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Identification of key candidate 
genes for IgA nephropathy using 
machine learning and statistics 
based bioinformatics models
Md. Al Mehedi Hasan1, Md. Maniruzzaman1,2 & Jungpil Shin1*

Immunoglobulin-A-nephropathy (IgAN) is a kidney disease caused by the accumulation of IgAN 
deposits in the kidneys, which causes inflammation and damage to the kidney tissues. Various 
bioinformatics analysis-based approaches are widely used to predict novel candidate genes and 
pathways associated with IgAN. However, there is still some scope to clearly explore the molecular 
mechanisms and causes of IgAN development and progression. Therefore, the present study aimed to 
identify key candidate genes for IgAN using machine learning (ML) and statistics-based bioinformatics 
models. First, differentially expressed genes (DEGs) were identified using limma, and then enrichment 
analysis was performed on DEGs using DAVID. Protein-protein interaction (PPI) was constructed using 
STRING and Cytoscape was used to determine hub genes based on connectivity and hub modules 
based on MCODE scores and their associated genes from DEGs. Furthermore, ML-based algorithms, 
namely support vector machine (SVM), least absolute shrinkage and selection operator (LASSO), and 
partial least square discriminant analysis (PLS-DA) were applied to identify the discriminative genes 
of IgAN from DEGs. Finally, the key candidate genes (FOS, JUN, EGR1, FOSB, and DUSP1) were 
identified as overlapping genes among the selected hub genes, hub module genes, and discriminative 
genes from SVM, LASSO, and PLS-DA, respectively which can be used for the diagnosis and treatment 
of IgAN.

Immunoglobulin-A-nephropathy (IgAN) is one of the major public health problems. IgAN is also known as 
Berger’s  disease1,2. It is a kidney disease caused by the accumulation of IgAN deposits in the kidneys, which causes 
inflammation and damage to the kidney tissues. IgAN is the most common primary glomerulonephritis that 
can progress to renal failure  worldwide3,4. IgAN is sometimes associated with different kinds of diseases such as 
heart  disease5,6, liver  cirrhosis6,7, coeliac  disease6,8, skin  disease6. About, 20–47% of primary glomerular diesases 
are responsible for IgAN, which is mainly characterized by hypertension, hematuria, proteinuria, and failure of 
the  renal9,10. About 20–40% of people with IgAN have end-stage renal disease after 10–20  years11. The overall 
prevalence of IgA nephropathy varies from regions to  regions12. The highest prevalence’s of IgAN are found in 
Asia region (especially, in China and Japan) and its prevalence has been diagrammatically increased over past 
three  decades13–15. It is noted that the risks of deaths have been increased among patients with  IgAN16. As a result, 
we need to know the molecular mechanism about the development and progression of IgAN in order to diagnose 
IgAN patients properly and decrease the death rate. However, molecular mechanism can be studied properly by 
knowing the key genes or biomarkers for the development and progression of IgAN. Despite numerous studies 
examining the molecular characteristics of IgAN, the mechanism underlying IgAN development and progres-
sion remains a challenging  issue15. Therefore, it is urgent to propose an effective tool for determining potential 
or key candidate genes of IgAN in order to understand molecular mechanism of IgAN.

Bioinformatics analysis is a powerful approach for predicting molecular pathways and gene connections. 
This approach is widely used to predict novel candidate genes and pathways associated with different cancers 
like  breast17,  gastric18,  cervical19, and so on. Recently, this approach has increasingly revealed the molecular 
pathways underlying kidney  disease20,21. Various studies were conducted for the identification of key hub genes 
for IgAN patients. Qian et al. suggested twenty-one hub genes as well as identified five key candidate genes which 
were strongly correlated with IgAN  patients10. Zhang et al. investigated ten hub genes of IgAN and proposed 
four novel biomarkers that may be played an essential roles in the progression of IgAN and could be used as 
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potential biomarkers for IgAN diagnosis and  treatment20. Chen et al. suggested six biomarkers that were also 
related to the pathogenesis of  IgAN22. Chen et al. also suggested plausible new drugs (thapsigargin, ciclopirox, 
and ikarugamycin) for the treatment of  IgAN22. All of these previous studies demonstrated key biomarkers of 
IgAN using bioinformatics  analysis10,20,22–25 and showed different gene sets as key candidate genes. All researcher 
identified their potential biomarkers or genes using only hub genes, determined by the degree of connectivity 
in the PPI netwrok. In recent years, machine learning (ML)-based techniques have gained more popularity to 
ease one of the important challenges associated with study of genetic data: extraction of meaningful  genes26–28. 
Since the set of identified key genes by existing works are different, there is still some scope to identify genes 
more confidently using ML and statistics-based bioinformatics models.

In the current study, we selected one microarray gene expression (MGE) dataset from the Gene Expression 
Omnibus (GEO) database to identify the key candidate genes of IgAN. First, we identified DEGs for IgAN 
patients. Then, we used Database for Annotation, Visualization, and Integration Discovery (DAVID) to discover 
the functions of the DEGs and obtained Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analyses. Using the STRING database, we constructed a protein–protein interaction (PPI) 
network and identified hub genes from Cytoscape using the degree of connectivity as well as the most potential 
modules using Molecular Complex Detection (MCODE). We also identified the hub modules and their associ-
ated genes from the selected potential modules. We applied three ML-based algorithms to identify the significant 
genes for IgAN patients. The objective of this research was to determine the potential key candidate genes or 
biomarkers that can be used to diagnose and treat IgAN. Figure 1 summarized the data preparation, processing, 
analysis, and validation.

Figure 1.  Flowchart of data preparation, processing, analysis, and validation.
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Results
Experimental settings. For this experiment, the R-programming language version 4.1.2 was used for all 
statistical analysis. As the operating system, Windows 10 version 21H1 (build 19043.1151) 64 bit was used. In 
terms of hardware, an Intel (R) Core (TM) i5-10400 processor with 16 GB of RAM was used. In this study, we 
used three GEO datasets: GSE93798, GSE116626 and GSE35487. We selected the key candidate genes from the 
GSE93798 dataset. Another two independent test datasets: GSE116626 and GSE35487 were used for the valida-
tion of key candidate genes.

Identification of DEGs. Using the cutoff of adjusted p-value < 0.05 and |logFC| > 1 , a total of 348 DEGs 
were identified for IgAN patients. Among them, 107 genes were up-regulated and 241 genes were down-reg-
ulated. The volcano plot and heatmap of the DEGs for IgAN patients and healthy controls was presented in 
Fig. 2A,B.

Go term enrichment and KEGG pathway analysis. We imported the DEGs into the DAVID for the 
enrichment analysis of GO and KEGG pathways. To determine the significant GO terms and KEGG pathway, we 
considered the cutoff point of p-value < 0.05 . In Table 1, the top five significant GO terms of DEGs for biological 
process (BP), cellular component (CC), and molecular function (MF) were presented. As in BP, the DEGs were 
significantly enriched in response to inflammatory, response to camp, cytokine-mediated signaling pathway, 
cellular response to lipopolysaccharide, and neutrophil chemotaxis. In the CC group, the DEGs were mainly 
enriched in extracellular exosome, region, space, collagen trimer, and blood microparticle. The MF group GO 
terms, including transcriptional activator activity, RNA polymerase II transcription regulatory region sequence-
specific binding, zinc ion binding, transmembrane transporter activity, and gextra cellular matrix structural 
constituent conferring tensile strength, were significantly enriched by DEGs.

The analysis of the KEGG pathway for DEGs was showed in Table 2. We observed that DEGs were mainly 
involved in glycine, serine and threonine metabolism, age-rage signaling pathway in diabetic complications, 
protein digestion and absorption, IL-17 signaling pathway, and osteoclast differentiation.

PPI network construction and hub gene selection. PPI networks TSV data file was obtained from 
STRING and imported to Cytoscape and built a PPI network with 206 nodes and 880 edges (see Fig. 3A). The 
hub genes were selected using a degree of connectivity > 18 . Using this cutoff, we selected 19 hub genes which 
were shown in detail in Table 3. 

Hub module and its associated gene selection. A total of 13 modules/clusters were built using 
MCODE with the cutoffs: degree = 2, cluster finding = haircut, nodes score = 0.2, K-score = 2, and max depth 
= 100. The MCODE scores ranged from 3 to 8.44. We selected two significant modules with cutoffs: MCODE 
scores ≥ 6 and number of nodes ≥ 6 for determining hub module genes (see Table 4). The corresponding PPI 

Figure 2.  Identification and hierarchical clustering of DEGs for IgAN patients. (A) Volcano plot of DEGs 
which were generated using “ggplot2 version 3.3.6” package in  R63 (https:// cran.r- proje ct. org/ packa ge= ggplo 
t2) . Dodger blue represents down-regulated, gray represents no significant genes, and fire brick represents 
up-regulated DEGs. (B) Heatmap of the DEGs for IgAN patients which were generated using “NMF” version 
0.24.0 package in  R64 (https:// cran.r- proje ct. org/ packa ge= NMF). The horizontal axis shows the number of 
patients and the vertical axis shows DEGs.

https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=NMF
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network for module 1 and module 2 were showed in Fig. 3B,C. There were 10 genes in module 1 and 11 genes in 
module 2. We took the union of module 1 and module 2 and got 21 genes which were considered as hub module 
genes.

Analysis of discriminative gene selection using ML. Identifying discriminative genes using SVM. We 
applied SVM with RBF kernel on 348 DEGs and computed the classification accuracy for each gene. The gene 
selection procedure using SVM was already discussed in “Methods” section. The classification accuracy of each 
gene had sorted and were showed in Fig. 4. We selected 35 discriminative genes out of 348 DEGs whose clas-
sification accuracy was greater than 95.0%.

Identifying discriminative genes using LASSO. A total of 348 DEGs were identified between IgAN and control 
groups to fit LASSO-based logistic regression model. The next step was to determine the optimal values for 
lambda (λ= 0.008012) using 10-fold CV. Finally, 32 discriminative genes (SRPX2, LYL1, PCDH18, PPP1R10, 
DUSP1, EMP3, FPR3, NR1H4, C8ORF4, CD44, EGR1, FOSB, FOS, RNF186, DEPDC7, GSTA3, NETO2, 
CYP27B1, PCK1, C3AR1, CYSLTR1, JUN, TOP2A, CRTAM, CEBPD, LINC01279, SLC19A2, ZFP36, PTGS1, 
PLD6, FN1, KLF4) with no-zero coefficients were identified in discriminating IgAN and healthy control (see 
Fig. 5).

Identifying discriminative genes using PLS‑DA. PLS-DA was adopted on 348 DEGs to determine the significant 
genes of IgAN patients. We selected 20 components. Among them, we took the first two PLS-DA components 
and visualized these two components, which were presented in Fig.  6A. The red points indicated the IgAN 
patients and the green points indicated the healthy controls (Fig. 6A). PLS-DA can be significantly differentiated 
IgAN patients from healthy controls. We selected the top 20 most important genes (FOSB, DUSP1, PCDH18, 
FOS, ZFP36, EGR1, RNF186, CEBPD, LYL1, JUN, CSRNP1, ERRFI1, CYP27B1, PPP1R10, DEPDC7, KLF4, 
COL1A2, SOX17, APOLD1, and ATF3) for IgAN patients, which were illustrated in Fig. 6B.

Key candidate genes selection. The key candidate genes were identified by overlapping genes according 
to five methods. Among them, three methods were ML-based algorithms (SVM, LASSO, and PLS-DA) for the 

Table 1.  GO analysis of DEGs in biological process, cellular component, and molecular function. Top five 
items were selected based on p-value. GO gene ontology, BP biological process, CC cellular component, MF 
molecular function.

GO ID Description Count p-value

BP

GO:0006954 Inflammatory response 32 8.16× 10
−13

GO:0051591 Response to camp 10 5.67× 10
−8

GO:0019221 Cytokine-mediated signaling pathway 21 3.78× 10
−7

GO:0071222 Cellular response to lipopolysaccharide 16 5.44× 10
−7

GO:0030593 Neutrophil chemotaxis 11 7.67× 10
−7

CC

GO:0070062 Extracellular exosome 93 2.79× 10
−18

GO:0005576 Extracellular region 70 8.49× 10
−9

GO:0005615 Extracellular space 62 1.58× 10
−7

GO:0005581 Collagen trimer 12 3.03× 10
−7

GO:0072562 Blood microparticle 14 6.18× 10
−7

MF

GO:0005201 Extracellular matrix structural constituent 15 8.57× 10
−8

GO:0001228 Transcriptional activator activity 27 1.18× 10
−7

GO:0008270 Zinc ion binding 36 1.39× 10
−6

GO:0022857 Transmembrane transporter activity 13 1.41× 10
−5

GO:0030020 Gextra cellular matrix structural constituent conferring tensile strength 7 5.84× 10
−5

Table 2.  KEGG pathway analysis of DEGs. Top five items were selected based on p-value.

Pathway ID Description Count p-value

hsa00260 Glycine, serine and threonine metabolism 10 4.50× 10
−7

hsa04933 Age-rage signaling pathway in diabetic complications 13 6.63× 10
−6

hsa04974 Protein digestion and absorption 12 4.90× 10
−5

hsa04657 IL-17 signaling pathway 10 5.45× 10
−4

hsa04380 Osteoclast differentiation 11 0.0013
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Figure 3.  (A) PPI network of DEGs, (B) Module 1, and (C) Module 2. These three figures were generated by 
Cytoscape 3.9.154 (www. cytos cape. org).

Table 3.  List of 19 hub genes which were identified from PPI network based on degree of connectivity.

SN Gene Degree Betweenness Closeness

1 FOS 50 0.113 0.314

2 JUN 44 0.164 0.326

3 FN1 38 0.113 0.321

4 ALB 34 0.190 0.330

5 IL1B 32 0.234 0.337

6 EGR1 32 0.012 0.280

7 JUNB 30 0.023 0.291

8 CD44 28 0.074 0.310

9 MMP2 28 0.033 0.288

10 MYC 26 0.076 0.315

11 FOSB 26 0.011 0.275

12 COL1A2 24 0.006 0.264

13 TYROBP 22 0.060 0.223

14 CSF1R 22 0.093 0.248

15 COL1A1 22 0.008 0.269

16 CCL4 20 0.062 0.303

17 ATF3 20 0.044 0.264

18 DUSP1 20 0.036 0.262

19 LUM 20 0.013 0.250

Table 4.  Two modules selected from the PPI network. Score=density × no. of nodes.

Cluster Score Nodes Edges Node IDs

1 8.44 10 76 COL5A2, POSTN, COL6A3, LUM, COL1A1, SDC1, COL3A1, MMP2, FN1, COL1A2

2 8.40 11 84 DUSP1, JUN, JUNB, EGR3, MYC, FOSL2, FOSB, FOSL1, EGR1, FOS, ARC 

http://www.cytoscape.org
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identification of discriminative genes. The hub genes were identified using the degree of connectivity from the 
PPI network and hub module genes were from two significant modules. Five key candidate genes (FOS, JUN, 
EGR1, FOSB, and DUSP1) were selected, which were shown in Fig. 7A, and their PPI network analysis was 
also shown in Fig. 7B. These five key candidate genes and their probable significance in IgAN indicated that 
they could be novel therapeutic target genes. We observed that each key candidate gene was significantly dif-
ferentiated IgAN patients from healthy controls (Fig. 8A–E). We also performed hierarchical clustering for each 
candidate gene, which was shown in Fig. 8F.

Validation or confirmation of key candidate genes. The GSE116626 and GSE35487 datasets were 
used for the validation of key candidate genes. We evaluated five key candidate genes on the basis of area under 
the curve (AUC), computed from the receiver operating characteristic curve (ROC). For ROC analysis of each 
gene, the class label (IgAN vs. healthy control) and gene expression labels need to be collected. First, we used 
leave-one-out cross-validation and employed a logistic regression (LR) model to classify the subjects as either 
IgAN or healthy controls. After fitting the LR model, we computed AUC values using “pROC” R-package29.

The ROC curve of five key candidate genes for the GSE116626 dataset was presented in Fig. 9A–E. In 
GSE116626, the AUC values of five key candidate genes were as follows: FOS (AUC: 0.997, 95% CI 0.989–1.000, 
Fig. 9A), JUN (AUC: 0.890, 95% CI 0.807–0.973, Fig. 9B), EGR1 (AUC: 0.929, 95% CI 0.859–0.998, Fig. 9C), 
FOSB (AUC: 0.959, 95% CI 0.910–1.000, Fig. 9D), DUSP1 (AUC: 0.937, 95% CI 0.875–0.999, Fig. 9E). The 
hierarchical clustering for each key candidate gene was shown in Fig. 9F.

Similarly, the ROC curve of five key candidate genes for the GSE35487 dataset was presented in Fig. 10A–E. 
We observed that the AUC values of five key candidate genes were greater than 0.900. The AUC values of these 
five key candidate genes were as follows: FOS (AUC: 0.993, 95% CI 0.975–1.000, Fig. 10A), JUN (AUC: 0.980, 
95% CI 0.941–1.000, Fig. 10B), EGR1 (AUC: 0.967, 95% CI 0.900–1.000, Fig. 10C), FOSB (AUC: 1.000, 95% CI 
0.980–1.000, Fig. 10D), DUSP1 (AUC: 0.967, 95% CI 0.900–1.000, Fig. 10E). The hierarchical clustering for each 
key candidate gene was shown in Fig. 10F. Finally, we recommended that the five key candidate genes (FOS, JUN, 
EGR1, FOSB, and DUSP1) may be considered as potential genes or key candidate genes for IgAN. Therefore, our 
findings were validated for both GSE116626, and GSE35487 datasets.

Discussion
In this study, we evaluated the GSE93798 dataset from GEO database to filter DEGs for IgAN patients and 
determine the key candidate genes. We identified 348 DEGs (up-regulated: 107 and down-regulated: 241) from 
GSE93798 that can be easily differentiated IgAN patients from healthy controls (Fig. 2A–B). To validate the 
pathogenetic process of DEGs, we did gene functional enrichment analysis of DEGs using DAVID. We consid-
ered the top five GO terms for BPs, MFs, and CCs, as well as KEGG pathways, that were statistically significantly 
associated with IgAN patients through DEGs. According to the GO analysis for BP, the DEGs were statistically 
significantly associated with inflammatory, camp, and cellular responses to lipopolysaccharide, cytokine-medi-
ated signaling pathway, and neutrophil chemotaxis. Among them, some previous studies found response to 

Figure 4.  Classification accuracy of SVM for each gene.
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 inflammatory10,21,30, response to  camp10,21,22,31, and cellular response to  lipopolysaccharide10,21 as highly significant 
GO terms.

In case of CCs, the top five GO terms were significantly associated with DEGs for IgAN patients, which we got 
in this study were consistent with previous studies such as extracellular  exosome10,21,30, extracellular  region10,21,30, 
extracellular  space10,21,30, collagen  trimer21,22, and blood  microparticle10,21,22. For MFs, the three MFs supported 
by previous studies were extracellular matrix structural  constituents22, transcriptional activator activity, RNA 
polymerase II transcription regulatory  region10,20–22, and zinc ion  binding30. In KEGG pathway analysis, our find-
ings were closely related with previous studies. They showed that glycine, serine and threonine  metabolism10,22, 
age-rage signaling pathway in diabetic  complications22,32, protein digestion and  absorption21,22,30, IL-17 signaling 
 pathway22,32, and osteoclast  differentiation10,21,22,30,32 were significant pathways for DEGs.

The 348 DEGs were imported to STRING and visualized their PPI network with 206 nodes and 880 edges 
using Cytoscape. On the basis of degree of connectivity>18, we selected 19 hubs genes from the PPI network, 

Figure 5.  Discriminative gene selected using LASSO-based model by 10 CV: (A) A coefficient profile plot was 
generated against the log (λ) sequence. (B) 32 discriminative genes were selected for IgAN. (C) Contribution of 
32 discriminative genes for IgAN patients.
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which were showed in Table 3. Two significant modules were selected using MCODE with the cutoff points: 
MCODE scores ≥ 6 and number of nodes ≥ 6 . The first module had 10 nodes and 11 nodes were in module 2, 
which were presented in Table 4 and their PPI network were also presented in Fig. 3B,C. Furthermore, we selected 
21 hub module genes by taking the union of module 1 and module 2. To identify the discriminative genes, we 
applied three ML-based algorithms (SVM, LASSO, and PLS-DA) on 348 DEGs. We selected 35 discriminative 
genes using SVM (see in Fig. 4), 32 discriminative genes using LASSO (see in Fig. 5C, and 20 discriminative genes 
using PLS-DA (see in Fig. 6B). We identified five key candidate genes (FOS, JUN, EGR1, FOSB, and DUSP1) 
from the hub genes, hub module genes, and discriminative genes selected by SVM, LASSO, and PLS-DA (see 
Fig. 7A) and their PPI network were showed in Fig. 7B. We observed that each key candidate gene could be easily 
differentiated IgAN patients from healthy controls (Fig. 8A–E). The hierarchical clustering of the key candidate 
genes revealed that they were able to completely separate IgAN patients from healthy controls (Fig. 8F).

Figure 6.  PLS-DA for DEGs: (A) Component 1 vs. Component 2. The red points indicate IgAN patients and 
the green points indicate healthy control; (B) Importance of top 20 discriminative genes for IgAN.

Figure 7.  Identification and PPI analysis of key hub genes for IgAN patients. (A) Key candidate genes 
identification from hub module genes, computed from Cytohubba, SVM, LASSO, and PLS-DA. (B) PPI analysis 
of key five candidate genes.
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FOS is a component of activator protein 1 (AP-1) transcription  factors33 that controls the expression of genes 
involved in cell growth, death, inflammation, and  differentiation30,34,35. FOS was significantly linked with DNA 
damage, telomere injury-related aging markers, and neutrophil activation, which also controlled IgAN initia-
tion and  evolution36,37. A study revealed that FOS was related to the disappearance of podocyte foot  processes38. 
Our findings showed that FOS was strongly associated/correlated with IgAN, which was consistent with the 
previous  studies10,20,22,30,32,36,39. JUN plays a crucial role in IgAN. It is also an AP-1 transcription factors and one 
of the most potential factors for IgAN. A study revealed that AP-1 was strongly associated with  IgAN15. Our 
study also revealed that JUN was also a potential biomarker for IgAN, which was supported by the previous 
 studies10,22,30,32,36.

EGR1 is a zinc-finger protein that plays an important role in cell growth and proliferation. It promotes the 
epithelial-mesenchymal transition that contributes to diabetic kidney  disease39. In rhabdomyosarcoma, EGR1 
overexpression reduces cell proliferation, motility, and anchorage-independent  growth40. In our study, EGR1 was 
one of the top five key biomarkers and significantly associated with IgAN, which was also supported by previous 
 studies10,20,30. FOSB is one of the members of the FOS gene family and can be overexpressed in numerous diseases 
such as IgAN, mesangial proliferation, lupus nephropathy, and so on. Our study reported that FOSB was also 
a significant biomarker for IgAN. One of the DEGs was DUSP1, a gene linked to  fibrosis20. DUSP1 is involved 
in both the human biological response to stress and the negative regulation of cell  growth41. For hypertensive 
patients, angiotensin-1-7 increased DUSP1, which reduced fibrosis in resistant arterioles and end-stage organ 
 damage42. Our study also reported that DUSP1 was a potential biomarker for IgAN, which was consistent with 
previous  study43.

In light of the above mentioned approach, we identified five key candidate genes (FOS, JUN, EGR1, FOSB, 
and DUSP1) that can easily be differentiated IgAN patients from healthy controls. Therefore, our study suggested 
that FOS, JUN, EGR1, FOSB, and DUSP1 may function as key biomarkers for the detection and diagnosis of 
IgAN. These five key candidate genes may play an important role in the development of IgAN and act as potential 
candidate molecular targets for the diagnosis and treatment of IgAN. This research will be helpful to the readers 
who will be interested in determining the correlated pathway of IgAN. However, more research into the processes 
of these genes in IgAN is required.

In the future, we will try to implement our proposed system for the identification of key candidate ncRNA 
for IgAN and compared our findings with previous  studies44–48. Furthermore, we will adopt more ML-based and 
deep learning-based algorithms to identify the potential key candidate genes.

Methods
Microarray dataset. In this study, we used three publicly available GEO datasets with accession numbers: 
 GSE9379849,  GSE11662650 and  GSE3548751, which came from renal biopsies and one can easily be downloaded 
from the GEO database (www. ncbi. nlm. nih. gov/ geo/). The GSE93798 dataset was used to determine the key 

Figure 8.  Boxplot of five key candidate genes as (A) FOS, (B) JUN, (C) EGR1, (D) FOSB, (E) DUSP1 for IgAN 
patients, and (F) Heatmap of the five key candidate genes in renal tissue samples which were generated using 
“NMF” version 0.24.0 package in  R64 (https:// cran.r- proje ct. org/ packa ge= NMF).

http://www.ncbi.nlm.nih.gov/geo/
https://cran.r-project.org/package=NMF
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candidate genes. The GSE93798 dataset was based on GPL22945 platform [HG − U133_Plus_2] and included 
42 subjects, with 20 IgAN patients and 22 healthy controls. Another two independent datasets: GSE116626 and 
GSE35487 were used for the validation of key candidate genes. The GSE116626 dataset was based on GPL14951 
platform and consisted of 52 IgAN patients and 7 healthy controls. On the other hand, the GSE35487 dataset was 
based on the GPL96 platform and composed of 25 IgAN patients and 6 healthy controls. Although these datasets 
were taken from the publicly available GEO repository, being the Human data, all methods were performed in 
accordance with the relevant guidelines and regulations.

Identification of DEGs. Using the platform GPL22945, the probe matrix was merged with our gene series 
matrix by Affymetrix ID and no genes were removed from our database. The DEGs between IgAN patients and 
healthy controls were identified using the limma  package52 in R software with version 4.1.2 (https:// cran.r- proje 
ct. org/). The DEGs were selected using the following cutoffs: adjusted probability value (p-value) < 0.05 and 
|logFC| > 1 . Where, FC is the fold change. The DEGs between IgAN and healthy control subjects were analyzed 
using hierarchical clustering.

Enrichment analysis of DEGs. The DEGs and top key candidate genes were both selected for GO and 
KEGG pathway  analysis53. With these DEGs and top key candidate genes, GO term and KEGG enrichment 
analysis were obtained using DAVID version 6.8 tools (david.ncifcrf.gov) and a p-value < 0.05 was chosen as 
the cut-off criteria.

PPI network analysis and hub gene identification. We constructed an integrated network among 
selected DEGs. The STRING version 11.5 online based software (www. string- db. org) was used to make the 
 network21. We set a confidence score to > 0.70 and a maximum number of interactors to 0 as a cutoff value to 
build the interaction of DEGs. Then, export the string interaction file and save it in TSV format. We visualized 
the PPI network on Cystoscape version 3.9.154. To identify the hub genes, we set the degree of connectivity > 18 
as a cutoff value.

Hub module and its gene identification. MCODE was used to visualize the significant nodes and also 
partition the network into different modules with degree cut-off = 2 , cluster finding = haircut, node score cut-
off = 0.2 , K-score = 2 , and maximum depth = 100 , respectively. To select the most significant modules using 

Figure 9.  Validation of the five key candidate genes using ROC curves which were generated by pROC package 
with version 1.18.0 in  R29 (https:// cran.r- proje ct. org/ packa ge= pROC) and heatmap for GSE116626 dataset. 
(A) FOS (B) JUN (C), EGR1 (D) FOSB (E) DUSP1 (F) Heatmap of the five key candidate genes in renal tissue 
samples which were generated using “NMF” version 0.24.0 package in  R64 (https:// cran.r- proje ct. org/ packa ge= 
NMF). CI confidence interval.

https://cran.r-project.org/
https://cran.r-project.org/
http://www.string-db.org
https://cran.r-project.org/package=pROC
https://cran.r-project.org/package=NMF
https://cran.r-project.org/package=NMF
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MCODE, we set the cutoff values as follows: MCODE scores ≥ 6 and number of nodes ≥ 6 , respectively. After 
selecting the significant module, we selected the hub module using the following formula:

where, m is the number of significant modules. The corresponding genes were considered as hub module genes.

ML-based discriminative gene selection. After identifying DEGs, we have adopted three supervised 
ML algorithms as support vector machine (SVM), least absolute shrinkage and selection operator (LASSO), 
partial least squares discriminant analysis (PLS-DA) to identify the  discriminative genes of IgAN. The brief 
descriptions of these algorithms are summarized as follows:

Support vector machine. SVM55,56 is one of the most popular supervised ML algorithms. The aimed of SVM is 
to determine a hyperplane in a high dimensional space that can easily classified the groups as IgAN patients and 
healthy controls which needs to solve the following constraint problem:

Subject to

The final discriminate function takes the following form:

(1)Hub Module Genes =

m⋃

i=1

Genes fromModulei

(2)max
α

n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjK(xi , xj)

(3)
n∑

i=1

yi
Tαi = 1, 0 ≤ αi ≤ C, i = 1, . . . , n & ∀ i = 1, 2, 3, . . . , n

(4)f (x) =

n∑

i=1

αiK(xi , xj)+ b

Figure 10.  Validation of the five key candidate genes using ROC curves which were generated by pROC 
package with version 1.18.0 in  R29 (https:// cran.r- proje ct. org/ packa ge= pROC) and heatmap for GSE35487 
dataset. (A) FOS (B) JUN (C), EGR1 (D) FOSB (E) DUSP1 (F) Heatmap of the five key candidate genes in renal 
tissue samples which were generated using “NMF” version 0.24.0 package in  R64 (https:// cran.r- proje ct. org/ 
packa ge= NMF).

https://cran.r-project.org/package=pROC
https://cran.r-project.org/package=NMF
https://cran.r-project.org/package=NMF


12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13963  | https://doi.org/10.1038/s41598-022-18273-x

www.nature.com/scientificreports/

where, b is the bias terms.
In this research, we have used radial basis kernel which is defined as follows:

There were some additional parameters in SVM with RBF kernel, such as cost (C) and gamma (γ ) , called hyper 
parameters. These hyperparameters were tuned using the grid search method and chose the hyperparameters 
that provided the highest classification accuracy. In this study, we used SVM as discriminative gene selection 
algorithm. We will identify the most discriminative genes from a set of DEGs for IgAN patients based on the 
following steps:

Step 1: Take 80% of the dataset for the training set and 20% of the dataset for the test set.
Step 2: Choose one gene from a list of 348 DEGs.
Step 3: Trained SVM model on the training dataset.
Step 4: Calculate the classification accuracy for this feature.
Step 5: Repeat Step 1 to Step 4 into five times.
Step 6: Calculate the average of the classification accuracy.
Step 7: Repeat Step 1 to Step 6 for all (348) genes.
Step 8: Sort the classification accuracy from the largest to smallest.
Step 9: Select the genes that will produce more than 95.0% classification accuracy.

LASSO. LASSO is a supervised learning that is widely used both in biomarker selection and classification 
problems. We trained a logistic LASSO-based regression model on 348 DEGs to identify the discriminative 
genes of IgAN using the “glmnet” package in R with version 4.1.227,57. To select the optimal parameters, we 
adopted a 10-fold cross-validation protocol, and the partial likelihood deviance met the minimum criteria. The 
genes with non-zero coefficients of the LASSO-based logistic regression model are selected as discriminative 
genes, and we remove the genes with zero coefficients of the LASSO-based model from our analysis.

PLS‑DA. PLS-DA is one of the most popular supervised ML algorithms. It is widely used not only in dimen-
sion reduction algorithms such as PCA, but also in gene  selection58–60 and  classification61,62. We utilized PLS-DA 
while the response variable takes a categorical variable, for example, “1” for yes and “0” for no. It is similar to 
logistic regression. In this study, we used PLS-DA as a gene selection method to identify the discriminative genes 
for IgAN patients using the “mixOmics” package in R.

Key candidate genes identification. To identify the key candidate genes and avoid the missing the 
important genes, we identified the discriminative genes using three ML-based methods (SVM, LASSO, and PLS-
DA), the hub genes using the degree of connectivity from PPI network, and hub module genes from significant 
modules. We identified the key candidate genes using the following formula:

where, k is the number of potential gene identification methods.

Data availability
The datasets generated and/or analysed during the current study are available in the Gene Expression Omnibus 
(GEO) repository with accession numbers: GSE93798, GSE116626 and GSE35487. Using these accession num-
bers, one can easily download these datasets from the following link: www. ncbi. nlm. nih. gov/ geo/.
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