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A lightweight hybrid deep learning 
system for cardiac valvular disease 
classification
Yazan Al‑Issa1 & Ali Mohammad Alqudah2*

Cardiovascular diseases (CVDs) are a prominent cause of death globally. The introduction of 
medical big data and Artificial Intelligence (AI) technology encouraged the effort to develop and 
deploy deep learning models for distinguishing heart sound abnormalities. These systems employ 
phonocardiogram (PCG) signals because of their lack of sophistication and cost-effectiveness. 
Automated and early diagnosis of cardiovascular diseases (CVDs) helps alleviate deadly complications. 
In this research, a cardiac diagnostic system that combined CNN and LSTM components was 
developed, it uses phonocardiogram (PCG) signals, and utilizes either augmented or non-augmented 
datasets. The proposed model discriminates five heart valvular conditions, namely normal, Aortic 
Stenosis (AS), Mitral Regurgitation (MR), Mitral Stenosis (MS), and Mitral Valve Prolapse (MVP). The 
findings demonstrate that the suggested end-to-end architecture yields outstanding performance 
concerning all important evaluation metrics. For the five classes problem using the open heart sound 
dataset, accuracy was 98.5%, F1-score was 98.501%, and Area Under the Curve (AUC) was 0.9978 for 
the non-augmented dataset and accuracy was 99.87%, F1-score was 99.87%, and AUC was 0.9985 for 
the augmented dataset. Model performance was further evaluated using the PhysioNet/Computing in 
Cardiology 2016 challenge dataset, for the two classes problem, accuracy was 93.76%, F1-score was 
85.59%, and AUC was 0.9505. The achieved results show that the proposed system outperforms all 
previous works that use the same audio signal databases. In the future, the findings will help build a 
multimodal structure that uses both PCG and ECG signals.

Cardiovascular diseases (CVD) are a leading cause of death and they claimed the lives of 18 million people in 
2015 worldwide1,2. They are caused primarily by high blood pressure, tobacco, diabetes, lack of exercise, and 
obesity1. The heart is a vital body organ, a mechanical device, and any abnormality is reflected in the heart 
sound and propagates through the chest wall. A lot of information about overall heart health can be obtained 
using conventional methods that collect different heart sounds using a stethoscope. The problem with classical 
methods is that they are subjective and various physicians might have different interpretations. Needless to say, 
misdiagnosing heart irregularities can be fatal since remedying risk factors can prevent 90% of heart disorders3.

As a result, early and quick detection of heart problems is critical in eliminating serious complications. The 
heart is made up of four chambers, there are four heart valves, the aortic, and the mitral on the left heart, and 
the pulmonary and tricuspid on the right heart. The main function of the valves is to regulate the blood flow in 
the circulatory system. Heart Valvular Disease (HVD) is a type of cardiovascular disease that results from the 
blocking, hardening, or malfunctioning of the heart valves and this can be caused by aging, dysplasia, calcific 
disease, inflammatory disorders, and connective tissue disorders4.

The main consequence of a heart valve defect is “stenosis” described as a narrowing of the heart valve prevent-
ing blood discharge. Another consequence is “regurgitation” illustrated by the inability of the valve to prevent 
blood backflow5. The common signs of a damaged heart valve are fatigue, palpitations, shortness of breath, 
weakness, fainting, and chest pain6. Recognizing the warning signs early can help prevent a heart attack or stroke.

A healthy human heart generates a unique murmur, any irregularity is reflected in this sound and can be 
easily picked up using a stethoscope. Over the years much effort was spent to construct an automatic cardiac 
diagnostic system that employs machine and deep learning techniques and uses Phonocardiograms (PCGs)7. 
Besides heart sounds different other modalities like Electrocardiograms (ECG), Computed Tomography (CT), 
and Magnetic Resonance Imaging (MRI) are being used for the effective screening of heart abnormalities. The 
widespread use of auscultation is a result of it being a simple, cost-effective, non-invasive, and reliable tool for 
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detecting heart anomalies. Phonocardiograms (PCGs) can help physicians visualize the waveform generated by 
the heart and can use it to manually extract features that are correlated with different heart conditions. Only a 
handful of scholars tried to solve the two-class (normal vs. abnormal) problem8–10, while numerous researchers 
attempted to solve the five-class problems11–20.

The purpose of this study is to investigate the efficiency of using Deep Learning (DL) techniques, particularly 
Convolutional Neural Networks (CNN) to discriminate between different heart valvular anomalies. A light car-
diac diagnostic system trained using the original unfiltered phonocardiograms (PCG) obtained from publicly 
available datasets12,13 is built. The hybrid model is proposed that combines the use of Convolutional Neural 
Network (CNN) and Long Short-Term Memory (LSTM). The CNN is used for automatic feature extraction 
whereas the LSTM is used for classification purposes. The study distinguishes normal and abnormal instances 
(binary), it also discriminates between five categories (multiclass) of heart valvular conditions, namely normal, 
Aortic Stenosis (AS), Mitral Regurgitation (MR), Mitral Stenosis (MS), and Mitral Valve Prolapse (MVP) in a 
non-invasive manner. Ultimately a light reliable embedded system will be built to help cardiologists in under-
developed areas make the right decision quickly.

In summary, this study proposed light and intelligent system that uses deep learning for classifying heart 
valve disorders. The proposed system has been evaluated using augmented and non-augmented datasets of heart 
valve abnormalities. The major contributions of this study are as follows:

1.	 The use of a light CNN-LSTM model.
2.	 The use of augmented datasets for training and building a robust model.
3.	 The first to apply the CNN-LSTM architecture to discriminate heart valvular disorders.
4.	 Comparing the use of time domain and frequency domain inputs on the proposed model performance.
5.	 Comparing different deep learning models, the CNN model, the LSTM model, and the combined CNN-

LSTM model.

The remainder of the paper is organized as follows. “Literature Review” section describes the related literature, 
and “Methods” section describes the dataset used in this study. “Results” section describes the proposed approach 
and the training procedure. “Discussion” section addresses the experimental findings, and finally, we conclude 
the article and outline the future research direction in the “Conclusions” section.

Literature Review
Multiple researchers sought to discriminate various cardiovascular diseases using heart sound recordings. Several 
researchers employed machine learning and deep learning methods, particularly Convolutional Neural Networks 
(CNN) to accomplish this task. Despite the significant achievements in this field, many limitations like the small 
size of data, inefficient training methods, and the unavailability of accurate models continue to hinder advance-
ments in this domain. The use of phonocardiogram (PCG) signals to detect cardiac abnormalities is the latest 
trend, some investigated publicly available datasets, while others used private in-house datasets. In this section, 
we survey the most recent and relevant heart sound classification literature.

In 2014, Sun et al.11 used a boundary curve diagnostic model that uses time and frequency features combined 
with a Support Vector Machine (SVM) classifier to diagnose the cardiac sounds, and distinguish between four 
cardiac problems with 94.7% accuracy. In 2018, Son and Kwon12 used Mel Frequency Cepstral Coefficients 
(MFCC) combined with Discrete Wavelet Transform (DWT) features as an input to the Support Vector Machine 
(SVM), Deep Neural Network (DNN), and K-Nearest Neighbor (KNN) classifiers, and they achieved an accu-
racy of 97.9%, 92.1%, and 97.4% respectively. In 2019, Alqudah13 classified nonsegmented heart sound signals 
using instantaneous frequency estimation statistical features. Principal Component Analysis (PCA) was used for 
dimensionality reduction, they achieved 91.6% for the K-Nearest Neighbor (KNN), and 94.8% for the Random 
Forest (RF) classifiers.

In 2020, Ghosh et al.14 used Deep Layer Kernel Sparse Representation Network (DLKSRN) classifier for the 
detection of different heart valve diseases using time–frequency representation of PCG recordings. Nonlinear 
features like L1-norm (LN), Sample Entropy (SEN), and Permutation Entropy (PEN) were extracted from the 
time–frequency matrix of the PCG recording, and they achieved a 99.24% accuracy. Alqudah et al.15 used AOCT-
Net architecture to discriminate between five different cardiovascular diseases using full bispectrum analysis of 
heart sound recordings and adaptive momentum optimization technique. They achieved a 98.7% accuracy for full 
images, and 96.1% for contour images. Ghosh et al.16 used the chirplet transform of the PCG cycle to propose a 
multiclass composite classifier that uses Local Energy (LEN) and Local Entropy (LENT) features extracted from 
the PCG signal in the time–frequency domain. They achieved 98.33% accuracy in discriminating between all four 
Valvular Heart Diseases (VHD) classes. Baghel et al.17 developed an automated system with low time complexity 
to discriminate various cardiac valve disorders from phonocardiograms using a Convolutional Neural Network 
(CNN). They used data augmentation, and a Gaussian filter for noise removal, the suggested model achieved 
an accuracy of 98.6% with augmented data, and 96.23% without data augmentation. Oh et al.18 classified heart 
sounds using a novel WaveNet model and achieved a 94% accuracy. They used 1000 PCG with 200 recordings 
per category, the model was validated using tenfold cross-validation and classified phonocardiogram (PCG) 
into five different classes.

In 2021, Alkhodari et al.19 utilized a CNN-BiLSTM network to discriminate five Valvular Heart Diseases 
(VHD) using phonocardiogram (PCG) recordings. The data were normalized and preprocessed using Maxi-
mum Overlap Discrete Wavelet Transform (MODWT), they achieved 99.32% accuracy, 0.998 Area Under the 
Curve (AUC), and 98.3 F1-score with tenfold cross-validation. Samiul Based Shuvo et al.20 developed a novel 
CardioXNet end-to-end architecture, based on a lightweight CRNN structure to discriminate the five Valvular 
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Heart Diseases (VHD). The proposed architecture was fully automated and consisted of two-phase learning, the 
representation, and sequence residual learning phases, they achieved the highest reported accuracy of 99.6%, 
and a 99.4 F1 score.

Methods
The main objective of this research is to develop a new deep learning model based on the CNN-LSTM architec-
ture to reliably distinguish heart sounds (binary and multi-class classifications). Figure 1 shows the block diagram 
of the proposed methodology, the following sub-sections describe in detail; the used datasets, the proposed 
methodology, and the performance metrics utilized to evaluate the suggested method.

Datasets.  The model was trained using the publicly available open heart sounds dataset12. The dataset con-
tains 1000 audio clips gathered from various sources; the duration of each recording is nearly 3 s. As shown in 
Table 1, the data is divided into five categories with 200 clips in each category. The recordings are in *.wav audio 
format, were sampled at 8000 Hz, and converted to a mono channel format. The dataset contains five main classes 
which are the normal (N), aortic stenosis (AS), mitral stenosis (VS), mitral regurgitation (MR), and mitral valve 

Figure 1.   Block diagram of the proposed methodology.

Table 1.   The details of the primary dataset before augmentation.

Class Number of records

Normal 200

AS 200

MS 200

MVP 200

MR 200
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prolapse (MVP). Table 1 summarizes the dataset being used, and Fig. 2 shows samples of different heart valve 
signals from the first dataset. All methods were performed following the relevant guidelines and regulations.

PhysioNet/Computing in Cardiology Challenge 2016 was the second dataset utilized in this research to fur-
ther examine the suggested model13. This dataset contains normal and abnormal classes only, all records have a 
sampling frequency of 2000 Hz and were converted to a mono channel format. Table 2 summarizes the dataset 
being used, and Fig. 3 shows samples of different heart valve signals from the second dataset. All methods were 
performed following the relevant guidelines and regulations.

Figure 2.   Sample PCG records from the first dataset.

Table 2.   The details of the second dataset.

Class Number of records

Normal 2725

Abnormal 816

Figure 3.   Sample PCG records from the second dataset.
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Fast Fourier transform (FFT).  A fast Fourier transform (FFT) is a method that computes a signal’s dis-
crete Fourier transform (DFT) or its inverse (IDFT). Fourier analysis transforms a signal from its native time 
domain to a frequency domain representation and vice versa. Decomposing a series of values into components 
with various frequencies yields the DFT21. Computing this operation straight from the definition is frequently 
too slow, by dividing the DFT matrix into a product of sparse elements, an FFT can perform such modifications 
quickly22. The performance difference can be substantial, especially for large data sets with N in the hundreds of 
millions23. Fast Fourier transformations are commonly utilized in engineering, music, science, and mathemat-
ics. Although the fundamental principles were popularized in 1965, several algorithms had been developed as 
early as 1805. Gilbert Strang referred to the FFT as "the most important numerical algorithm of our lifetime" in 
1994, and it was named one of the IEEE journal Computing in Science & Engineering’s Top 10 Algorithms of the 
20th Century24. In this paper, the Fourier transform of PCG signals was clipped to contain only 350 Hz from the 
4000 Hz spectrum; this is because the major components are in this frequency range16. Figure 4 shows the whole 
spectrum of five different PCG signals.

Down sampling.  Earlier studies16,25 show that the maximum frequency component content in the PCG 
signal is around 300 Hz, accordingly, the selected down sampling frequency of 1 kHz is sufficient to represent 
the PCG intrinsic data. To make the classification process faster and more accurate, each PCG record in the first 
dataset is downsampled by a factor of 8, and each PCG record in the second dataset is downsampled by a factor 
of 2. These factors were obtained from previous studies like16,26, and27, and they are sufficient to describe the 
frequency content of the whole signal. Figure 4 shows that the highest frequency content is 500 Hz in all heart 
conditions.

Data augmentation.  Data augmentation is a popular technique used to artificially enlarge the size of a 
given dataset27. In general, augmentation attempts to generate various versions of the audio clips by applying 
diverse enlargement techniques28. Moreover, training deep learning systems on large datasets makes them more 
skillful at dealing with different version of inputs that resemble real-life inputs, as a result, the augmentation 
techniques creates a variation in the audio files that results in a better overall performance29,30. Similar to images, 
there are several techniques to augment audio signals, and these techniques are usually applied to the raw audio 
signals30,31. Table 3 summarizes the primary dataset after augmentation. In this research, the following audio 
augmentation techniques were applied:

•	 Time stretch: randomly slow down or speed up the sound.
•	 Time shift: shift audio to the left or the right by a random amount.

Figure 4.   The frequency content of five PCG classes.

Table 3.   The details of the primary dataset after augmentation.

Class Number of records

Normal 3000

AS 3000

MS 3000

MVP 3000

MR 3000
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•	 Add noise: add some random values to the sound.
•	 Control volume: randomly increasing or decreasing the volume of the audio.

Deep learning CNN‑LSTM model.  Deep learning is the most recent and cutting-edge machine learning 
method employed in response to the expanding number of large datasets32–36. Deep learning is based on and 
inspired by the deep structure of the human brain37,38. The architecture of the human brain has a huge number 
of hidden layers, allowing us to extract and abstract deep information at different levels and from different per-
spectives. Deep learning is concerned with the development of a specialized architecture comprised of multiple 
and sequential layers in which successive phases of input processing are conducted38. A plethora of deep learn-
ing structures have been proposed in recent years34,39, Convolutional Neural Network (CNN)39,40,41 and Long 
Short-Term Memory (LSTM)42–45 are the most known, widely used, and efficient deep learning algorithms. The 
proposed hybrid CNN-LSTM model is described in Fig. 5. Deep feature extraction and selection from the PCG 
signals are handled by CNN blocks, particularly the 1D convolutional layers, the batch normalization layers, the 
ReLU layers, and the max-pooling layers. Whilst the LSTM module extracts contextual time data after being fed 
these qualities as time-dependent features46. Studies suggest that deep feature extraction and classification using 
a hybrid 1D CNN-LSTM outperforms single CNN or LSTM-based approaches47,48. Furthermore, utilizing the 
LSTM component produce a richer and more concentrated model compared to the pure CNN models, result-
ing in higher performance with fewer parameters. Table 4 shows the detailed description of the layers in the 
proposed CNN-LSTM architecture.

Ablation study.  The goal of this section is to explore what makes our model light and different from other 
models. In this section, we study the robustness of the network performance against the structural changes 
caused by ablations, as some layers are removed or added49. The ablation study removed the LSTM and CNN 
components from the model and analyzed the effect of removing them on the model performance. The ablations 
to the suggested CNN-LSTM model had both negative and positive effects on the classification performance49. 
The greater the number of ablated layers, the more powerful the impact on performance. The study found that 
various layers have various impacts on classification performance50. Finally, the ablation study concluded that 
the performance of the proposed CNN-LSTM model is higher than any single model and this combination of 
components resulted in the highest performance ever.

Model evaluation.  In general, evaluating any machine learning or deep learning model is a challenging 
task due to varying dataset sizes. Typically, machine learning engineers divide the data into training and test-
ing sets with different ratios, they use the training set to train the model and the testing set to assess the model. 
Although this validation technique is appropriate when the dataset is large, it is not reliable because the accuracy 
obtained for one test set can be very different from the accuracy obtained using another35,43. The K-fold Cross-
Validation provides an ideal answer to this problem, the solution is to divide the data into folds ensuring that 
each fold serves as a testing set at some point. In this study, tenfold cross-validation was used to evaluate the 
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Normaliza�on 1 ReLU 1 Max Pooling 1

Conv 2 Batch 
Normaliza�on 2 ReLU 2 Max Pooling 2 Conv 3

Batch 
Normaliza�on 3 ReLU 3 Conv 4 Batch 

Normaliza�on 4 ReLU 4

Max Pooling 3 Fla�en Layer LSTM 1 LSTM 2 Fully Connected
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Figure 5.   The proposed CNN-LSTM Model.
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model, it guarantees that the model generalized properly, and it also helps prevent overfitting. Finally, different 
performance metrics were calculated to evaluate the performance of the proposed model34,43. Figure 6 illustrates 
the k-fold cross-validation methodology.

Performance metrics.  To evaluate the performance of the proposed methodology in classifying heart valve 
anomalies, the confusion matrix for the binary classification and multi-class classification (with and without 
augmentation) tasks were calculated. The outcomes of the CNN-LSTM model were compared to the corre-
sponding label of the original PCG signal16. Using the resulting confusion matrix, four statistical indices were 
calculated and utilized to measure the performance of the suggested system, namely True Positive (TP), False 
Positive (FP), False Negative (FN), and True Negative (TN). Based on these statistical values, accuracy, sensitiv-
ity, specificity, and the F1-Score metrics were calculated.

Table 4.   The proposed CNN-LSTM architecture.

Layer number Layer name Layer description

1 1D input Size 8000 for time input and 1000 for FFT input

2 Conv 1 Number of filters: 48; kernel size: 3 × 1

3 Batch normalization 1 Number of channels: 48

4 ReLU 1 –

5 Max pooling 1 Kernel size: 2 × 1; stride: 2

6 Conv 2 Number of filters: 32; kernel size: 3 × 1

7 Batch normalization 2 Number of channels: 32

8 ReLU 2 –

9 Max pooling 2 Kernel size: 2 × 1; stride: 2

10 Conv 3 Number of filters: 16; kernel size: 3 × 1

11 Batch normalization 3 Number of channels: 16

12 ReLU 3 –

13 Conv 4 Number of filters: 64; kernel size: 3 × 1

14 Batch normalization 4 Number of channels: 64

15 ReLU 4 –

16 Max pooling 3 Kernel size: 2 × 1; stride: 2

17 Flatten layer –

18 LSTM 1 Number of hidden units: 64

19 LSTM 2 Number of hidden units: 32

20 Fully connected Output: 5

21 Softmax –

22 Classification –

Figure 6.   Block diagram of K-fold cross-validation.
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To further evaluate the proposed CNN-LSTM model performance, the Receiver Operating Characteristics 
(ROC) curve was generated, and Area Under Curve (AUC) was also calculated to give a quantitative estimation.

Results
In this section, the effectiveness of the proposed CNN-LSTM Model is evaluated using several performance 
metrics. As explained, the suggested CNN-LSTM model is the result of employing extensive ablation studies 
using single CNN and LSTM models. All the experiments were conducted on a desktop computer that runs 
Microsoft Windows, utilizes an Intel Core i7-6700/3.4 GHz processor, 16 GB of RAM, and a 500 GB hard disk 
drive (HDD). The tenfold methodology was used to test the proposed model, and one of the 9 folds used for 
training was used as validation during the cross-validation process. the Adam optimizer, and the cross-entropy 
loss function37,38 were employed for each loss function. The following sections will illustrate the results of the 
ablation study together with the proposed model.

Ablation study.  The ablation study conducts various element changes in the base architecture, the cross-
validation accuracy is calculated for each experimental configuration, and the results are reported. In the first 
case study, we use the CNN model without any LSTM layers, while in the second case study, we use the LSTM 
model without any CNN layers. Figure 7 shows the two suggested model architectures.

Both models were evaluated using the augmented and non-augmented datasets, the tenfold cross-validation 
methodology was used to test the proposed models, the Adam optimizer, and the cross-entropy loss function37,38 
were employed for each loss function. Using an initial learning rate of 0.001, the suggested models were trained 
for 100 max epochs per fold. The combination of these hyperparameters resulted in the best performance for 
each model. Table 5 shows the performance metrics of the models in the ablation study while Fig. 8 shows the 
average training and loss curves among all folds of different models.

(1)Accuracy =
TP+ TN

TP+ FP+ TN+ FN

(2)Sensitivity =
TP

TP+ FN

(3)Specificity =
TN

TN+ FP

(4)Precision =
TP

FP+ TP

(5)F1-Score = 2 ∗
Precision ∗ Sensitivity

Precision+ Sensitivity

(A) (B)

1D Input Conv 1 Batch 
Normaliza�on 1 ReLU 1

Max 
Pooling 1Conv 2Batch 

Normaliza�on 2ReLU 2

Max 
Pooling 2 Conv 3 Batch 

Normaliza�on 3 ReLU 3

Conv 4Batch 
Normaliza�on 4ReLU 4Max 

Pooling 3

Fully 
Connected So�max Classifica�on

1D Input LSTM 1

LSTM 2Fully 
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Figure 7.   (A) CNN and (B) LSTM model architectures.
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After completing the ablation studies on the two basic models (CNN and the LSTM), the proposed CNN-
LSTM model is constructed by combining both of these models, and a significant improvement in classification 
performance was observed. The configuration of the CNN-LSTM model will be discussed in the next section.

Proposed CNN‑LSTM model.  The initial learning rate was 0.001 for time domain inputs training and 
0.0001 for frequency domain inputs, using these values, the suggested architecture was trained for 100 max 
epochs per fold. Figures 9, 10, and 11 show the training accuracy and loss for all folds among non-augmented, 
augmented, and binary classification respectively.

The first part of Figs. 12, 13, 14 shows the five class confusion matrix using the non-augmented and augmented 
data respectively. The rows represent the actual class, whereas the columns represent the predicted class. In the 
case of non-augmented data, the accuracy is 98.5%, with a small number of incorrect classifications measured 
by the number of False Positives (FP) and False Negatives (FN) of 1.5%. For the augmented data, the accuracy 
is 99.9%, and the number of False Positives (FP) and False Negatives (FN) is 0.1%. It is clear from both figures 
that increasing the size of the dataset using different augmentation techniques increased accuracy by 1.4% to 
near 100% and lowered incorrect predictions by 1.4% to 0.1%.

The second part of Figs. 12, 13, 14 displays the Receiver Operating Characteristic (ROC) curves for the 
augmented and non-augmented data. The ROC is a visual way to represent the tradeoff between specificity and 
sensitivity, it plots the True Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold settings. 
It is obvious from both figures that the curve is close to the upper left corner indicating the excellent model diag-
nostic ability, it is also apparent from the figures that the Area Under the Curve (AUC) for the augmented data 
is slightly better than that of the non-augmented data. Figure 14 shows the confusion matrix, and the Receiver 
Operating Characteristic (ROC) curve for the binary (normal/abnormal) classification problem. Accuracy is 
93.8%, and Area Under the curve (AUC) is 0.9505 indicating high performance. The drop in accuracy between 
the binary and multiclass class problem can be attributed to the larger size of the PhysioNet/CinC 2016 challenge 
dataset (5878 vs. 1000 audio files).

In this paper, PCG signals were classified into 5 different classes using the augmented or the non-augmented 
version of the open heart sounds dataset or into two categories using the PhysioNet/CinC 2016 challenge dataset. 

Table 5.   Ablation study using different model architectures.

Dataset

Model

CNN only LSTM only

Non-augmented Augmented Non-augmented Augmented

Accuracy 94.60 97.96 50.70 71.07

Sensitivity 94.50 97.96 50.70 71.07

Specificity 98.63 99.94 87.68 92.77

Precision 94.54 97.96 53.69 71.75

F1-score 94.50 97.96 51.64 71.30

Figure 8.   The average training accuracy and loss curves of different folds for all models in the ablation study.
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The proposed CNN-LSTM architecture exhibited very high performance for all important metrics, it achieved 
near-perfect accuracy on the given datasets using 10-folds cross-validation. Tables 6, 7, and 8 show the accuracy, 
sensitivity, specificity, precision, and F1 scores for all experiments conducted. Figures 9, 10, and 11 show that the 
suggested model converged rapidly reaching 100% training accuracy quickly.

Table 9 shows the various performance metrics of the different examined datasets. For the non-augmented 
data, the accuracy was 98.5%, sensitivity was 98.5%, specificity was 99.625%, precision was 98.505%, F1-score 
was 98.5%, and Area Under the Curve (AUC) was 0.997. For the augmented data, the accuracy was 99.87%, 
sensitivity was 99.87%, specificity was 99.96%, precision was 99.87%, F1-score was 99.87%, and Area Under the 
Curve (AUC) was 0.998. For the binary dataset, the accuracy was 93.77%, sensitivity was 99.63%, specificity was 
92.42%, precision was 97.6%, F1-score was 85.52%, and Area Under the Curve (AUC) was 0.95. It is clear from 
the table that the augmented data outperforms the non-augmented data for all performance metrics. It is also 
noticeable that using the augmented data, the proposed hybrid model achieved a near 100% accuracy. Table 10 
displays the performance metrics obtained for each condition using the multiclass dataset. It is clear from the 
table that the suggested model exhibited very high precision and recall scores for all the tested classes.

Result of testing the proposed CNN‑LSTM model using FFT inputs.  To further investigate the 
performance of the proposed CNN-LSTM model, the suggested model was modified to accept inputs from 

Figure 9.   Non-augmented training accuracy and loss.

Figure 10.   Augmented training accuracy and loss.
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the frequency domain (FFT), as a result, the size of the input layer changed to [1000 × 1]. Table 11 shows the 
various performance metrics of the different examined datasets using the FFT-CNN-LSTM model. For the non-
augmented data, the accuracy was 95.40%, sensitivity was 95.40%, specificity was 98.85%, precision was 95.42%, 
F1-score was 95.41%, and Area Under the Curve (AUC) was 0.9963. For the augmented data, the accuracy was 
99.73%, sensitivity was 99.73%, specificity was 99.93%, precision was 99.73%, F1-score was 99.73%, and Area 
Under the Curve (AUC) was 0.9971. It is clear from the table that the use of augmented data was better than 
the use of non-augmented data for all performance metrics. It is also noticeable that using the augmented data, 
the proposed hybrid model achieved a near 100% accuracy. Figure 15 shows the training accuracy and loss for 
all folds among non-augmented, augmented, and binary datasets respectively. While Fig. 16 shows the non-
augmented, and binary datasets confusion matrix and ROC curves using the FFT-CNN-LSTM.

To evaluate if the deep features extracted using the proposed CNN-LSTM were significant, discriminant, 
and representative in the classification of different heart sounds, a scatter plot of the extracted deep features 
among five classes was drawn from the last fully connected layer of the proposed model. It can be noticed from 
Fig. 17 that the range of different extracted features among different classes was far off from each other, which 
means that the extracted features can be used successfully in the classification of heart valve diseases. Also, it 

Figure 11.   Binary dataset training accuracy and loss.

(A)                                     (B)
Figure 12.   (A) Non-augmented data model confusion matrix. (B) Receiver operating characteristic (ROC) 
curve.
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can be concluded from Fig. 17 that each extracted feature was representative of its class and that managed to 
discriminate it from other classes.

Discussion
Table 12 summarizes the performance metrics for the suggested model and compares it to the recent and relevant 
state-of-the-art literature. All the models in the table use the same open heart sounds dataset12 that this research 
used but for Sun et al.11. It is clear from the table that the proposed architecture outperforms all models for all 
important performance metrics. The accuracy of the new model is 99.87% which is 0.27% higher than the accu-
racy of the second-best model built by Shuvo et al.20 in 2021. It is also clear from Table 10 that augmenting the 
data has a positive impact since it improved accuracy by 1.37%. This result corroborates the findings obtained 
by Baghel et al.17 reported in 2020. In their case, augmenting the data improved model accuracy by 2.43%.

To further test the architecture generalization proficiency, the model was trained and tested on the widely 
used PhysioNet/CinC 2016 challenge dataset. Again, the raw data was used to train the new architecture; no data 

(A)                 (B)
Figure 13.   (A) Augmented data model confusion matrix. (B) Receiver operating characteristic (ROC) curve.

(A) (B) 
Figure 14.   (A) Binary classification data model confusion matrix. (B) Receiver operating characteristic (ROC) 
curve.
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filtering, denoising, or augmentation techniques were applied. The obtained results displayed in Table 13 show 
that the system succeeded in discriminating between normal and abnormal cases with 93.76% accuracy, 99.66% 
sensitivity, 92.42% specificity, and an average Area Under the Curve (AUC) of 0.9505. The findings show that 
the new system outperformed the previous state-of-the-art models for all performance metrics. The obtained 
accuracy is 6.45% higher than the 87.31% accuracy reported by Alkhodari et al. in 202119. The reason for the 
weak performance of the previous models can be attributed to the unbalanced nature of the PhysioNet/CinC 
2016 challenge dataset that uncovered model weaknesses in generalizing properly.

Table 6.   Results of tenfold cross-validation using non-augmented dataset.

Fold Accuracy Sensitivity Specificity Precision F1-Score

1 98.35 98.31 99.52 98.75 98.30

2 98.51 98.51 99.76 98.56 98.52

3 98.29 98.60 99.59 98.54 98.63

4 98.31 98.69 99.78 98.78 98.95

5 98.50 98.77 99.49 98.36 98.38

6 98.77 98.52 99.38 98.63 98.53

7 98.37 98.24 99.38 98.65 98.49

8 98.56 98.37 99.71 98.46 98.16

9 98.46 98.31 99.59 98.54 98.42

10 98.70 98.91 99.59 98.30 98.19

Mean 98.482 (± 0.16) 98.523 (± 0.22) 99.579 (± 0.14) 98.557 (± 0.15) 98.457 (± 0.23)

Table 7.   Results of tenfold cross-validation using augmented dataset.

Fold Accuracy Sensitivity Specificity Precision F1-Score

1 99.88 99.85 99.93 99.89 99.83

2 99.83 99.94 100.03 99.82 99.91

3 99.91 99.83 100.02 99.83 99.88

4 99.88 99.85 99.96 99.84 99.87

5 99.88 99.84 99.91 99.85 99.88

6 99.89 99.82 99.95 99.86 99.81

7 99.88 99.86 99.96 99.87 99.87

8 99.83 99.86 99.98 99.75 99.93

9 99.86 99.93 99.96 99.85 99.87

10 99.86 99.86 99.99 99.92 99.87

Mean 99.87 (± 0.03) 99.864 (± 0.04) 99.969 (± 0.04) 99.848 (± 0.05) 99.872 (± 0.03)

Table 8.   Results of tenfold cross-validation using binary dataset.

Fold Accuracy Sensitivity Specificity Precision F1-score

1 93.69 99.76 92.45 97.41 85.59

2 93.76 99.49 92.53 98.02 85.4

3 93.78 99.6 92.52 97.70 85.69

4 93.8 99.63 92.35 97.59 85.68

5 93.72 99.70 92.45 97.70 85.59

6 93.74 99.49 92.33 97.57 85.58

7 93.96 99.71 92.29 97.58 85.34

8 93.53 99.54 92.51 97.81 85.65

9 93.98 99.67 92.42 97.80 85.37

10 93.79 99.73 92.41 97.80 85.36

Mean 93.775 (± 0.13) 99.632 (± 0.1) 92.426 (± 0.08) 97.698 (± 0.17) 85.525 (± 0.14)
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The proposed model performed effectively on both datasets, and the accuracy obtained in this research is 
almost perfect (nearly 100%) which makes the suggested architecture dependable and trustworthy. To the best of 
our knowledge, this is the highest accuracy ever reported in the literature. This model will have a positive impact 
on public health, building an embedded mobile system using this model can help physicians in rural areas detect 
cardiovascular problems early, quickly, accurately, and cost-effectively. This will help alleviate fatal complications, 
remove interpretation subjectivity and variability, and will also improve the health situation in remote regions 
that lack expert doctors by helping novice doctors in these areas make the right decision.

Using the FFT input, the FFT-CNN-LSTM model performance was efficient using both datasets, and the 
accuracy obtained using the FFT-CNN-LSTM model was 99.73% which makes using the frequency domain input 
dependable and trustworthy. The accuracy obtained using the time domain input was 99.83% slightly higher 
than the accuracy obtained using the frequency domain input which is 99.73%. To further test the system learn-
ing capability using the FFT input, the model was trained and tested on the widely used PhysioNet/CinC 2016 
challenge dataset. Here, the raw data was used to train the new architecture; no preprocessing was applied. The 
system succeeded in discriminating between normal and abnormal cases with 90.65% accuracy, 99.00% sensitiv-
ity, 88.74% specificity, and an average Area Under the Curve (AUC) of 0.9367. This model also outperformed 
the state-of-the-art models for all performance metrics. The obtained accuracy is 3.34% higher than the 87.31% 
accuracy reported by Alkhodari et al. in 202119.

The main difference between the proposed CNN-LSTM and the CNN-BiLSTM model proposed by Alkhodari 
et al.19 is that our proposed model uses a smaller number of parameters (28,277) compared to the number of 
parameters used by Alkhodari et al.19 since they use two LSTM layers instead of a single LSTM, they also have 
a larger input size and more convolution filters. In addition, the proposed CNN-LSTM system is tested both in 
the time and frequency domains while other systems only use the time domain or frequency domain. Moreover, 
other methods including Alkhodari et al.19 performed several pre-processing techniques like z-score normaliza-
tion, smoothing, segmentation, and maximal overlap discrete wavelet transform (MODWT) while the proposed 
methodology performed downsampling only to decrease the number of samples to 8000 in the time domain and 

Table 9.   Comparison of the average performance metrics of different datasets.

Metric Non-augmented Augmented Binary

Accuracy 98.482 99.87 93.775

Sensitivity 98.523 99.864 99.632

Specificity 99.579 99.969 92.426

Precision 98.557 99.848 75.00

F1-score 98.457 99.872 85.525

AUC​ 0.9978 0.9985 0.9505

Table 10.   Comparison of the performance metrics of augmented and non-augmented datasets. Pre precision, 
Sen sensitivity, F1 F1-score.

Data

Non-augmented Augmented

Pre Sen F1 Pre Sen F1

AS 98 (± 0.2) 98 (± 0.2) 98 (± 0.2) 99.86 (± 0.0.01) 99.979 (± 0.0.01) 99.92 (± 0.0.01)

MR 97.51 (± 0.2) 98 (± 0.0.1) 97.75 (± 0.1) 99.87 (± 0.0.01) 99.87 (± 0.0.01) 99.87 (± 0.0.01)

MS 99.49 (± 0.05) 98 (± 0.2) 98.74 (± 0.2) 99.83 (± 0.0.01) 99.90 (± 0.0.01) 99.87 (± 0.0.01)

MVP 97.52 (± 0.2) 98.50 (± 0.1) 98.01 (± 0.1) 99.87 (± 0.0.01) 99.73 (± 0.0.01) 99.80 (± 0.0.01)

N 100 (± 0.0) 100 (± 0.0) 100 (± 0.0) 99.93 (± 0.0.01) 99.89 (± 0.0.01) 99.92 (± 0.0.01)

Table 11.   Comparison of the average performance metrics of different datasets.

Metrics Non-augmented Augmented Binary

Accuracy 95.40 99.73 90.65

Sensitivity 95.40 99.73 99.00

Specificity 98.85 99.93 88.74

Precision 95.42 99.73 66.74

F1-score 95.41 99.73 79.73

AUC​ 0.9963 0.9971 0.9367
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1000 samples in the frequency domain for the whole signal without segmentation. In total, all of these parameters 
make the proposed CNN-LSTM system lighter compared to other models proposed in the literature.

Since the proposed methodology was built and trained using a CPU-based system, not a GPU-based system, 
and to demonstrate that it is a lightweight model. The time consumption of FFT computation, CNN-LSTM using 
time domain input, and CNN-LSTM using frequency input was calculated for all datasets and the results are 
displayed in Table 14. Rapid classification and FFT computation, combined with the high accuracy obtained 

Figure 15.   Augmented training accuracy and loss; (A) for non-augmented dataset, (B) augmented dataset, (C) 
binary dataset.
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using all datasets, and the small number of layers used are considered the main advantages of the suggested 
methodology. The result is a lightweight model that can be implemented using embedded systems.

Figure 16.   (A) Non-Augmented confusion matrix, (B) non-augmented receiver operating characteristic (ROC) 
curve. (C) augmented confusion matrix, (D) augmented receiver operating characteristic (ROC) curve. (E) 
binary confusion matrix, (F) binary receiver operating characteristic (ROC) curve.
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Conclusions
Heart valvular irregularities are a major contributor to cardiovascular diseases (CVDs). This paper proposed an 
intelligent automatic heart diagnostic support system that uses phonocardiogram (PCG) signals. The model is 
hybrid and is comprised of a CNN module for feature extraction and an LSTM module for the classification of 
anomalies. For the multiclass problem using the open heart sounds dataset utilizing the time domain input, the 
end-to-end framework demonstrated state-of-the-art performance with 99.87% accuracy for augmented data and 
98.5% accuracy for non-augmented data outperforming all prior efforts. The results also showed that augment-
ing the data slightly improved model performance by 1.37%. For the binary class problem using the PhysioNet/
CinC 2016 challenge dataset, accuracy was 93.76%. On the other hand, utilizing the frequency domain input, 
the accuracy was 95.40% for non-augmented data and 99.73% for augmented data. The results also showed that 
augmenting the data improved model performance by 4.33%. For the binary class problem using the Physio-
Net/CinC 2016 challenge dataset, accuracy was 90.65%. In the future, ECG signals can be used alongside PCG 
signals to design a multimodal system to improve accuracy. Moreover, this near perfection accuracy will be 

Figure 17.   The extracted features from the last fully connected layer of the proposed model; (A) using features 
1, 2, and 3. (B) using features 2, 3, and 4. (C) using features 3, 4, and 5.
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used to build a lightweight system that will help doctors performing clinical diagnostics discriminate all four 
irregularities early and quickly.

Study limitations.  This study has several advantages, including the potential use of cardiac PCG record-
ings to aid in the clinical decision-making of heart valve health. In addition to providing the highest levels of 
performance, the system was designed to be as simple as possible. The suggested model is easy to use, and it does 
not involve any modifications of the input signals. Despite the model’s strong performance in categorizing heart 
valve disorders, it is critical to evaluate the suggested model using a wide variety of datasets that include more 
classes and records. While achieving a high level of discrimination using a simple deep neural network design, 
we may be able to improve the model’s performance even further.

Table 12.   Comparison between related work and the proposed method using the open heart sounds dataset.

Reference Method Acc Sen Spe AUC​

Sun et al.11 Time–frequency domain with SVM 94.8 – – –

Son and Kwon12

SVM 97.9 98.2 99.4 –

DNN 92.1 94.5 98.2 –

KNN 97.4 97.6 98.8 –

Alqudah et al.13
RF 94.8 94.78

– –
KNN 91.6 91.5

Ghosh et al.14 DLKSRN classifier 99.24 – – –

Alqudah et al.15 CNN with bispectrum images
Full images 98.7 98.7 – –

Contour images 97.1 97.1 – –

Ghosh et al.16 Multiclass composite classifier 98.33 98.33 – –

Baghel et al.17 CNN
Augmentation 98.6

– – –
Without augmentation 96.23

Oh et al.18 WaveNet architecture 94 92.5 98.1 –

Alkhodari et al.19 CNN-BiLSTM 99.32 98.3 99.58 0.9980

Samiul based Shuvo et al.20 CRNN 99.60 99.52 – –

Suggested model

CNN + LSTM in time domain

With augmentation 99.87 99.864 99.969 0.999

Without augmentation 98.482 98.523 99.579 0.998

Binary classes 93.775 99.632 92.426 0.951

CNN + LSTM in frequency domain

With augmentation 99.73 99.73 99.93 0.997

Without augmentation 95.40 95.40 98.85 0.996

Binary classes 90.65 99.00 88.74 93.67

Table 13.   Comparison between related work and the proposed method using PhysioNet/CinC 2016 challenge 
dataset.

Authors Method Acc Sen Spe AUC​ F1-score

Alkhodari et al.19 CNN-BiLSTM 87.31 92.78 79.48 0.900 –

Samiul based Shuvo et al.20 CRNN 86.57 90.33 – – 91.78

Suggested model
Time domain CNN + LSTM 93.775 99.632 92.426 0.951 85.525

Frequency domain CNN + LSTM 90.65 99.00 88.74 0.9367 79.73

Table 14.   Time consumption of the proposed methodology.

Dataset

Process time (millisecond)

FFT computation CNN-LSTM FFT-CNN-LSTM

Multi classes dataset 1.0217 1.6283 1.9569

Augmented multi classes dataset 1.0423 1.8627 2.5631

Binary dataset 0.9468 1.6279 1.8964

Augmented binary dataset 1.0101 1.6752 2.1291

Average 1.005225 1.6985 2.136375
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Future study.  In the future, we will focus on how to handle the sounds of more classes and extend the model 
to predict other heart diseases other than valvular ones. In addition, we will focus on implementing the sug-
gested light model using embedded systems for the real-time prediction of diseases.

Data availability
The datasets generated and/or analyzed during the current study are available on GitHub (https://​github.​com/​
yasee​n21kh​an/​Class​ifica​tion-​of-​Heart-​Sound-​Signal-​Using-​Multi​ple-​Featu​res-/​blob/​master/​README.​md) and 
PhysioNet (https://​archi​ve.​physi​onet.​org/​pn3/​chall​enge/​2016/) repositories.
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