaudreault1, Yves Durocher2, Olivier Henry1,3* & Gregory De Crescenzo1,3*

Surface Plasmon Resonance (SPR) biosensing is a well‑established tool for the investigation of binding 
kinetics between a soluble species and an immobilized (bio)molecule. While robust and accurate data 
analysis techniques are readily available for single species, methods to exploit data collected with 
a solution containing multiple interactants are scarce. In a previous study, our group proposed two 
data analysis algorithms for (1) the precise and reliable identification of the kinetic parameters of N 
interactants present at different ratios in N mixtures and (2) the estimation of the composition of a 
given mixture, assuming that the kinetic parameters and the total concentration of all interactants 
are known. Here, we extend the first algorithm by reducing the number of necessary mixtures. This 
is achieved by conducting experiments at different temperatures. Through the Van’t Hoff and Eyring 
equations, identifying the kinetic and thermodynamic parameters of N binders becomes possible with 
M mixtures with M comprised between 2 and N and at least N/M temperatures. The second algorithm 
is improved by adding the total analyte concentration as a supplementary variable to be identified in 
an optimization routine. We validated our analysis framework experimentally with a system consisting 
of mixtures of low molecular weight drugs, each competing to bind to an immobilized protein. 
We believe that the analysis of mixtures and composition estimation could pave the way for SPR 
biosensing to become a bioprocess monitoring tool, on top of expanding its already substantial role in 
drug discovery and development.

Surface Plasmon Resonance (SPR)-based biosensors were first commercialized in the 1990s by Pharmacia. Since 
then, their ability to measure binding between an immobilized species and a solution species in real time without 
the need of any label has generated great interest in the biopharmaceutical field. Through repeated advances in the 
liquid handling and control  systems1–5, the development of robust  protocols6 and reproducible assays, as well as 
elaborate data analysis  methods7–15, SPR biosensors have become a prominent tool for the study of biomolecular 
interactions and drug development.

With the recent implementation of the quality by design (QbD) and process analytical technology (PAT) 
 frameworks16–18, quality monitoring tools have never been more needed. In this context, it appears appropriate 
to explore the potential of SPR biosensing for monitoring. Some SPR-based monitoring applications have already 
been reported for a variety of biotechnological applications (biotherapeutics, vaccines, bacterial detection)19. 
Still, to further establish SPR as a monitoring tool rather than only an investigation tool, new assays and data 
analysis algorithms will prove necessary.

In that endeavor, our group is interested in extending the use of SPR biosensing to the determination of the 
composition of biomolecule mixtures. For this purpose, a ligand that is common to all biomolecules in a mixture 
(the analytes) must be immobilized on the sensor surface. Then, reconstructing the signal recorded when inject-
ing a mixture of analytes on the sensor surface, as a sum of the contribution of each analyte, should allow compo-
sition estimation. However, this requires prior knowledge of the analyte-specific kinetics for each analyte-ligand 
interaction. In cases where the analytes are easily purified, classical single-analyte experiments may be performed 
to uncover the kinetic behavior of each interaction. However, in cases where the biomolecules of interest are 
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difficult to separate from one another (i.e., when they are only available as part of a mixture), advanced parameter 
identification algorithms must be employed to extract analyte-specific kinetics from multi-analyte experiments.

An example of such systems of biomolecules that form complex mixtures that are difficult to purify is the 
various glycoforms of therapeutic monoclonal antibodies that are produced via mammalian cell culture. The 
glycosylation state of these antibodies affects binding to their  receptors20–26, as can be assessed by  SPR27. Hence, 
advanced modeling techniques are required to analyze antibody sensorgrams and elucidate the kinetic behavior 
of the individual glycoforms. An SPR assay capable of monitoring the glycosylation profile of proteins would be 
of great interest for quality control purposes.

Apart from differences in glycosylation state, other potential applications of the multi-analyte framework 
include cases where molecules of different sizes or different bioactivities (due to cleavage or partial denaturation, 
for example) are present in the same solution and interact with the same ligand.

In a previous  study15, we demonstrated that it is possible to identify the kinetic parameters of N analytes with 
the same number of independent mixtures ( M ) of the analytes (i.e. M = N ). Furthermore, we showed that the 
composition of an unknown mixture could be estimated using these identified kinetic parameters. These methods 
were validated using experimental data obtained by immobilizing the enzyme carbonic anhydrase II (CAII) and 
injecting mixtures of four CAII binders. Two main limitations remained in this framework. First, the number 
of available mixtures might be limiting when N is large. Second, the composition estimation algorithm required 
prior knowledge of the total concentration of all analytes combined, which is not always readily available.

To address these limitations, the present study suggests two new algorithms that will be applied on the same 
system as  in15. The first algorithm aims to reduce the number of necessary mixtures by injecting the available 
mixtures at different temperatures. A priori, kinetic rates and affinities of different analytes will exhibit different 
temperature dependencies. In brief, the information that is lacking because M < N  is replaced by surveying 
at different temperatures. As the kinetics and affinities are evaluated at different temperatures, thermodynamic 
analyses via the Eyring and Van’t Hoff equations can be performed. These equations have previously been used 
to evaluate enthalpic and entropic changes via single-analyte SPR experiments with CAII  binders28. The second 
algorithm presented here aims to estimate both the composition and the concentration of an unknown mixture 
of analytes, assuming prior knowledge of their kinetics. Essentially, the concentration is added as a supplemen-
tary parameter to be identified along with the analyte fractions. Only sensorgrams recorded at one temperature 
are necessary for our second algorithm. Therefore, we also included a guideline on how to choose the optimal 
injection temperature for composition estimation. These two algorithms were validated with the previously 
mentioned CAII system.

Materials and methods
Materials. Biacore T100 biosensor, research-grade CM5 sensor chips, HBS-EP buffer (HEPES Buffered 
Saline with 30 mM EDTA [ethylenediaminetetraacetic acid] and 0.5% (v/v) surfactant P20), 70% v/v glycerol 
in water and ethanolamine were purchased from Cytiva (formerly GE Healthcare, Marlborough, MA). N-ethyl-
N’-(3-dimethylaminopropyl) carbodiimide (EDC), N-hydroxysuccinimide (NHS), carbonic anhydrase isozyme 
II (CAII) purified from bovine erythrocytes, glacial acetic acid, sodium acetate, 4-carboxybenzenesulfonamide 
(CBS), 1,3-benzene-disulfonamide (BDS), sulfanilamide, furosemide and dimethyl sulfoxide (DMSO) were pur-
chased from Sigma-Aldrich Canada Ltd (Oakville, ON).

Biosensor surface preparation. The CM5 sensor chips used in this study are composed of gold on which 
carboxymethylated dextran has been grafted by the chip supplier. The biosensor surface preparation was per-
formed according to a previously published  protocol29. In short, two sensor chip surfaces were activated at 25 °C 
with an injection of 1:1 (v/v) 0.4 M EDC and 0.1 M NHS during 7 min at 20 μL/min. A solution of 0.1 g/L of 
CAII was prepared in a 10 mM acetate buffer at pH 5.0. This solution was injected on only one of the surfaces 
(experimental surface) through 30 s pulses at 20 μL/min until a density of immobilized CAII of approximately 
5000 Resonance Units (RU) was reached. Next, the remaining active sites were blocked by injecting ethanola-
mine (1 M at pH 8.5) at 20 μL/min during 4 min. This procedure led to an immobilized CAII density of approxi-
mately 4500 RU. For each CAII surface, a mock surface (for referencing purposes) was generated by activating/
deactivating the surface with the same solutions (without any CAII injections). Before and after the preparation 
of the surfaces, the system was extensively primed with running buffer (HBS-EP containing 3% of DMSO) and a 
normalization procedure with a solution of 70% (v/v) glycerol in water was performed after ligand immobiliza-
tion. For more information on SPR biosensors inner-workings, we refer the reader to relevant  reviews1–5.

SPR experiments. Analyte preparation. HBS-EP containing 3% of DMSO (HBS-EP + 3%DMSO) was 
used as the running buffer. All the analytes were dissolved in DMSO and aliquoted at the following concentra-
tions: [CBS] = 596.42 mM, [BDS] = 118.51 mM, [sulfanilamide] = 563.30 mM, [furosemide] = 3075.30 mM. For 
each experiment, one aliquot of each analyte was dissolved in HBS-EP + 3%DMSO to reach the following con-
centrations: [CBS] = 5.96 mM, [BDS] = 1.19 mM, [sulfanilamide] = 5.63 mM, [furosemide] = 30.75 mM. These 
stock solutions were then used in the preparation of the different dilutions and mixtures analyzed in this study.

Single‑analyte experiments. For classical single-analyte kinetic experiments, CBS, BDS, sulfanilamide and 
furosemide were injected alone at 7 different concentrations (two-fold dilutions) ranging from 350 nM to 22 
400 nM for CBS and furosemide, 175 nM to 11 200 nM for BDS and 900 nM to 57 600 nM for sulfanilamide. All 
injections were performed in duplicates and both repetitions were used separately in the analysis. The flow rate 
was 85 μL/min and the data collection rate was 10 Hz. Analytes were injected at four different temperatures: 12, 
16, 20 and 24 °C. For double-referencing purposes, 4 buffer injections per analyte per temperature were also per-
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formed. The injection time was set to 240 s for all analytes and the dissociation time of the resulting complexes 
ranged from 270 to 570 s and was adjusted for each analyte and temperature such that the SPR signal reaches 
zero towards the end of the dissociation phase. Hence, no regeneration step was needed in between analyte 
injections as the dissociation was complete in every case. This agrees with various previous studies in which this 
system was analyzed via  SPR10–12,15,29,30. The SPR biosensor used in this study (Biacore T100) uses the geometry 
proposed by Kretschmann and  Raether1,3. The detection is performed by varying the incident angle while keep-
ing the wavelength constant.

Multiple‑analyte experiments. The four analytes were combined to create four random mixtures A to D, as 
described in Table 1. The mixture compositions were chosen randomly while ensuring that all mixtures contain 
all the analytes, and that no analyte has a dominating presence in any of the mixtures. All mixtures were injected 
at four different temperatures: 12, 16, 20 and 24 °C. In every case, the association phase duration was set to 240 s 
and the dissociation time was adjusted such that null responses were obtained at the end of the sensorgrams 
(ranging from 270 to 570 s), circumventing the need for a regeneration step. The injection flow rate was set to 
85 μL/min and the data collection rate was 10 Hz. The mixtures were injected in two-fold dilutions ranging from 
350 nM to 22 400 nM.

Furosemide standard injections. The CAII surface may wear off in time as more and more experiments are per-
formed. This can cause a loss of activity of the immobilized ligand molecules, leading to responses with slightly 
lower amplitudes. To account for this loss, the sensorgrams were standardized. Before the dilution series of a 
given mixture was injected at a given temperature, a standard furosemide injection was performed. This was 
repeated for each mixture and each injection temperature. This allowed to monitor the condition of the CAII 
surface. A saturating concentration of furosemide was used for the standard (51 480 nM). Injections lasted 60 s, 
which was long enough to reach equilibrium at every temperature. The value of the plateau (standard value) was 
extracted. The standardization process was performed for a given sensorgram by comparing the standard value 
of the previous standard injection with that of the very first standard injection:

Standard injections were also double-referenced according to the procedure described  in6.

Data Analysis. Data analysis algorithms for single- and multi-analyte experiments assumed that each analyte 
bound to CAII according to a 1:1 Langmuir model with a constant theoretical maximal response and tempera-
ture dependent kinetic rate constants. In the case of classical single-analyte experiments, identification of the 
interaction kinetics was performed simultaneously for all temperatures. Thus, the maximal response of a given 
analyte was assumed to be constant for all temperatures. Adding this constraint did not significantly alter the 
identified parameters compared to fitting the model independently for each temperature: deviations of the order 
of 5% were observed compared to independent fits. This procedure was performed with a custom-designed 
script in the Matlab R2018b software platform (The Mathworks, Natick, USA). Parameters obtained with our 
procedure also matched those obtained with the Biacore T100 Evaluation  Software31.

We developed two algorithms. The first one aims to extract the temperature dependent kinetic parameters 
from a set of sensorgrams corresponding to various analyte mixtures (Table 1) injected at different temperatures. 
This also allows the identification of thermodynamic parameters. The second algorithm estimates the composi-
tion of a given mixture and its concentration based on the prior knowledge of the kinetic (and thermodynamic) 
constants of each analyte. Both algorithms are presented in the next section. Fitting the multi-analyte data and 
estimating mixture composition was also performed using in-house Matlab scripts which are available upon 
request. Once the recorded sensorgrams have been retrieved from the Biacore Evaluation Software and inputted 
in the Matlab environment, the rest of the method is automatic, be it for parameter identification or unknown 
mixture analysis. As sensorgrams corresponding to the different dilutions of the different mixtures injected at 
different temperatures needed to be analyzed simultaneously within the fitting procedure, this type of analysis 
will be further described in this research as the ’global-global-global’ approach.

(1)Responsestandardized = Response ·
StandardFirst

StandardPrevious

Table 1.  Molar composition of the analyte solutions used in this study.

Analyte solution % CBS % BDS % Sulfanilamide % Furosemide

CBS 100 0 0 0

BDS 0 100 0 0

Sulfanilamide 0 0 100 0

Furosemide 0 0 0 100

A 40 10 30 20

B 15 25 50 10

C 20 40 10 30

D 17 21 10 52
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Theory
Our first aim is to extract kinetic parameters ka,i[=]s−1.M−1 and kd,i[=]s−1 and maximum response amplitude 
Rmax,i = [=]RU  ( i = 1, 2, . . .N ) of N analytes from M < N mixtures with known proportions of each analyte 
Fi . To achieve this, the mixtures will be injected on a SPR surface harboring a common ligand that binds all the 
analytes. Injections will be performed at different temperatures. Hence, association and dissociation rates ( ka,i 
and kd,i ) will be obtained for multiple temperatures. This will allow the identification of thermodynamic param-
eters that describe the temperature dependence of ka,i and kd,i which follows the Eyring equation. Knowing ka,i 
and kd,i , the affinity of the analyte-ligand interaction ( KA,i ) is calculated: KA,i =

ka,i
kd,i

[=]M−1 . Temperature 
dependence of KA,i is described with the Van’t Hoff equation. Both the Eyring and Van’t Hoff equations were 
previously used with the present analyte-ligand system in a single-analyte experiment  context28.

Our second aim is to use the identified parameters in order to estimate the composition of an unknown 
mixture of the N analytes, that is the proportion of each analyte in the mixture. A procedure has already been 
proposed by our group for the case where the total concentration of all analytes combined is  known15. Here, we 
suggest an extension of this method for the case where the total concentration is also unknown. Ultimately, both 
the composition and the concentration will be determined.

Multi‑Analyte SPR Model. We assume a Langmuir 1:1 interaction between each analyte ( Ai ) and the 
ligand ( L):

With ka,i and kd,i corresponding to the association and dissociation rate constants of the ith analyte, respec-
tively. For N analytes, the system is described by the following ordinary differential equation (ODE) system:

Rmax,i is the theoretical SPR response that would be obtained if an infinite concentration of analyte i were 
injected. Fi is the fraction of analyte i in the injected mixture and CTOT is the total concentration of all analytes. 
We can then compute the predicted SPR response ( RTOT ) and the response caused by each analyte ( Ri ) by solv-
ing the system of ODE in (3).

Eyring Equation. The Eyring equation describes the evolution of a kinetic parameter ( k standing for either ka 
or kd ) with respect to temperature ( T):

�G∗ = �H∗ − T�S∗[=]cal.mol−1 is the Gibbs energy of activation, and �H∗[=]cal.mol−1 and 
�S∗[=]cal.mol−1.K−1 are the activation enthalpy and entropy for the pseudo-reaction describing the ana-
lyte-ligand complex formation ( ka ) or dissociation ( kd ). �H∗ and �S∗ are assumed to be temperature inde-
pendent. RIG is the ideal gas constant, and kB and h are the Boltzmann and Planck constants, respectively: 
kB = 1.381 ∗ 10−23J .K−1 and h = 6.626 ∗ 10−34J .s.

The Eyring equation can be rewritten in simpler terms for both kinetic parameters by introducing constants 
C1 through C4:

(2)Ai + L

ka,i
→

←
kd,i

AiL, ∀i = 1, . . . ,N

(3)
dRi
dt = ka,iFiCTOTRmax,i

(

1−
∑N

j=1

Rj
Rmax,j

)

− kd,iRi ,Ri(0) = 0,∀i = 1, . . . ,N

RTOT =
∑N

i=1 Ri

(4)

k(T) =

(

kBT

h

)

exp

(

−
�G∗

RIGT

)

k(T) =

(

kBT

h

)

exp

(

−
�H∗

RIGT
+

�S∗

RIG

)

k(T) =

(

kBT

h

)

exp

(

�S∗

RIG

)

exp

(

−
�H∗

RIGT

)
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c = 1M−1 is an added factor to account for the fact that the association pseudo-reaction is not unimolecular. 
A priori, activation enthalpies and entropies are analyte-specific, which explains the presence of i = 1, 2, . . .N 
indices in (5).

Contribution to the SPR response at equilibrium. The SPR response caused by analyte i at equilibrium, noted 
Req,i[=]RU , is the amplitude of the response related to the presence of analyte i near the SPR surface when the 
response has reached a plateau during the association rate. The response of every analyte at equilibrium is given 
by:

The total equilibrium response of a mixture of analytes ( Req,TOT [=]RU  ) is analogous to the response of a 
single analyte with affinity KA,obs and maximum response Rmax,obs:

For a given mixture and temperature, KA,obs and Rmax,obs are identified using the observed plateau values for 
several injections at varying concentrations. These observed parameters are then linked to the analyte-specific 
parameters in the following way:

We denote Zi the contribution to the SPR response at equilibrium of analyte i (dimensionless). It represents 
the fraction of the total response that is caused by a given analyte:

Analysis of multiple mixtures. If more than one mixture of the same analytes is available, the contribution of 
analyte i in mixture m1 is linked to that of the same analyte in another mixture m2:

Analysis of multiple injection temperatures. If the mixtures were injected at more than one temperature, the dis-
sociation kinetic at temperature T1 is linked to that of another temperature T2 , via the Eyring Eq. (5):

(5)

ka,i(T) = TC1,i exp

(

C2,i

T

)

kd,i(T) = TC3,i exp

(

C4,i

T

)

C1,i =
kB

h
exp

(

�S∗ka
RIG

)

.c = [=]K−1.s−1.M−1

C2,i = −
�H∗

ka

RIG
[=]K

C3,i =
kB

h
exp

(

�S∗kd
RIG

)

= [=]K−1.s−1

C4,i = −
�H∗

kd

RIG
[=]K

(6)Req,i =
FiKA,iRmax,iCTOT

1+
∑N

i=1 FiKA,iCTOT

=
FiKA,iRmax,iCTOT

1+ KA,obsCTOT
∀i = 1, 2, . . . ,N

(7)Req,TOT =

N
∑

i=1

Req,i =

∑N
i=1 FiKA,iRmax,iCTOT

1+ KA,obsCTOT
=

KA,obsRmax,obsCTOT

1+ KA,obsCTOT

(8)KA,obs =

N
∑

i=1

FiKA,i[=]M−1

(9)Rmax,obs =

∑N
i=1 FiKA,iRmax,i

KA,obs
[=]RU

(10)

Zi =
Req,i

Req,TOT
=

FiKA,iRmax,i

KA,obsRmax,obs

N
∑

i=1

Zi = 1

(11)Zi,m2 = Zi,m1

Fi,m2

Fi,m1

(

Rmax,obsKA,obs

)

m1
(

Rmax,obsKA,obs

)

m2

(12)kd,i,T2 = kd,i,T1
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(

1
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−

1
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Response during the dissociation phase. For mixture m injected at temperature T , if one assumes equilibrium 
was reached during the association phase, the SPR response during the dissociation phase ( Rtot(t) ) is math-
ematically described by the following sum of exponentials:

To introduce the equilibrium contributions ( Zi,m ), we divide the SPR response at each time step t  by the 
equilibrium plateau value Rtot(tdiss) with tdiss indicating the beginning of the dissociation phase:

This eliminates the effect of concentration: the normalized sensorgrams ( Rnorm , dimensionless) corresponding 
to different analyte concentrations will be overlaid. A minimum of two concentrations is still necessary so that 
KA,obs and Rmax,obs may be identified using the equilibrium values.

Algorithm. The suggested analysis framework consists of a two-part algorithm that is illustrated in Fig. 1. 
The first part of the algorithm focuses on the dissociation phase of the recorded SPR sensorgrams. Parameters 
estimated in the first part will be used in the second part as a starting point for a subsequent optimization routine 
which takes the whole sensorgrams into account. As sensorgrams corresponding to multiple concentrations of 
multiple mixtures at multiple temperatures will be considered in the same fitting procedure, the fit may be called 
‘global-global-global’ as opposed to ‘global’ fitting (multiple concentrations, traditional) and to ‘global-global’ 
fitting (multiple concentrations and  mixtures15). As the multi-analyte SPR model is only locally  identifiable32, 
providing an appropriate starting point (first part of the algorithm) is crucial to ensure convergence to a biologi-
cally meaningful solution during the second part of the algorithm, hence the pertinence of the present work.

First part: optimization over the dissociation phase. Parameters to identify. The parameter vector θ contains a 
total of N · (NT + 2) parameters:

• The equilibrium contribution of each analyte in the first mixture (reference mixture m1 ) ( Zi,m1,T ) for each 
temperature ( N · NT parameters).

• The dissociation rate of each analyte at the first temperature (reference temperature T1 ) ( kd,i,T1 , N parameters).
• Temperature dependence of the dissociation rates ( C4,i , N parameters).

Required data. To identify the parameter vector θ , the following conditions on the available data must be met:

• Minimally M ≥ 2 mixtures

o M < N , otherwise the method described  in15 may be applied independently for each temperature.
o The condition Fi,m1

Fi,m2
 =

Fj,m1
Fj,m2

 must be verified for each analyte couple 
(

i, j
)

 to validate structural identifi-
ability i.e., the analytes fractions in different mixtures must not be perfectly correlated.

• NT injection temperatures such that NT ·M ≥ N.

Objective function. The optimization routine aims to minimize the sum of squared residuals between the pre-
dicted normalized response and the observed normalized response. This is done for each analyte concentration, 
mixture and temperature, hence ‘global-global-global’ fitting.

For mixture m injected at temperature T , the normalized response (independent of concentration) can be 
expressed in this manner (from (11), (12) and (14)):

The observed normalized response is obtained directly from the recorded sensorgrams (see (14)):

Finally, the value of the objective function J is given by:

(13)Rtot,m,T (t) =

N
∑

i=1

Req,i,mexp
(

−kd,i,T t
)

(14)Rnorm,m,T (t) =
Rtot(t)

Rtot(tdiss)
=

N
∑

i=1

Zi,mexp
(

−kd,i,T t
)

(15)R
pred
norm,m,T (t) =

N
∑

i=1

Zi,m1,T
Fi,m

Fi,m1

(

Rmax,obsKA,obs

)

m1,T
(

Rmax,obsKA,obs

)

m,T

exp

(

−kd,i,T1
T

T1
exp

(

C4,i

(

1

T
−

1

T1

))

t

)

(16)Robs
norm,m,T (t) =

Robs
tot,m,T (t)

Robs
tot,m,T (tdiss)
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As Rnorm is not dependent on concentration, normalized responses obtained for different concentrations may 
be averaged to obtain Robs

norm(t).
Various boundaries and constraints are added to the problem. These ensure convergence to a solution that 

is biologically meaningful. For example, no analyte may cause a negative response, and kinetic rates should be 
positive and only increase with temperature. Those are discussed in detail in Supplementary Materials, as well 
as a relevant starting point for the optimization routine.

(17)J(θ) =
∑

T

∑

M

∑

t

(

R
pred
norm,m,T (t)− Robs

norm,m,T (t)
)2

Figure 1.  Algorithm for the estimation of the kinetic parameters of N analytes at NT temperatures. The first 
part of the algorithm surveys the dissociation phase of the sensorgrams. The results of the first part are used as 
a starting point for the second part which consists of a second optimization routine over the whole sensorgrams 
that leads to the final estimates. Estimates of ka,i,T , kd,i,T and Rmax,i for i = 1, . . . ,N and T = 1, . . . ,NT can be 
obtained from SPR sensorgrams of M mixtures of the N analytes at NT temperatures (MNT ≥ N) . The fit is said 
’global-global-global’ as sensorgrams corresponding to different overall concentrations, different mixtures and 
different temperatures are used simultaneously in the fitting procedure. Thermodynamic parameters can be 
extracted from the kinetic parameters at different temperatures via the Van’t Hoff and Eyring equations.
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Identification of the maximum response amplitude for each analyte. After the optimization problem has been 
solved, we have access to Zi,m,T for all analytes for each mixture and temperature. From the definition of the 
equilibrium contribution (10), we have:

From the definition of the observed affinity (8), we can sum on the analytes on both sides to obtain:

We obtain a Ax = b type linear system of equation with NT ·M equations and N unknowns that can be solved 
to obtain 1

Rmax,i
 for each analyte which is inverted to obtain Rmax,i.

The resolution of this system requires to choose the number of temperatures at which the experiments are 
performed such that NT ·M ≥ N  . Comparing with previous  work15, the information that is missing because 
M < N is compensated by surveying different temperatures.

Affinity of each analyte at each temperature. Having access to Zi,m1,T and the Rmax,i , we obtain the affinity of 
each analyte at each temperature from the definition of the equilibrium contributions (10):

Association rate of each analyte at each temperature. Because the kd,i,T1
 and C4,i are now known, the dissocia-

tion rate of each analyte can be calculated for any T . By definition of the affinity, which was just obtained, we 
have:

Second part: optimization over the whole sensorgrams. Final estimates. To obtain the final estimates of the 
kinetic constants and response amplitudes, we feed the results of the first part of the algorithm to a second 
optimization routine, which takes the whole sensorgrams into account, rather than only the dissociation phase. 
Again, sensorgrams obtained from different mixtures injected at different concentrations and temperatures will 
be considered, hence we perform a ‘global-global-global’ fit. N · (2NT + 1) parameters need to be identified 
here. Constraints may be added to ensure that kinetic rates increase with temperature. Because an appropriate 
starting point is provided, convergence to a biologically sensible solution should be attained. This is not neces-
sarily the case for any starting point, as the multi-analyte SPR model is not globally structurally  identifiable32.

At this stage, one can add local bulk effect contribution parameters ( RI , one per sensorgram) to account 
for the imperfect referencing of the buffer change effect during the association phase. Hence, the predicted 
sensorgram becomes:

Thermodynamic parameters estimates. Having access to ka,i , kd,i and KA,i at multiple temperatures, the param-
eters of the Eyring and Van’t Hoff equations are directly obtained via a simple linear regression. This enables the 
calculation of these parameters for any temperature. The Eyring equation is given in (4) and (5). The Van’t Hoff 
equation is given by:

where �H0 and �S0 are respectively the standard reaction enthalpy and entropy of the analyte-ligand complex 
formation pseudo-reaction.

Composition estimation. Having determined the kinetic and thermodynamic parameters of the analytes, 
our second algorithm aims to use that information to estimate the composition of an unknown mixture of the 
analytes. As an extension of previous work by our  group15, we will now consider the case where the concentra-
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tion of the mixture is also unknown. However, we will consider that the dilution factors used to generate dilu-
tions of a stock solution of the mixture are known.

Composition estimation with unknown total concentration. Similarly to the parameter identification algorithm, 
the proposed algorithm for composition estimation also has two parts. The first one focuses on the dissociation 
phase of the SPR sensorgrams. The method can theoretically be used with only one sensorgram of the unknown 
mixture at one temperature, as long as an equilibrium plateau is reached during the association phase. Figure 2 
illustrates the algorithm.

Figure 2.  A two-part algorithm for the estimation of the composition and concentration of an unknown 
mixture of N analytes with known thermodynamic parameters. The unknown mixture is injected at temperature 
T for which corresponding kinetic parameters may be calculated using the Eyring equation. The first part of the 
algorithm surveys the dissociation phase of the sensorgrams to provide a first estimate of the fractions Fi of each 
analyte. The starting point for this optimization routine is set to 1/N . A first estimate of the total concentration 
CTOT can then be found via linear regression. The second part of the algorithm considers the whole sensorgrams 
to provide a final estimate of Fi and CTOT . Note that, if sensorgrams of more than one total concentration are 
available, the corresponding dilution rates ( D(s) ) must be known.
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First part: optimization over the dissociation phase. From the definition of the normalized SPR response dur-
ing the dissociation phase with respect to the equilibrium contributions given in (14), we aim to minimize the 
following objective function via optimization:

Here, the vector of identified parameters θ contains the fraction of each analyte in the unknown mixture Fi . 
Given a set of Fi , the contributions Zi can be calculated. Constraints should be added such that Fi are contained 
between zero and one, and that they sum to one. The starting point for each Fi can be set to 1/N.

Having identified the fractions, the observed affinity and maximum response can be obtained from (8) and 
(9). We can rearrange the expression of the equilibrium response given in (6) to obtain:

Here D(s) is the vector of dilution factors used to obtain the analyte concentration injected to obtain sensor-
gram s . If CTOT ,REF is the concentration of the initial solution that was used to create a dilution series, we have 
CTOT (s) = D(s)CTOTREF . At this stage, everything is known in (25) except CTOT ,REF . It can be obtained directly 
if only one sensorgram is available, or via a simple regression with null intercept if multiple dilutions of the 
unknown mixture were injected.

Second part: optimization over the whole sensorgrams. The second part of the algorithm consists in using the 
Fi identified from the dissociation phase and the CTOT ,REF identified from the equilibrium values as the starting 
point of a second optimization routine that considers the entire sensorgrams (injection and dissociation phases). 
The same constraints are applied on the Fi , and the objective function is:

This leads to the final estimates of Fi and CTOT ,REF , from which the analyte concentration of all sensorgrams 
can be computed from the known D(s) . Bulk effect contribution parameters may be added for each sensorgram 
as additional identified parameters in optimization problem (26).

Results
Parameter identification. To test our parameter identification algorithm, we immobilized CAII on SPR 
biosensor surfaces. It has been confirmed by SPR studies many times that CAII binds several small compounds 
following a simple 1:1 Langmuir  scheme10–12,15,28–30. We selected four compounds amongst the known CAII 
binders: CBS, BDS, sulfanilamide and furosemide and we created four mixtures containing all of them (Table 1). 
For details on the binding mechanisms of sulfonamides to CAII, we refer to a literature  review33. These binders 
were selected because they exhibit a wide range of kinetic and thermodynamic parameters and refractive index 
increments (RII). To account for the differences in RII, our model considers distinct maximum response ampli-
tudes ( Rmax,i ) for each analyte. The model also assumes that there is competition between the analytes (binders) 
and that each analyte binds CAII following a 1:1  scheme10,12,15.

To push the boundaries of pre-existing work, where four mixtures were needed to elucidate the kinetics of 
four analytes ( M = N ), we proposed to reduce the demand in mixtures ( M < N ) by performing experiments 
at different temperatures. Hence, each of the mixtures was injected at four temperatures and seven dilutions. In 
addition, classical experiments where the analytes were injected alone were also performed at each temperature 
and for each analyte. The recorded sensorgrams allowed us to identify kinetic parameters at all four tempera-
tures, while enthalpies and entropies were derived using the Eyring and Van’t Hoff equations. All the calculated 
parameters are reported in Supplementary Materials Tables S1 and S2. The standard errors we computed for 
parameters fitted via single-analyte experiments corresponded to less than 1% of the fitted parameter in all cases 
and were in good agreement with those obtained with the Biacore Evaluation  Software31.

We used the kinetic parameters identified with classical single-analyte experiments to evaluate the actual 
contribution of each analyte for each mixture at each temperature (see Fig. 3). This can be done by solving the 
ODEs given in (3) for each Ri . Of interest, BDS is seen to rapidly bind to CAII, which is indicative of a high asso-
ciation rate. However, in every case, it is progressively replaced either by a slower binder with a higher affinity (i.e., 
furosemide) or by an analyte with a higher proportion in the mixture. CBS and furosemide exhibit the slowest 
dissociation (lowest kd,i ) while sulfanilamide and BDS rapidly dissociate from CAII. Furosemide has the highest 
maximal response ( Rmax,i ) and hence it always has a significant contribution. On the other hand, sulfanilamide 
has the lowest affinity for CAII amongst the studied binders (by almost one order of magnitude). This explains 
why its contribution is always modest to negligible, even in mixture B where it is present in a proportion of 50%. 
These observations will be relevant when analyzing the performance of our parameter identification algorithm.

We first applied our parameter identification algorithm to all four combinations of three mixtures. To evaluate 
the loss of performance when less data is available, we repeated the procedure with all the six combinations of 
two mixtures. As sensorgrams corresponding to different concentrations, mixtures and temperatures are simul-
taneously used to fit the model, this procedure may be called ‘global-global-global’. Parameters identified with 
our suggested algorithm were compared to those obtained by performing classical single-analyte experiments 
via what we call the deviation:
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where k denotes any fitted parameter and k1analyte is the value of the parameter as derived through a single-
analyte experiment.

Parameter identification with three mixtures. Kinetic parameters derived by fitting the multi-analyte model 
to sensorgrams of three mixtures at four temperatures are reported in Supplementary Materials Table S1. In all 
cases, the reference temperature T1 was 12 °C and the reference mixture m1 was the first mixture in the data set 
name (for part 1 of the algorithm, see Eq. (15)). 95% confidence intervals were also calculated (see Supplemen-
tary Materials). The affinity KA is not directly fitted by the algorithm but is rather derived from the association 
and dissociation rates. Hence, its confidence interval was calculated by propagating the standard error of ka and 
kd . In all cases, the amplitude of the confidence interval corresponds to less than 7% of the fitted parameter value, 
with association rates having the widest intervals. Association rates tend to be more impacted by experimental 
error, as they always multiply the analyte concentration in the model ODEs, which is dependent on the precision 
of the experimenter. The quality of the fits is excellent, as can be assessed by the low χ2 values corresponding to 
all multi-analyte fits ( χ2 =∼ 0.024 for all fits). The square root of χ2 corresponds to the root mean square error 
and should approximate the measurement noise, if the model is appropriate. Some constraints on the associa-
tion rate of sulfanilamide were active in some of the fits. These constraints ensure that the kinetic rates only 
increase with respect to temperature. However, active constraints obscure the meaningfulness of the calculated 
confidence intervals of the affected parameters as well as that of the thermodynamic parameters derived from 
those kinetics.

(27)%deviationk =

∣

∣kpred − k1analyte
∣

∣

k1analyte
∗ 100

Figure 3.  Kinetic analysis of the contribution of CBS (red), BDS (green), sulfanilamide (blue) and furosemide 
(magenta) to the SPR response of each mixture (see Table 1) at each temperature. The kinetic parameters 
identified with classical single-analyte experiments were used to generate this figure. The summation of these 
signals gives the predicted signal (black). Only the responses corresponding to the maximal concentration 
(22 400 nM) are shown.
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We show an example of a multi-analyte fit to mixtures B-C-D in Fig. 4. A residue analysis shows no obvious 
trend and very small residues, hence the 1:1 competitive multi-analyte model adequately represents the data, as 
expected for this system. During fitting, the first and last second of the injection phase and the first second of 
the dissociation phase were removed to avoid artifacts hailing from buffer changes between the different phases. 
In 12 °C sensorgrams, a spike is always observed around 700 s. This occurs when the buffer syringe needs to be 
refilled due to the longer dissociation phase at this temperature.

Figure 5 reports the deviation (in %) between the kinetic parameters derived from single- and multi-analyte 
experiments. All fits showed similarly good accuracy with deviations on the order of 10%, except for that of 
data set A–C–D (Fig. 5A). For this data set, estimates of the parameters of sulfanilamide had a deviation of 
approximately 70% on average. As observed earlier (Fig. 3), sulfanilamide had a negligible contribution to the 
SPR response for mixtures C and D, and a very modest one in mixture A. That is, the predicted SPR response 
had a weak dependence on the parameters of this analyte. Hence, the quality of the fit depended weakly on the 
sulfanilamide parameters, making them difficult to identify accurately using this data set. This phenomenon 
is avoided with all other data set thanks to the presence of mixture B, where sulfanilamide is present in a large 
proportion and contributed more appreciably to the SPR response. Even with the other data sets, deviations 
on the parameters of sulfanilamide remained higher on average (Fig. 5B). Furosemide is the analyte with the 
highest affinity for CAII, and thus the highest contribution to the SPR response. As such, it was also the analyte 
for which the kinetic parameters are the most accurately identified with less than 5% deviations on average. The 
association rates were the parameters with the highest average deviation (Fig. 5C). As previously mentioned, 
this is because they always multiply the concentration (and fraction) in the ODEs, which is dependent on the 
experimenter’s repeatability when creating the mixtures and performing the necessary dilutions from one experi-
ment to another. Moreover, the association rates only directly affect the injection phase of the sensorgrams. On 
the contrary, the Rmax,i were most precisely identified. As these are considered temperature invariant, they have 
a stronger impact on the quality of the fit than any single-temperature association or dissociation rate. Hence, 
the fit should be more sensitive to the Rmax,i . Dissociation rates were also accurately identified, as they affect 
both phases of the sensorgrams. Affinities were obtained by computing the ratio of the association and dissocia-
tion rates rather than being directly identified, hence the precision of the predicted affinities is dependent on 
the precision of the predicted kinetic rates. Finally, kinetic parameters corresponding to all temperatures were 
identified with a similar accuracy (Fig. 5D).

Having derived the association and dissociation rates, and the affinity at four different temperatures, we iden-
tified the Eyring and Van’t Hoff equation parameters via linear regression. Table S2 in Supplementary Materials 
reports the activation and standard reaction enthalpies and entropies of the analyte-ligand complex formation 
pseudo-reaction. Considering the standard Gibbs energy �G0 = �H0 − T�S0 , all analyte complex formations 
were favored by enthalpic contributions (negative enthalpy change), whereas CAII binding to BDS or furosemide 
was also supported by entropic contributions (positive entropy change).

Figure 6 compares the thermodynamic parameters derived from multi-analyte experiments to those derived 
from single-analyte experiments. The thermodynamic parameters of sulfanilamide exhibit the biggest deviations 
in all fits, as expected because of its low contribution to the SPR response (Fig. 6A). Data set B–C–D produced 
a fit with no active constraint, leading to the most precise identification of the thermodynamic parameters 
(35% deviation for sulfanilamide and below 25% for all other analytes). On the other hand, fit A-B-D had the 
largest number of active constraints, leading to the largest deviations. The constraints that are active are those 
that ensure that the association rates only increase with temperature. This in turn affects the computation of the 
corresponding enthalpic and entropic changes.

Enthalpies were accurately identified (average deviation of ~ 13% between single- and multi-analyte experi-
ments averaged over Eyring and Van’t Hoff parameters found with all data sets) whereas entropy estimates were 
less accurate (average deviation of ~ 59%), as is shown in Fig. 6B. The enthalpies modulate the temperature 
dependence of the kinetic parameters (or affinity) while the entropies represent the base level, which may be 
more sensitive to experimental error during sample dilution. All predicted enthalpies and entropies had the 
correct sign except for entropies associated with the dissociation rate ( �S∗kd ), mainly for sulfanilamide. This is 
presumably because the absolute value of this entropy seems to be close to 0 for sulfanilamide. Our algorithm 
can provide at least coarse first estimates when analyzing a mixture of analytes that is difficult to purify, but 
likely cannot compete with specialized methods, like calorimetry, in accuracy when pure samples are available.

Importance of the initial estimates for parameter identification. Part 1 of our algorithm favors convergence to a 
proper, biologically relevant solution when performing part 2. This is necessary because the multi-analyte model 
is only locally  identifiable32. To demonstrate this point, we performed the optimization routine of part 2 of our 
algorithm with a suboptimal starting point for data set B–C–D. The suboptimal starting point was constructed 
by assigning the value of the expected order of magnitude of each parameter  (104  s−1  M−1 for ka ,  10–2  s−1 for kd 
and 10 for Rmax ). With this data set, the optimizer converged to a suboptimal solution (χ2 of 0.0301 vs 0.0247) 
that was further from single-analyte estimates as the one obtained with our algorithm (average deviation over 
all analytes, parameters and temperatures of 74% vs 10%). Moreover, convergence necessitated approximately 
three times as many iterations when using a suboptimal starting point. The fitted parameters obtained with a 
suboptimal starting point are given in Supplementary Materials Table S3.

Parameter identification with two mixtures. Parameters identified by fitting the multi-analyte model at four 
temperatures for any combination of two mixtures (instead of three, as in the above sections) are reported in 
Supplementary Materials Table S4. Confidence interval lengths and χ2 values were similar to those obtained 
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Figure 4.  Kinetics analysis of the injection of mixtures of four compounds at four temperatures. Black 
dots correspond to control-corrected and double-referenced sensorgrams. Red lines correspond to ‘global-
global-global’ fits for each data set (B–C–D and A–B, see Table 1 for exact mixture compositions). The total 
concentration ( CTOT ) of the mixtures ranged from 350 nM to 22,400 nM for all mixtures and temperatures. 
Here, the composition and total concentration are assumed to be known. The related residual plot is given below 
each sensorgram data set.
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when using three mixtures. An example of fit is shown in Fig. 4 for data set A–B. Once again, no obvious trend 
was observed in the residues and the model adequately depicted the data.

Figure 7 shows the deviation (in %) between the kinetic parameters obtained with multi-analyte fits with two 
mixtures and those obtained with single-analyte experiments. A similar accuracy was obtained with all data sets 
except for data set C–D (Fig. 7A). With this data set, deviations on sulfanilamide parameters were over 100% on 
average (a more than two-fold difference from single-analyte experiments). This is mainly because sulfanilamide 
had a negligible contribution to the SPR response in both mixtures. Interestingly, the other three analytes were 
properly identified even in the C–D data set, leading to similar deviations as those obtained with three mixtures 
(Fig. 7B). Average deviations for sulfanilamide were larger when fitting to two mixtures compared to three (~ 50% 
vs ~ 30% if we exclude data set C–D). Dissociation rates and maximal responses were again the most precisely 
identified parameters, while association rates and affinities were more difficult to extract (Fig. 7C), as was the case 
for three-mixture data sets. Parameters corresponding to each temperature were identified with approximately 
the same precision (Fig. 7D). Overall, the parameter estimation was more precise with three-mixture data sets 
with an average deviation of ~ 13% than with two-mixture data sets with an average of ~ 21% (Fig. 7E).

Thermodynamic parameters derived from two-mixture data sets are shown in Table S5 in the Supplementary 
Materials. Again, the thermodynamic parameters of sulfanilamide differed the most from those obtained with 
single-analyte experiments. Except for data set C–D, the correct sign was found for the enthalpies and the average 
deviation (over Eyring and Van’t Hoff enthalpies found with all data sets except C–D) was ~ 18%. Entropies were 
identified less precisely, with an average deviation (excluding C-D) of ~ 71%. Constraints on the association rates 
of CBS and sulfanilamide were active in the final solution of data set C–D. There was also an active constraint on 
the affinity of sulfanilamide to ensure that it varies monotonously with respect to temperature. This contributed 
to the larger deviations observed for this data set. For more details on the deviation values, we refer the reader 
to Supplementary Materials Figure S1.

Mixture composition and concentration estimation. Choice of injection temperature. Before inject-
ing an unknown mixture on the biosensor surface, the injection temperature must be determined. Having access 
to the kinetic parameters for theoretically any temperature within the operating range of the biosensor, after 

Figure 5.  Average deviation between the parameters ( ka , kd , KA and Rmax ) identified from single-analyte 
experiments and parameters identified by our multi-analyte model with any combination of three mixtures 
(out of the four mixtures described in Table 1). In all cases, data generated at four temperatures were taken 
into account. (A) Average deviation computed over all parameters and temperatures for all analytes in all fits. 
(B) Average deviation over all parameters, fits and temperatures for each analyte. (C) Average deviation for all 
parameters. (D) Average deviation for all temperatures. Error bars were computed by propagating the standard 
error of the parameters identified from single-analyte and multi-analyte experiments.
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applying the parameter identification algorithm, this question is nontrivial. Selecting the temperature for which 
the kinetic parameters of the different analytes are most different from one another would lead to bigger dif-
ferences in their binding behavior, facilitating the discrimination of the respective contributions to the SPR re-
sponse. As the first part of our algorithm focuses on the dissociation phase of the sensorgrams, we hypothesized 
that selecting the temperature which maximizes the differences in the dissociation rates should lead to better 
estimates. To quantify how different the dissociation rates are for a given temperature, we suggest the following 
temperature dependent indicator:

The indicator I(T) is equal to or greater than one. A temperature with a small I means that at least two dis-
sociation rates are close to each other, whereas a large value of the indicator signifies that the two closest dis-
sociation rates are rather far from one another.

We tested our hypothesis via simulations. The four analytes were considered, with their Eyring parameters 
derived from the single-analyte experiments. 100 mixtures were constructed by randomly generating sets of 
fractions Fi . 15 equally distanced temperatures between 12 °C and 40 °C were selected. For each temperature and 
mixture, sensorgrams were simulated by solving the ODEs in (3) for two-fold dilutions ranging from 400 nM to 
25 600 nM. Data were generated with a frequency of 10 Hz. Gaussian noise with a null mean was added on top of 
the simulated sensorgrams to reproduce the typical measurement noise observed on recorded sensorgrams. The 
choice of Gaussian distribution for the noise was validated via a quantile–quantile plot showing the quantiles of 
the double-referenced baseline signal of the instrument with respect to the theoretical quantile values of a normal 
distribution. A standard error of 0.2 was used, which is similar to that observed for said baseline. We applied our 
composition estimation algorithm to each mixture and each temperature individually. We then compared the 
estimated composition after the first and second parts of the algorithm to the composition used to generate the 
data. The absolute value of the difference between the estimated and actual fractions was recorded to evaluate 
the quality of the estimates, i.e., the mean absolute error (MAE):

(28)I(T) = min
i,j

(

kd,i,T

kd,j,T

) i, j = 1, . . . ,N
i �= j

kd,i,T > kd,j,T

Figure 6.  Average deviation between the thermodynamic parameters ( �H∗
ka

 , �S∗ka , �H∗
kd

 , �S∗kd , �H0
KA

 and 
�S0KA

 ) derived from single-analyte experiments and parameters derived by fitting the multi-analyte model 
at four temperatures with any combination of three mixtures (A–D). (A) Average deviation computed over 
all parameters for all analytes in all fits. (B) Average deviation computed over all fits for all parameters of all 
analytes.
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For the concentration, we recorded the ratio of the predicted value and the actual concentration: CTOT ,pred

CTOT ,real
 . 

Results of the simulations are reported in Fig. 8.
The dissociation rates of BDS and sulfanilamide and that of CBS and furosemide overlap at 25 °C and 27 °C, 

respectively (Fig. 8A), where the value of our suggested indicator reaches a minimum, as seen on Fig. 8B. If 
only part 1 of the composition estimation algorithm is performed (Fig. 8C), the absolute value of the difference 

(29)MAE =
∣

∣Fpred − Freal
∣

∣

Figure 7.  Deviation between the parameters ( ka , kd , KA and Rmax ) identified from single-analyte experiments 
and parameters identified by fitting the multi-analyte model at four temperatures with any combination of 
two mixtures (out of the four described in Table 1). (A) Average deviation computed over all parameters 
and temperatures for all analytes in all fits. (B) Average deviation for all analytes over all parameters, fits and 
temperatures. Average deviations for sulfanilamide are also reported without considering data set (C–D) 
(sulfanilamide*). (C) Average deviation for all parameters. (D) Average deviation for all temperatures. (E) 
Average deviation for data sets with two and three mixtures. Error bars were computed by propagating the 
standard error of the parameters identified from single-analyte and multi-analyte experiments.
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between the estimated and actual fractions (averaged over the 100 simulated mixtures and 4 analytes) is nega-
tively correlated to the indicator. That is, part 1 of the algorithm functions better when the dissociation rates 
are more different from one another, which was expected. There is however another factor in play, which is the 
injection temperature. Estimation errors tend to increase with temperature. This effect is even more noticeable 
in the results of part 2 of the algorithm (Fig. 8C). No obvious trend was observed when we replaced kd in the 
definition of I(T) with any of ka , KA or KD = 1/KA.

The same pattern is also obtained in Fig. 8D, where the predicted concentration is compared to the actual 
concentration by taking their ratio. This was averaged over the 100 mixtures. The concentrations estimated by 
part 2 of the algorithm were within 5% of the actual fractions.

As the temperature increases, kinetics become faster and sensorgrams exhibit less curvature (more of a ‘rec-
tangular’ shape). These ‘rectangular’ sensorgrams do not contain a sufficient amount of information to be able 
to discriminate between the analytes.

In general, we would advise to select the temperature that maximizes our indicator I(T) , while minimizing 
temperature, as much as possible so that equilibrium plateaus may still be reached. This will ensure part 1 of the 

Figure 8.  Application of the composition and concentration estimation algorithm to simulated mixtures of 
the four analytes at 15 temperatures between 12 and 40 °C. (A) Dissociation rates of each analyte with respect 
to temperature. (B) Performance indicator with respect to temperature. (C) Absolute values of the fraction 
estimation error averaged over all analytes and mixtures with respect to the indicator after part 1 and part 2 
of the algorithm. To help interpretation, corresponding temperatures were added as annotations. (D) Ratio of 
estimated and actual concentrations with respect to the indicator after both parts of the algorithm. The black 
line corresponds to a perfect estimate (ratio of 1).



18

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14401  | https://doi.org/10.1038/s41598-022-18450-y

www.nature.com/scientificreports/

algorithm provides an appropriate starting point for part 2, allowing faster convergence to a better estimate of 
the composition.

In the simulation, sulfanilamide was the analyte with the biggest estimation errors, due to its lower affinity 
for CAII, and hence smaller contribution to the simulated response. BDS followed, as BDS and Sulfanilamide 
exhibit similar dissociation rates, complicating their discrimination. Overall, the estimates obtained after part 2 
were of great quality with small errors. In absolute value, a difference of 1% was observed between the estimated 
and actual proportions at 12 °C. At 40 °C, the difference was of the order of 10%.

Composition and concentration estimation on real sensorgram data. Next, we used the kinetic 
parameters sets identified with real sensorgrams (Tables S1 and S4 in Supplementary Materials) to estimate the 
composition and concentration of all eight mixtures described in Table 1. This was performed independently 
for every parameter set and every temperature. The algorithm detailed in the “Composition estimation” section 
was used. An example is shown in Fig. 9A,B. The kinetic parameters identified from data set B–C–D were used 
here, and only sensorgrams at 12 °C were fed to the algorithm. The vertical error bars in these plots correspond 
to asymmetric confidence intervals found with a method described in Supplementary Materials. The horizontal 
error bars were found by propagating the systematic error of the pipettes (Pipetman Neo P10, P20, P200 and 
P1000) and the balance (Dever Instrument Company AA-160) that were used to conduct the experiments. The 
small vertical error bars are mainly due to the large number of data points that are considered (injections of 7 
concentrations, in duplicate with 10 points per second). For the most part, points are well aligned with the cen-
tral line in these plots, indicating proper estimates. The experimental data corresponding to pure sulfanilamide 
were the most difficult to elucidate. This is mainly because the identified kinetic parameters of sulfanilamide 
exhibited the largest deviations from single-analyte estimates for this data set and temperature (~ 14% for the 
association rate and ~ 18% for the dissociation rate). The kinetic parameters of CBS, BDS and furosemide are 
relatively well identified (deviations between 0 and 11%). So are maximal responses (deviations below 10% for 
all four analytes). It appears that imprecisions in the identified kinetics of sulfanilamide are the driving force 
of the estimation errors. The fraction of sulfanilamide is overestimated in mixture A and pure CBS, leading 
to higher concentration estimates for these mixtures to compensate for sulfanilamide’s lower affinity for CAII. 
The other 5 mixtures were well identified. It might not be surprising that mixtures B, C and D were correctly 
elucidated, as those were used to identify the kinetics in this case study. BDS and furosemide have high affinities 
and their parameters were precisely identified, hence pure BDS and furosemide were also precisely estimated. 
BDS is falsely detected in the 100% sulfanilamide mixture, possibly because sulfanilamide and BDS have similar 
dissociation rates.

This corroborates Fig. 9C where sulfanilamide and BDS are shown to be the two analytes with the largest 
MAEs (averaged over all sets of kinetic parameters), no matter which injection temperature is considered. CBS 
and furosemide have much lower MAEs, with a weaker temperature dependence. As predicted by the simula-
tions, we observed that performing the experiments at a lower temperature leads to more precise composition 
estimations. This cannot be explained by better kinetic parameters estimates at lower temperatures, because 
Figs. 5D and 7D showed no clear trend in parameter deviation with respect to temperature. Figure 9D shows that 
the MAE was also correlated to our suggested indicator. The same trend is observed for concentration estimates 
(Fig. 9E). This is easy to understand, as large errors in the fraction estimates can be somewhat compensated by 
the concentration estimation, and vice versa, as both the fractions and concentration are estimated concurrently.

Interestingly, the kinetic parameter sets identified from data sets A–C–D and C–D did not lead to larger 
estimation error. These data sets were highlighted during the parameter identification process, as they led to 
noticeably bigger deviations for the kinetic parameters of sulfanilamide. The other three analytes were well identi-
fied, however, and overall, these parameter sets can be used to estimate the composition and concentration with 
similar accuracy to other parameter sets. This is the case at 12 °C, as shown in Fig. 9F, and for other temperatures. 
The quality of the kinetic parameter estimates still plays an important part, as using the parameters identified 
from single-analyte experiments to estimate the composition and concentration led to the smallest errors (‘sin-
gles’ data set in Fig. 9F). The maximal response deviations from data set A–B were the largest. This led to large 
concentration estimation errors for mixtures aside from A and B. This data set led to the biggest deviations on 
the kinetics of furosemide, which was properly identified for all other data sets.

100% BDS and 100% sulfanilamide were the mixtures for which the estimation errors were the biggest on 
average. As previously mentioned, this is probably due to their similar dissociation rates, and sulfanilamide’s 
lower affinity for CAII.

Adding the concentration to the list of parameters to be identified adds a degree of freedom which can con-
found the estimation of the fractions. To evaluate this effect, we repeated the whole procedure, this time by con-
straining the value of the concentration to the correct experimental value. This ends up being practically the same 
as the algorithm proposed  in15 for the case where concentration is known. The results are presented in detail in 
Supplementary Materials Figure S2. Fraction MAEs were approximately two-fold lower when the concentration 
is known (~ 4% vs ~ 8%). Removing a parameter to be fitted increases the precision of the optimization algorithm, 
resulting in smaller confidence intervals. Providing information to the algorithm facilitates convergence to the 
correct fractions as long as the set of kinetic parameters used is adequate. Larger MAEs were obtained with data 
set C–D when the concentrations are known, mainly driven by sulfanilamide whose parameters presented high 
deviations in this fit, which could not be compensated for by the concentration estimate.

Measuring the total concentration of all analytes prior to composition estimation (through an SPR experi-
ment or otherwise), if possible, leads to more precise composition estimates. To do so via SPR, it is necessary that 
the analytes have the same refractive index increment. For proteins, this would mean similar molecular weights 
(for example different glycosylation or other post-translation-modifications of a same protein). One would 
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Figure 9.  Performance of the composition and concentration estimation algorithm. (A) Calculated fractions 
with respect to actual fractions of the four analytes in each of the 8 mixtures detailed in Table 1. These fractions 
were estimated from sensorgrams at 12 °C only with kinetic parameters identified from data set (B–C–D). (B) 
Calculated concentration with respect to actual concentration for each of the 8 mixtures. These were estimated 
along the fractions using sensorgrams at 12 °C only with kinetic parameters identified from data set (B–C–D). 
(C) Mean absolute error of estimated fractions for each analyte at each temperature. The composition estimation 
algorithm was used independently for each set of kinetic parameters corresponding to each data set (all 
combinations of 2 and 3 mixtures) and each temperature, and mean absolute errors were averaged across all 
data sets and mixtures. (D) Mean absolute error (averaged across all data sets) with respect to the performance 
indicator. Annotations on the graph indicate the corresponding temperature. (E) Deviation (in %) between 
estimated concentrations and actual concentrations (averaged across all data sets) with respect to temperature. 
(F) Deviation of the concentration and mean absolute error of the fractions with respect to the data set that was 
used to identify the kinetics. Those were taken at 12 °C only. In this figure, ‘singles’ refers to single-analyte fits.
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first produce a calibration curve of the initial slope of a mass transport limited sensorgram with respect to the 
concentration of analyte using an analyte mixture of known concentration. The concentration of an unknown 
mixture could then be deduced from a mass transport limited sensorgram of the unknown  mixture19,34–36.

Analyte pooling for partial composition assessment. The previous sections showed promising 
results for the identification of kinetic parameters of N analytes with M < N mixtures and for the estimation of 
the composition and the concentration of an unknown mixture of these analytes. However, in both cases, sulfa-
nilamide is highlighted as problematic due to its lower affinity to CAII (by approximately an order of magnitude 
compared to the other three analytes) that makes its contribution to the SPR response marginal unless it occu-
pies a dominating proportion of the mixture. It also exhibits a similar dissociation rate as that of BDS, leading to 
confounding these two analytes when estimating mixture compositions.

When one or more analytes have weak affinities and/or similar kinetics leading to poorer fraction estimates, 
one solution is to construct analyte pools by regrouping two or more analytes into one. This can potentially lead 
to more relevant estimates for the pooled analyte, as the pool might have a more appreciable contribution than 
each of the individual pooled analytes. This might not affect the identification of other non-pooled analytes 
which already have high affinities and contributions to the SPR response.

Applying this concept in our case study, we decided to pool sulfanilamide with BDS. This reduces the num-
ber of analytes to three. To remain within the scope of the parameter identification algorithm proposed in 
this study ( 1 < M < N ), we should have analyzed data sets containing two mixtures. We chose data set C–D, 
as both of these mixtures contained a small fraction of sulfanilamide, leading to big deviations in the identi-
fied kinetic parameters for this analyte. We used our parameter identification algorithm while considering 
Fpool = FBDS + Fsulfanilamide . Results are reported in Fig. 10A and in Supplementary Materials Table S6. The 
kinetics of CBS and furosemide were properly identified, and the kinetics of the pooled analyte closely matched 
those of BDS. This is not surprising, since the contribution of the pool to the SPR response is almost exclusively 
due to BDS. Interestingly, the deviations on the kinetics and affinity of CBS were lower with the pooled analyte 
than without it and they were similar for furosemide. Maximal responses exhibited bigger deviations when 
pooling, but they remained well below 10%. This suggests that pooling some analytes does not prevent proper 
identification of the non-pooled analytes. The χ2 with pooling was slightly higher than without (0.0249 vs 0.0241) 
as removing parameters necessarily leads to bigger residues. However, they exhibited no obvious trend and the 
model still properly depicted the data.

We then used this new set of identified kinetic parameters to estimate the composition of the 8 mixtures inde-
pendently for each temperature. Example results are shown in Fig. 10B,C for an injection temperature of 12 °C.

The MAEs on fractions were lower when pooling. Of interest, the MAEs relative to CBS were slightly lower 
with pooling while those of furosemide were similar (see Fig. 10D). Deviations in the estimated concentrations 
were almost identical with and without pooling. The mixture with the highest concentration deviation was 100% 
sulfanilamide. This mixture is appropriately estimated to be composed of the pooled analyte almost exclusively 
(95% pool + 5% furosemide). However, since the pooled analyte’s affinity resembles that of BDS and not that of 
sulfanilamide, the estimated concentration is found to be almost five times lower than the real concentration. 
Without pooling, the mixture is estimated to be composed of (75% BDS and 25% sulfanilamide), also leading 
to a fivefold lower concentration estimate.

In summary, pooling a low affinity analyte and a strong affinity analyte with a similar dissociation rate made 
the identification of the other analytes equally or more precise while enabling better composition estimates. 
The kinetic parameter identification may not work as well if the data set used to fit the multi-analyte model is 
composed of mixtures in which the low affinity analyte has a dominating proportion. For example, repeating 
the procedure with data set A–B did not lead to appreciable gains in parameter or composition estimation per-
formance. In these mixtures, sulfanilamide is present in high proportions (respectively 30% and 50%) and has 
an appreciable contribution to the SPR response.

Discussion
This study pertains to the analysis of analyte mixtures by SPR biosensing. Those are ill-suited to traditional single-
analyte studies, as analyte heterogeneity complexifies the recorded SPR signals and renders the use of a single 
Langmuir binding isotherm inadequate for data analysis. Using a kinetic model that properly describes the actual 
system is essential if one aims to uncover meaningful information on the interaction behavior. Moreover, the 
ability to analyze multi-analyte samples enables mixture composition estimation, which could prove a powerful 
tool to streamline bioprocess monitoring and development.

Carbonic anhydrase II (CAII) was used as the immobilized ligand in our experiments because of its well-
known ability to form a simple 1:1 interaction with several small compounds with varying kinetic rates and 
affinities. Amongst CAII binders, we selected N = 4 analytes: CBS, BDS, sulfanilamide and furosemide. To 
simulate a realistic situation, we constructed four mixtures of these analytes spanning a wide range of composi-
tions (Table 1). The SPR response recorded when injecting each mixture on a CAII-immobilized surface should 
follow a multi-analyte 1:1 binding model, where every analyte competes to bind CAII. In this paper, we suggest 
two algorithms. The first one aims to identify the kinetic parameters of N analytes with M ≤ N mixtures of the 
analytes. To accomplish this, the mixtures must be injected at a minimum of N/M temperatures, and the com-
position and concentration of the mixtures must be known (Fig. 1). The second algorithm seeks to estimate the 
composition and the concentration of a mixture, given that the kinetics have been identified previously (Fig. 2). 
If more than one concentration is injected, the dilution rate used to create the dilution series must be known.

We chose four injection temperatures: 12, 16, 20 and 24 °C as they allow full dissociation within a reason-
able time while still exhibiting sufficient curvature during the association phase. We first injected pure samples 
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of the four analytes at each temperature to obtain standard values of their actual kinetics. This allowed us to 
predict the contribution of each analyte in the four mixtures by solving the multi-analyte model ODEs (Fig. 3). 
We then injected the mixtures and utilized our first algorithm to identify the kinetics of the four analytes with 
three mixtures (Table S1). Fits to real sensorgram data were shown to be excellent (Fig. 4), and the identified 
kinetic parameters closely matched those obtained via single-analyte experiments, especially when sulfanila-
mide has an appreciable contribution to the SPR response (Fig. 5). Having identified the kinetics and affinities 
at each temperature, thermodynamic modeling became possible via the Eyring and Van’t Hoff equations (Fig. 6 
and Table S2). The procedure was then repeated with combinations of only two mixtures (Fig. 7 and Table S4). 
The identified parameters still closely matched those from single-analyte experiments, but with slightly larger 
deviations than when using three mixtures to fit the model.

We then focused on our second algorithm. We showed, via simulations, that the algorithm performed better 
when the unknown mixture is injected at lower temperatures, or at a temperature for which the dissociation rates 
of the analytes are more disparate (Fig. 8). We then applied our second algorithm on real sensorgram data and 
obtained relatively precise estimates using 12 °C sensorgrams (Fig. 9). Throughout our study, sulfanilamide was 
highlighted as problematic because of its low affinity to CAII, leading to small contributions to the SPR response 
and a greater difficulty identifying its kinetics or estimating its fraction in an unknown mixture. It also has a 
very similar dissociation rate to that of BDS, potentially leading to confounding both analytes. We showed that 

Figure 10.  Performance of the kinetics identification and composition and concentration estimation 
algorithms when pooling BDS and sulfanilamide. (A) Deviation between the parameters ( ka , kd , KA and Rmax ) 
identified from single-analyte experiments and parameters identified by fitting the multi-analyte model at four 
temperatures with data set (C–D) for CBS and furosemide. For these fits, the total concentration and fractions 
of all analytes are assumed to be known (with Fpool = FBDS + Fsulfanilamide ). Deviations were averaged over all 
temperatures. Error bars were computed by propagating the standard error of the parameters identified from 
single-analyte and multi-analyte experiments. (B) Calculated fractions with respect to actual fractions of the 
three analytes in each of the 8 mixtures. These fractions were estimated from sensorgrams at 12 °C only. (C) 
Calculated concentration with respect to actual concentration for each of the 8 mixtures. These were estimated 
along the fractions using sensorgrams at 12 °C only. (D) Mean absolute error of estimated fractions for each 
analyte at each temperature. The composition estimation algorithm was used independently with pooling of 
BDS and sulfanilamide and without pooling. Averages over all 8 mixtures are reported.
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considering them both as only one analyte (i.e., pooling them) could lead to a better performance of both of our 
algorithms, as long as the mixtures used to identify the kinetics contain little sulfanilamide (Fig. 10).

The merit of this current study compared to previous work on mixture analysis via  SPR15 lies in the ability to 
reduce the number of mixtures required to extract the kinetics ( M ≤ N instead of M = N ). When working with 
mixtures of compounds that are difficult to separate, it might be difficult to obtain multiple, different and linearly 
independent mixtures. On the other hand, injecting the available mixtures at several temperatures is a standard 
feature on most SPR biosensors. The only downside being longer SPR experiments due to stabilization periods 
required between temperature changes. Moreover, we showed that it is possible to estimate the concentration 
along the mixture composition, which was never reported before.

The multi-analyte kinetic model is structurally identifiable only locally rather than  globally32. Briefly, this 
means that several (but a finite number of) sets of kinetic parameters may lead to the same predicted SPR 
response. To select a biologically meaningful solution, we proposed a preliminary subroutine (part 1 of our 
parameter identification algorithm) to provide adequate starting points for the optimization over the whole 
sensorgrams (part 2 of the algorithm). This is significant, since we have shown that a poor starting point may 
lead to convergence towards a solution that is further away from kinetic parameters derived from single-analyte 
experiments in the “Importance of the Initial Estimates for Parameter Identification” section and Supplementary 
Materials Table S3.

The structural identifiability of part 1 of the parameter identification algorithm was briefly discussed in 
"Required data" section. Because summation (here of exponential decays) is commutative, at least two mixtures 
are necessary so that the M by N matrix of Zi,m and N by 1 vector of kd,i describing the dissociation phase of all 
mixtures are ordered the same way (in terms of the analytes) as the M by N matrix of analyte fractions Fi,m . The 
latter is assumed to be known and is fed to the algorithm. Additionally, no analyte couple should have perfectly 
correlated fractions in the available mixtures. If this condition is not met, the product of KA,i and Rmax,i could be 
adjusted so that different orders could lead to the same set of Zi , obfuscating the identification of KA,i and Rmax,i.

Another important concept to consider is practical identifiability. A non-identifiable model that can be 
made identifiable by adding data or reducing measurement noise is deemed practically non-identifiable. While 
there is no universal method to test practical identifiability, an elegant one consists in confirming that no fitted 
parameter has infinite confidence intervals. This can be done, for example, by disturbing the optimal solution 
one parameter at a time and re-optimizing, which leads to a profile  likelihood37,38. We used the same method we 
used previously to derive confidence intervals on the parameters derived from part 1 of the algorithm (as detailed 
in Supplementary Materials), and found finite confidence intervals for all parameters, be it for data sets consist-
ing of three or two mixtures (Fig. S3 in Supplementary Materials). Hence, the model of part 1 of the algorithm 
is deemed practically identifiable with the available amount of data and the noise level of our SPR instrument.

The goal of this study was to establish a proof of concept for both algorithms, not to optimize their use. Indeed, 
the parameter identification algorithm could theoretically work with only two injected concentrations (just 
enough to identify the observed affinity and maximal response) while seven were injected. The duration of the 
association and dissociation phases could also be shortened, as long as an equilibrium plateau is still reached and 
the response goes back to zero at the end of the sensorgram, so as to avoid the need for a regeneration step (in our 
experimental system). Some previous studies have aimed to optimize these parameters online for single-analyte 
 experiments9,11. Furthermore, in our case study where N = 4 and M = 3 (or M = 2 ), only two temperatures were 
theoretically necessary ( NT ≥ N/M ). This is dictated by the system of linear equations in (19), which needs to 
be solved to obtain a first estimate of the maximal responses. We recommend using more temperatures than the 
minimum required to help counter the effects of experimental error and measurement noise, and thus obtain 
an accurate solution of Eq. (19). Moreover, the selected injection temperatures should be spaced enough so that 
the temperature-driven differences in binding behavior are more pronounced than the experimental error and 
noise, again to facilitate solving Eq. (19). The same reasoning can be applied to the number of mixtures, with 
more mixtures leading to more accurate parameter estimates, as we observed in this study.

Low temperatures slow the kinetics, which may prevent reaching an equilibrium state in a reasonable injec-
tion time, whereas high temperatures may result in ‘rectangular’ sensorgrams which contain little information 
in their curvature. Hence, extreme temperatures should be avoided. The selection of temperatures to perform 
parameter identification will be dependent on the studied binders but beginning towards the middle of the 
temperature range allowable by the SPR biosensor and making positive and negative steps of 4 or 5 degrees may 
be a good general starting point.

The experimental error was estimated by performing the same dilution series of the same analyte three times, 
injecting them on the SPR surface, and identifying the resulting kinetic parameters. Deviations of up to 10% were 
obtained between such triplicates. Our parameter identification algorithm led to deviations of this scale when 
using three mixtures, whereas only using two mixtures led to deviations that are twice as high. Such seems to be 
the cost of reducing the amount of available data.

Our model considers a specific maximal response ( Rmax,i ) for all analytes. This was necessary for our sys-
tem, as small molecular weight compounds, such as those used as analytes in this study, exhibit analyte-specific 
refractive index  increments12. For high molecular weight compounds, such as proteins, Rmax,i should be linearly 
proportional to the molecular  weight39–41. This would simplify the parameter identification algorithm, as only 
one Rmax would need to be included, provided that molecular weights are known. For proteins, a very small 
temperature dependence of the refractive index increment has been  reported42–44. However, it has been modelled 
using the same temperature-dependent function for multiple proteins between 10 and 25 °C42,43. Hence, the 
standardization procedure detailed in section "Furosemide standard injections" should allow the temperature 
invariant Rmax,i assumption.

Using our algorithm could save experimental time when performing thermodynamic analyses. Indeed, rather 
than injecting all N analytes at multiple temperatures, one could inject M < N mixtures instead. In both cases, 
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kinetic parameters and affinities could be identified at all temperatures, enabling the construction of Eyring and 
Van’t Hoff plots from which entropic and enthalpic changes could be extracted. Incidentally, the Eyring and Van’t 
Hoff plots obtained with single-analyte experiments showed high R2 ( > 99% ), indicating that the hypothesis of 
temperature independent entropic and enthalpic changes is appropriate for our system.

For the unknown mixture composition and concentration determination, sensorgrams obtained at only 
one temperature were used. Using sensorgrams from more than one temperature might lead to more accurate 
estimates, but it seems ill-fitting to the goal of this algorithm, which is to rapidly determine the composition. 
Indeed, changing the injection temperature requires the biosensor to restabilize, which takes at least one hour for 
a precise and stable temperature. It seems more realistic to envision the case where a user would inject multiple 
unknown samples subsequently at the same temperature. For the parameter identification, one must perform 
experiments at multiple temperatures, meaning restabilizing the instrument multiple times. This process could 
prove lengthy, but once the parameters have been identified, they can be used to analyze a large number of 
unknown mixtures more promptly afterwards.

Identifying specific binding kinetics may be daunting when characterizing macromolecules that are difficult 
to purify. For instance, it is well documented that immunoglobulin G (IgG) production in bioreactor leads to 
a heterogeneous distribution of IgG  glycoforms25. The identity of the glycan groups added to the IgG Fc region 
greatly influences therapeutic efficacy, mainly by affecting binding to Fcγ receptors present on effector immune 
 cells20–26. The IgG-FcγR interaction can be measured by SPR  biosensing27. The abundance of each glycoform 
can be deduced from mass spectrometry analysis, for  example20–26. Hence, an algorithm similar to that pro-
posed  in15 could be used to uncover glycoform-specific kinetics. However, the number of different glycoforms 
is usually quite large, and while different mixtures of glycoforms can be created via bioengineering  methods25, 
by varying cell culture  conditions45 and by using different cell  lines46, reducing the number of mixtures needed 
remains necessary. Using our approach, this could be achieved by injecting the available mixtures at different 
temperatures, or by pooling glycoforms that have a lower affinity for the FcγR. Having uncovered the kinetics, our 
second algorithm could be used to estimate the glycosylation profile and concentration of a subsequent sample. 
We believe this could pave a new way for SPR to be used in product quality monitoring.

Our analysis framework could be applied to study heterogeneity in the analyte solution hailing from factors 
other than glycosylation, such as differences in size or folding, for example.

We propose an algorithm that can estimate the concentration, as long as the dilution factors used to create the 
dilution series are known (if more than one concentration was injected). However, knowing the concentration 
still leads to more precise composition estimates, as errors in the composition estimate can be compensated for 
by errors in the concentration estimate, and vice versa. The active concentration can be found by using a surface 
with a high density of immobilized ligand and a low flow rate, so that the binding process is limited by mass 
transport  limitations36,47–49.

The system is assumed to be limited by the binding kinetics in both of our algorithms, rather than mass 
transport. If mass transport limitations are only moderate, the system should behave similarly to a kinetically 
limited system, except with slower kinetics. There should not be an effect on the binding affinity nor the equilib-
rium behavior. The algorithms presented here might be usable on systems moderately limited by mass transport 
limitations (as long as equilibrium may be reached), but the kinetics uncovered would be  biased11,48,50.

Conclusion
We extended the previously existing framework for the characterization of analyte mixtures via SPR biosens-
ing. This was achieved by taking advantage of the ability of SPR biosensors to perform experiments at different 
temperatures. The developed algorithms extracted analyte-specific kinetics from mixtures of analytes and then 
used these kinetic parameters to identify the composition of other unknown mixtures. The algorithms were 
found to be precise and robust. Performing experiments at multiple temperatures effectively reduced the number 
of mixtures that was required to extract analyte-specific kinetics. A couple limitations remain in our analysis 
framework. First, a simple 1:1 binding model is assumed, which might not be appropriate for all systems. Sec-
ond, the identification of the kinetics still requires prior knowledge of the composition and the concentration of 
the mixtures used in our first algorithm, which may be obtained with orthogonal characterization techniques.

We believe that mixture analysis opens a new avenue for the use of SPR both as a valuable tool to facilitate 
and accelerate the development of bioprocesses and as a monitoring tool for quality control. With more emphasis 
being put on process analytical tools in recent  years16,19, developing new data analysis methods and experimental 
assays will ensure SPR biosensing remain an asset for research and industry.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Received: 9 May 2022; Accepted: 11 August 2022

References
 1. De Crescenzo, G., Boucher, C., Durocher, Y. & Jolicoeur, M. Kinetic characterization by surface plasmon resonance-based biosen-

sors: Principle and emerging trends. Cell. Mol. Bioeng. 1, 204–215. https:// doi. org/ 10. 1007/ s12195- 008- 0035-5 (2008).
 2. Guo, X. Surface plasmon resonance based biosensor technique: a review. J. Biophotonics 5, 483–501. https:// doi. org/ 10. 1002/ jbio. 

20120 0015 (2012).
 3. Homola, J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539. https:// doi. org/ 10. 

1007/ s00216- 003- 2101-0 (2003).

https://doi.org/10.1007/s12195-008-0035-5
https://doi.org/10.1002/jbio.201200015
https://doi.org/10.1002/jbio.201200015
https://doi.org/10.1007/s00216-003-2101-0
https://doi.org/10.1007/s00216-003-2101-0


24

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14401  | https://doi.org/10.1038/s41598-022-18450-y

www.nature.com/scientificreports/

 4. Couture, M., Zhao, S. S. & Masson, J.-F. Modern surface plasmon resonance for bioanalytics and biophysics. Phys. Chem. Chem. 
Phys. 15, 11190–11216. https:// doi. org/ 10. 1039/ C3CP5 0281C (2013).

 5. Prabowo, B. A., Purwidyantri, A. & Liu, K.-C. Surface plasmon resonance optical sensor: A review on light source technology. 
Biosensors (Basel) 8, 80. https:// doi. org/ 10. 3390/ bios8 030080 (2018).

 6. Myszka, D. G. Improving biosensor analysis. J. Mol. Recognit.: JMR 12, 279–284. https:// doi. org/ 10. 1002/ (sici) 1099- 1352(199909/ 
10) 12:5% 3c279:: Aid- jmr473% 3e3.0. Co;2-3 (1999).

 7. Önell, A. & Andersson, K. Kinetic determinations of molecular interactions using Biacore—Minimum data requirements for 
efficient experimental design. J. Mol. Recognit. 18, 307–317. https:// doi. org/ 10. 1002/ jmr. 745 (2005).

 8. Karlsson, R., Katsamba, P. S., Nordin, H., Pol, E. & Myszka, D. G. Analyzing a kinetic titration series using affinity biosensors. 
Anal. Biochem. 349, 136–147. https:// doi. org/ 10. 1016/j. ab. 2005. 09. 034 (2006).

 9. De Crescenzo, G., Woodward, L. & Srinivasan, B. Online optimization of surface plasmon resonance-based biosensor experiments 
for improved throughput and confidence. J. Mol. Recognit. 21, 256–266. https:// doi. org/ 10. 1002/ jmr. 894 (2008).

 10. Mehand, M. S., De Crescenzo, G. & Srinivasan, B. Increasing throughput of surface plasmon resonance-based biosensors by 
multiple analyte injections. J. Mol. Recognit.: JMR 25, 208–215. https:// doi. org/ 10. 1002/ jmr. 2172 (2012).

 11. Si Mehand, M., De Crescenzo, G. & Srinivasan, B. On-line kinetic model discrimination for optimized surface plasmon resonance 
experiments. J. Mol. Recognit.: JMR 27, 276–284. https:// doi. org/ 10. 1002/ jmr. 2358 (2014).

 12. Mehand, M. S., Srinivasan, B. & De Crescenzo, G. Optimizing multiple analyte injections in surface plasmon resonance biosensors 
with analytes having different refractive index increments. Sci. Rep. 5, 15855. https:// doi. org/ 10. 1038/ srep1 5855 (2015).

 13. Zhang, Y., Forssén, P., Fornstedt, T., Gulliksson, M. & Dai, X. An adaptive regularization algorithm for recovering the rate constant 
distribution from biosensor data. Inverse Problems Sci. Eng. 26, 1464–1489. https:// doi. org/ 10. 1080/ 17415 977. 2017. 14119 12 (2018).

 14. Forssén, P. et al. Reliable strategy for analysis of complex biosensor data. Anal. Chem. 90, 5366–5374. https:// doi. org/ 10. 1021/ acs. 
analc hem. 8b005 04 (2018).

 15. Gaudreault, J., Liberelle, B., Durocher, Y., Henry, O. & De Crescenzo, G. Determination of the composition of heterogeneous binder 
solutions by surface plasmon resonance biosensing. Sci. Rep. 11, 3685. https:// doi. org/ 10. 1038/ s41598- 021- 83268-z (2021).

 16. Simon, L. L. et al. Assessment of Recent Process Analytical Technology (PAT) Trends: A Multiauthor Review. Org. Process Res. 
Dev. 19, 3–62. https:// doi. org/ 10. 1021/ op500 261y (2015).

 17. Grangeia, H. B., Silva, C., Simões, S. P. & Reis, M. S. Quality by design in pharmaceutical manufacturing: A systematic review of 
current status, challenges and future perspectives. Eur. J. Pharm. Biopharm. 147, 19–37. https:// doi. org/ 10. 1016/j. ejpb. 2019. 12. 
007 (2020).

 18. Yu, L. X. & Kopcha, M. The future of pharmaceutical quality and the path to get there. Int. J. Pharm. 528, 354–359. https:// doi. org/ 
10. 1016/j. ijpha rm. 2017. 06. 039 (2017).

 19. Gaudreault, J., Forest-Nault, C., De Crescenzo, G., Durocher, Y. & Henry, O. On the Use of Surface Plasmon Resonance-Based 
Biosensors for Advanced Bioprocess Monitoring. Processes 2021, 9. https:// doi. org/ 10. 3390/ pr911 1996 (1996).

 20. Okazaki, A. et al. Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between 
IgG1 and FcgammaRIIIa. J. Mol. Biol. 336, 1239–1249. https:// doi. org/ 10. 1016/j. jmb. 2004. 01. 007 (2004).

 21. Kanda, Y. et al. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked 
Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology 17, 104–118. https:// doi. org/ 10. 1093/ glycob/ 
cwl057 (2007).

 22. Shibata-Koyama, M. et al. The N-linked oligosaccharide at Fc gamma RIIIa Asn-45: an inhibitory element for high Fc gamma RIIIa 
binding affinity to IgG glycoforms lacking core fucosylation. Glycobiology 19, 126–134. https:// doi. org/ 10. 1093/ glycob/ cwn110 
(2009).

 23. Subedi, G.P., & Barb, A.W. The immunoglobulin G1 N-glycan composition affects binding to each low affinity Fc γ receptor. mAbs 
2016, 8, 1512–1524, doi:https:// doi. org/ 10. 1080/ 19420 862. 2016. 12185 86.

 24. Falconer, D. J., Subedi, G. P., Marcella, A. M. & Barb, A. W. Antibody Fucosylation Lowers the FcγRIIIa/CD16a Affinity by Limit-
ing the Conformations Sampled by the N162-Glycan. ACS Chem Biol 13, 2179–2189. https:// doi. org/ 10. 1021/ acsch embio. 8b003 
42 (2018).

 25. Cambay, F.; Henry, O.; Durocher, Y.; De Crescenzo, G. Impact of N-glycosylation on Fcγ receptor/IgG interactions: unravelling 
differences with an enhanced surface plasmon resonance biosensor assay based on coiled-coil interactions. mAbs 2019, 11, 435–452, 
doi:https:// doi. org/ 10. 1080/ 19420 862. 2019. 15810 17.

 26. Cambay, F. et al. Glycosylation of Fcγ receptors influences their interaction with various IgG1 glycoforms. Mol. Immunol. 121, 
144–158. https:// doi. org/ 10. 1016/j. molimm. 2020. 03. 010 (2020).

 27. Forest-Nault, C.; Gaudreault, J.; Henry, O.; Durocher, Y.; De Crescenzo, G. On the Use of Surface Plasmon Resonance Biosensing 
to Understand IgG-FcγR Interactions. Int. J. Mol. Sci. 2021, 22, doi:https:// doi. org/ 10. 3390/ ijms2 21266 16.

 28. Day, Y. S., Baird, C. L., Rich, R. L. & Myszka, D. G. Direct comparison of binding equilibrium, thermodynamic, and rate constants 
determined by surface- and solution-based biophysical methods. Prot. Sci. 11, 1017–1025. https:// doi. org/ 10. 1110/ ps. 43301 02 
(2002).

 29. Navratilova, I. et al. Thermodynamic benchmark study using Biacore technology. Anal. Biochem. 364, 67–77. https:// doi. org/ 10. 
1016/j. ab. 2007. 01. 031 (2007).

 30. Mehand, M. S., Srinivasan, B. & De Crescenzo, G. Estimation of analyte concentration by surface plasmon resonance-based bio-
sensing using parameter identification techniques. Anal. Biochem. 419, 140–144. https:// doi. org/ 10. 1016/j. ab. 2011. 08. 051 (2011).

 31. Biacore. Biacore T100 Software Handbook Uppsala, Sweden, 2006.
 32. Evans, N. D. et al. Structural identifiability of surface binding reactions involving heterogeneous analyte: Application to surface 

plasmon resonance experiments. Automatica 49, 48–57. https:// doi. org/ 10. 1016/j. autom atica. 2012. 09. 015 (2013).
 33. Supuran, C. T. How many carbonic anhydrase inhibition mechanisms exist?. J. Enzyme Inhib. Med. Chem. 31, 345–360. https:// 

doi. org/ 10. 3109/ 14756 366. 2015. 11220 01 (2016).
 34. Chavane, N., Jacquemart, R., Hoemann, C. D., Jolicoeur, M. & De Crescenzo, G. At-line quantification of bioactive antibody in 

bioreactor by surface plasmon resonance using epitope detection. Anal. Biochem. 378, 158–165. https:// doi. org/ 10. 1016/j. ab. 2008. 
04. 019 (2008).

 35. Jacquemart, R. et al. At-line monitoring of bioreactor protein production by surface plasmon resonance. Biotechnol. Bioeng. 100, 
184–188. https:// doi. org/ 10. 1002/ bit. 21725 (2008).

 36. Karlsson, R. Biosensor binding data and its applicability to the determination of active concentration. Biophys. Rev. 8, 347–358. 
https:// doi. org/ 10. 1007/ s12551- 016- 0219-5 (2016).

 37. Wieland, F.-G., Hauber, A. L., Rosenblatt, M., Tönsing, C. & Timmer, J. On structural and practical identifiability. Curr. Opin. Syst. 
Biol. 25, 60–69. https:// doi. org/ 10. 1016/j. coisb. 2021. 03. 005 (2021).

 38. Raue, A. et al. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile 
likelihood. Bioinformatics 25, 1923–1929. https:// doi. org/ 10. 1093/ bioin forma tics/ btp358 (2009).

 39. Davis, T. M. & Wilson, W. D. Determination of the refractive index increments of small molecules for correction of surface plasmon 
resonance data. Anal. Biochem. 284, 348–353. https:// doi. org/ 10. 1006/ abio. 2000. 4726 (2000).

 40. Nakajima, H. et al. Kinetic Analysis of Binding between Shiga Toxin and Receptor Glycolipid Gb3Cer by Surface Plasmon Reso-
nance*. J. Biol. Chem. 276, 42915–42922. https:// doi. org/ 10. 1074/ jbc. M1060 15200 (2001).

https://doi.org/10.1039/C3CP50281C
https://doi.org/10.3390/bios8030080
https://doi.org/10.1002/(sici)1099-1352(199909/10)12:5%3c279::Aid-jmr473%3e3.0.Co;2-3
https://doi.org/10.1002/(sici)1099-1352(199909/10)12:5%3c279::Aid-jmr473%3e3.0.Co;2-3
https://doi.org/10.1002/jmr.745
https://doi.org/10.1016/j.ab.2005.09.034
https://doi.org/10.1002/jmr.894
https://doi.org/10.1002/jmr.2172
https://doi.org/10.1002/jmr.2358
https://doi.org/10.1038/srep15855
https://doi.org/10.1080/17415977.2017.1411912
https://doi.org/10.1021/acs.analchem.8b00504
https://doi.org/10.1021/acs.analchem.8b00504
https://doi.org/10.1038/s41598-021-83268-z
https://doi.org/10.1021/op500261y
https://doi.org/10.1016/j.ejpb.2019.12.007
https://doi.org/10.1016/j.ejpb.2019.12.007
https://doi.org/10.1016/j.ijpharm.2017.06.039
https://doi.org/10.1016/j.ijpharm.2017.06.039
https://doi.org/10.3390/pr9111996
https://doi.org/10.1016/j.jmb.2004.01.007
https://doi.org/10.1093/glycob/cwl057
https://doi.org/10.1093/glycob/cwl057
https://doi.org/10.1093/glycob/cwn110
https://doi.org/10.1080/19420862.2016.1218586
https://doi.org/10.1021/acschembio.8b00342
https://doi.org/10.1021/acschembio.8b00342
https://doi.org/10.1080/19420862.2019.1581017
https://doi.org/10.1016/j.molimm.2020.03.010
https://doi.org/10.3390/ijms22126616
https://doi.org/10.1110/ps.4330102
https://doi.org/10.1016/j.ab.2007.01.031
https://doi.org/10.1016/j.ab.2007.01.031
https://doi.org/10.1016/j.ab.2011.08.051
https://doi.org/10.1016/j.automatica.2012.09.015
https://doi.org/10.3109/14756366.2015.1122001
https://doi.org/10.3109/14756366.2015.1122001
https://doi.org/10.1016/j.ab.2008.04.019
https://doi.org/10.1016/j.ab.2008.04.019
https://doi.org/10.1002/bit.21725
https://doi.org/10.1007/s12551-016-0219-5
https://doi.org/10.1016/j.coisb.2021.03.005
https://doi.org/10.1093/bioinformatics/btp358
https://doi.org/10.1006/abio.2000.4726
https://doi.org/10.1074/jbc.M106015200


25

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14401  | https://doi.org/10.1038/s41598-022-18450-y

www.nature.com/scientificreports/

 41. Pearson, J. T. et al. Surface Plasmon Resonance Analysis of Antifungal Azoles Binding to CYP3A4 with Kinetic Resolution of 
Multiple Binding Orientations. Biochemistry 45, 6341–6353. https:// doi. org/ 10. 1021/ bi060 0042 (2006).

 42. Perlmann, G. E. & Longsworth, L. G. The Specific Refractive Increment of Some Purified Proteins. J. Am. Chem. Soc. 70, 2719–2724. 
https:// doi. org/ 10. 1021/ ja011 88a027 (1948).

 43. Zhao, H., Brown, P. H. & Schuck, P. On the distribution of protein refractive index increments. Biophys J 100, 2309–2317. https:// 
doi. org/ 10. 1016/j. bpj. 2011. 03. 004 (2011).

 44. Tan, C.-Y. & Huang, Y.-X. Dependence of Refractive Index on Concentration and Temperature in Electrolyte Solution, Polar 
Solution, Nonpolar Solution, and Protein Solution. J. Chem. Eng. Data 60, 2827–2833. https:// doi. org/ 10. 1021/ acs. jced. 5b000 18 
(2015).

 45. Hossler, P., Khattak, S. F. & Li, Z. J. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19, 
936–949. https:// doi. org/ 10. 1093/ glycob/ cwp079 (2009).

 46. Yamane-Ohnuki, N. et al. Establishment of FUT8 knockout Chinese hamster ovary cells: An ideal host cell line for producing 
completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol. Bioeng. 87, 614–622. 
https:// doi. org/ 10. 1002/ bit. 20151 (2004).

 47. Pol, E. et al. Evaluation of calibration-free concentration analysis provided by Biacore™ systems. Anal Biochem 510, 88–97. https:// 
doi. org/ 10. 1016/j. ab. 2016. 07. 009 (2016).

 48. Goldstein, B., Coombs, D., He, X., Pineda, A. R. & Wofsy, C. The influence of transport on the kinetics of binding to surface 
receptors: application to cells and BIAcore. J. Mol. Recognit.: JMR 12, 293–299. https:// doi. org/ 10. 1002/ (sici) 1099- 1352(199909/ 
10) 12:5% 3c293:: Aid- jmr472% 3e3.0. Co;2-m (1999).

 49. Christensen, L. L. Theoretical analysis of protein concentration determination using biosensor technology under conditions of 
partial mass transport limitation. Anal. Biochem. 249, 153–164. https:// doi. org/ 10. 1006/ abio. 1997. 2182 (1997).

 50. Mason, T., Pineda, A. R., Wofsy, C. & Goldstein, B. Effective rate models for the analysis of transport-dependent biosensor data. 
Math Biosci 159, 123–144. https:// doi. org/ 10. 1016/ s0025- 5564(99) 00023-1 (1999).

Acknowledgements
This work was supported by the Natural Sciences and Engineering Research Council of Canada (stipends allo-
cated to JG including one from the PrEEmiuM CREATE program). This work was supported by the TransMed-
Tech Institute (NanoBio Technology Platform) and its main funding partner, the Canada First Research Excel-
lence Fund. The authors would like to thank Romane Oliverio, Benjamin Serafin, Benoît Liberelle and Catherine 
Forest-Nault for fruitful discussions and revisions during the writing of the manuscript.

Author contributions
J.G. performed all experiments and data analysis, Y.D. provided mentorship, O.H. and G.D.C contributed equally 
to the supervision of this work. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 18450-y.

Correspondence and requests for materials should be addressed to O.H. or G.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1021/bi0600042
https://doi.org/10.1021/ja01188a027
https://doi.org/10.1016/j.bpj.2011.03.004
https://doi.org/10.1016/j.bpj.2011.03.004
https://doi.org/10.1021/acs.jced.5b00018
https://doi.org/10.1093/glycob/cwp079
https://doi.org/10.1002/bit.20151
https://doi.org/10.1016/j.ab.2016.07.009
https://doi.org/10.1016/j.ab.2016.07.009
https://doi.org/10.1002/(sici)1099-1352(199909/10)12:5%3c293::Aid-jmr472%3e3.0.Co;2-m
https://doi.org/10.1002/(sici)1099-1352(199909/10)12:5%3c293::Aid-jmr472%3e3.0.Co;2-m
https://doi.org/10.1006/abio.1997.2182
https://doi.org/10.1016/s0025-5564(99)00023-1
https://doi.org/10.1038/s41598-022-18450-y
https://doi.org/10.1038/s41598-022-18450-y
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Multi-temperature experiments to ease analysis of heterogeneous binder solutions by surface plasmon resonance biosensing
	Materials and methods
	Materials. 
	Biosensor surface preparation. 
	SPR experiments. 
	Analyte preparation. 
	Single-analyte experiments. 
	Multiple-analyte experiments. 
	Furosemide standard injections. 
	Data Analysis. 


	Theory
	Multi-Analyte SPR Model. 
	Eyring Equation. 
	Contribution to the SPR response at equilibrium. 
	Analysis of multiple mixtures. 
	Analysis of multiple injection temperatures. 
	Response during the dissociation phase. 

	Algorithm. 
	First part: optimization over the dissociation phase. 
	Parameters to identify. 
	Required data. 
	Objective function. 
	Identification of the maximum response amplitude for each analyte. 
	Affinity of each analyte at each temperature. 
	Association rate of each analyte at each temperature. 

	Second part: optimization over the whole sensorgrams. 
	Final estimates. 
	Thermodynamic parameters estimates. 


	Composition estimation. 
	Composition estimation with unknown total concentration. 
	First part: optimization over the dissociation phase. 

	Second part: optimization over the whole sensorgrams. 


	Results
	Parameter identification. 
	Parameter identification with three mixtures. 
	Importance of the initial estimates for parameter identification. 
	Parameter identification with two mixtures. 

	Mixture composition and concentration estimation. 
	Choice of injection temperature. 

	Composition and concentration estimation on real sensorgram data. 
	Analyte pooling for partial composition assessment. 

	Discussion
	Conclusion
	References
	Acknowledgements


