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Lightweight convolutional neural 
network for aircraft small target 
real‑time detection in Airport 
videos in complex scenes
Weidong Li*, Jia Liu & Hang Mei

Airport aircraft identification has essential application value in conflict early warning, anti-runway 
foreign body intrusion, remote command, etc. The scene video images have problems such as small 
aircraft targets and mutual occlusion due to the extended shooting distance. However, the detection 
model is generally complex in structure, and it is challenging to meet real-time detection in air traffic 
control. This paper proposes a real-time detection network of scene video aircraft-RPD (Realtime 
Planes Detection) to solve this problem. We construct the lightweight convolution backbone network 
RPDNet4 for feature extraction. We design a new core component CBL module(Conv (Convolution), 
BN (Batch Normalization), RELU (Rectified Linear Units)) to expand the range of receptive fields in the 
neural network. We design a lightweight channel adjustment module block by adding separable depth 
convolution to reduce the model’s structural parameters. The loss function of GIou loss improves the 
convergence speed of network training. the paper designs the four-scale prediction module and the 
adjacent scale feature fusion technology to fuse the adjacent features of different abstract levels. 
Furthermore, a feature pyramid structure with low-level to high-level is constructed to improve the 
accuracy of airport aircraft’s small target detection. The experimental results show that compared 
with YOLOv3, Faster-RCNN, and SSD models, the detection accuracy of the RPD model improved by 
5.4%, 7.1%, and 23.6%; in terms of model parameters, the RPD model was reduced by 40.5%, 33.7%, 
and 80.2%; In terms of detection speed, YOLOv3 is 8.4 fps while RPD model reaches 13.6 fps which is 
61.9% faster than YOLOv3.

Aircraft detection on the airport surface is vital for intelligent airports and remote towers. It can automatically 
identify aircraft in airport images and assist tower controllers in ensuring flight safety. It is essential in daily 
aircraft conflict early warning, runway intrusion prevention, and remote command-application value1. Cameras 
usually capture surface aircraft images in terminals and towers. Compared with remote sensing aircraft images 
with complete contours and a single attitude, the surface aircraft images have problems such as mutual occlusion 
of Aircraft and small Aircraft due to long shooting distances, limiting the traditional methods based on sliding 
windows2. Object detection based on deep learning is one of the most critical tasks in computer vision, such 
as semantic segmentation3–5, image extraction6,7, target tracking8–10, etc.Target location recognition in complex 
environment is widely used in face recognition11,12, traffic scene detection13,14, intelligent video surveillance15,16, 
remote sensing measurement17,18, space early warning19,20 etc. Unlike the traditional target detection algorithm, 
the target detection algorithm based on a convolutional neural network uses existing data to automatically learn 
target features, which has a better expression effect than HOG21, SIFT22, LBP23, and other features can adapt to 
diverse backgrounds and target types. Still, owing to the dynamic changes in the airport scene, such as tempera-
ture, humidity, air pressure, visibility and other complex environments, detecting aircraft on the airport scene 
is challenging. Currently, the most advanced target detection algorithm is applied to the aircraft detection task 
on the airport surface, dramatically improving the detection accuracy and speed of the aircraft on the airport 
surface. However, the detection network model is generally complex because of the problems of small aircraft 
targets and mutual occlusion between aircraft in the video images of the airport scene. That is not easy to meet 
the real-time detection requirements in airport air traffic.
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In response the above problems, this paper proposes a lightweight neural network RPD for detecting small 
aircraft objects in complex airport scenes. Our main contributions are summarized as follows.

•	 We construct a novel deep convolutional feature extraction network, which can help us obtain richer semantic 
information about the original image, ensure the detection accuracy of the network model, and minimize 
the computational parameters of the feature extraction network.

•	 We design an adjacent-scale feature fusion module it can effectively identify aircraft and their location infor-
mation using four-scale feature prediction.

•	 We have optimized the loss function. It can correctly guide the convergence direction of the RPD model and 
can effectively improve the convergence speed of RPD training.

Related works
The current mainstream target detection methods mainly include the Faster-RCNN24 series based on region 
proposal and the series based on regression algorithm YOLO25–27, SSD28–32, etc. Compared with traditional 
methods, the detection accuracy and speed are improved. Still, there are shortcomings, such as many regional 
proposal boxes, which lead to a large amount of model calculation and ample storage space. The training process 
of the target detection algorithm requires high-performance GPU support, which is challenging to meet the 
real-time requirements33, especially on embedded devices with weak computing power. Especially on embed-
ded devices with weak computing power. It is not easy to achieve real-time applications34. Zhang35 et al. pro-
posed a lightweight deep learning model Slimyolov3, which solved the problem that the deep learning model 
has many parameters and cannot be deployed on the embedded side. Still, its accuracy is poor in small target 
detection scenarios and cannot be widely used. The aircraft target detection method based on a neural network 
has achieved high accuracy. Still, its operation on embedded devices with small video memory and memory is 
restricted with the continuous improvement of the performance of the neural network model and the increase 
of model parameters and calculation.

When deploying a target detection model in an aviation scene, we need to consider the textcolorredmod-
el’s computational complexity, parameter quantity and the detection accuracy. MobileNet is a lightweight 
convolutional neural network proposed by Google in 2017 and subsequently developed into three versions, 
MobileNetv136, MobileNetv237, and MobileNetv338. Compared with the traditional convolutional neural network, 
it reduces the model parameters and the amount of computation while ensuring detection accuracy as much as 
possible. GhostNet39 was proposed by Huawei and ShuffleNet40,41 and SqueezeNet42 presented by Questyle Tech-
nology, etc. Building a new network model improves detection accuracy while reducing the model parameters, 
which is very useful for mobile deployment. Great significance. In addition, deep learning model compression 
and acceleration technology is also an essential direction in developing network models. Commonly used meth-
ods include model pruning43, network parameter quantization44 and parameter optimization of existing network 
models. Model pruning adopts structured pruning technology to remove the weights of redundant channels 
in the model. After pruning, the model can bring acceleration effects on general hardware and improve the 
efficiency of network operation45. Network parameter quantization minimizes the space required for network 
weight storage by reducing the model detection accuracy. YOLOX46 is optimized based on YOLO by combining 
model pruning and network parameter quantization technology. Although the parameter calculation amount 
is reduced, they cannot effectively identify small target detection in complex scenes.

In contrast to the previous models, We propose a lightweight neural network RPD for detecting small objects 
in airport video in complex scenes. Constructing an RPDNet4 deep convolutional feature extraction network, 
designing an adjacent scale feature fusion module, and using four-scale feature prediction can effectively iden-
tify aircraft and their positions information. The effectiveness of the proposed model is verified by comparing it 
with YOLOv3, Faster-RCNN, SSD, YOLOX-Tiny, and YOLOX-Nano through the Zhengzhou Xinzheng Airport 
aircraft image dataset experiment.

Methodology
Build the RPD network.  The target detection network proposed in this paper is shown in Fig. 1. It includes 
four parts: (1) the mage input module, which performs preprocessing operations such as zooming, panning, and 
random cropping on the input image; (2) the Feature extraction network module (RPDNet4). Among them, 
CBL and Block are the basic modules of this network. CBL consists of Conv (convolutional layer), BN (batch 
normalization), and Relu activation function. Block consists of two CBL modules, convolutional, batch nor-
malization composition. (3)the Neck module, which improves the expressive ability of features, in which Concat 
indicates that image features of different levels complete feature information fusion through downsampling; (4)
the Prediction module, used to predict the target: perform 160*160, 80*80, 40*40, 20*20 4-scale target prediction 
classification and positioning.

Feature extraction backbone network.  The input image is subjected to preprocessing operations such as zoom-
ing, panning, and random cropping to improve the detection accuracy of small objects and mutual occlusion in 
the airport video scene. Such as formula (1) and formula (2):
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In formula (1), fn represents the feature map of the nth layer, and Fn represents the nonlinear mapping relation-
ship between the feature map of the previous layer and the current one. The primary operations are convolution, 
batch normalization, nonlinear activation function, Etc. When n=1, f0 represents the input image; gi represents 
the channel feature pruning and aggregation spatial dimension feature decomposition operation on the i-th 
feature image, G represents the feature fusion process, and Y represents the feature fusion result.

The feature extraction network (RPDNet4) sets four feature extraction layers according to the direction from 
input to output. Figure 2 shows the first feature extraction layer, the second feature extraction layer, the third 
feature extraction layer, and the fourth feature extraction layer. Floor:

The first feature extraction layer includes a first convolution module, a second convolution module, a first 
residual module, a third convolution module, a second residual module, and a fourth convolution module, which 
are arranged in sequence from input to output.
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The second feature extraction layer includes a third residual module and a fifth convolution module arranged 
in sequence from the input to the output direction.

The third feature extraction layer includes a fourth residual module and a sixth convolution module arranged 
in sequence from the input to the output direction.

The fourth feature extraction layer includes a fifth residual module.
The specific parameter settings of the feature extraction layer are shown in Fig. 3. For the feature extraction 

layer layer1, the parameter setting steps are as follows. 

(1)	 Pass a frame of 640*640 3-channel input image through the CBL module once (n is 1), the step size s is 1, 
the number of output channels c is 32, the channel expansion factor e is one by default, and the output is 
640*640*32 tensor.

(2)	 Using the output result of step 1, after a CBL module (n is 1), the step size s is 2, the number of output 
channels c is 64, the channel expansion factor e is one by default, and the output is a 320*320*64 tensor.

(3)	 Using the output result of step 2, after a CBL module (n is 1), the step size s is 2, the number of output 
channels c is 64, the channel expansion factor e is 1.5, and the output is a 320*320*64 tensor.

(4)	 Using the output result of step 3, after a CBL module (n is 1), the step size s is 2, the number of output 
channels c is 128, the channel expansion factor e is one by default, and the output is a 160*160*128 tensor.

(5)	 Using the output result of step 4, after two block modules (n is 2), the step size s is 1, the number of output 
channels c is 128, the channel expansion factor e is 1.5, and the output is 160*160*128 tensor.

(6)	 Using the output result of step 5, after one block module (n is 1), the step size s is 2, the number of output 
channels c is 256, the channel expansion factor e is one by default 80*80*256 tensor.

The feature extraction layers Layer2, Layer3, and Layer4 are consistent with the parameter setting steps of the 
feature extraction layer Layer1

(1)CBL module
To obtain the richer semantic information of the original images, we need to increase the convolution kernel’s 

size to expand the range of the receptive field in the neural network. However, a larger convolution kernel size 
will increase the model calculation parameters. VGGNet47 found that the receptive field range of the extensive 
convolution kernel mapping can be achieved by stacking multiple convolution kernels and using a 3 × 3 size 
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Figure 3.   Feature extraction network.
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convolution kernel instead of a 5 × 5 size volume. The accumulation kernel dramatically reduces the number 
of model parameters. Based on the idea of VGGNet, this paper designs a new CBL module, consisting of Conv 
(convolutional layer), BN (batch normalization), and Relu activation function. The convolution kernel is set to 3 
× 3 and 1 × 1, and the input image is first after a 3 × 3 convolution operation, the data batch normalization (BN) 
processing is performed, and the formula is as follows:

µβ represents the sample mean, where xi is the i-th sample, σ 2
β represents the sample variance, x′i represents the 

sample normalization processing result, yi different scales and bias Shift operation βi on x′i.
To enhance the nonlinear expression ability of the neural network and prevent the gradient explosion of the 

backpropagation of the network, and speed up the convergence speed of the network, the nonlinear function 
Relu is introduced as the excitation function, and the formula is as follows:

(2)Block module
To ensure the accuracy of network detection and minimize the computational parameters of the feature 

extraction network, we designed a lightweight channel adjustment module Block, whose structure is shown in 
Fig. 4. When the input sample passes through the first CBL module, the convolution kernel size is set to 1 × 1, 
aiming to map the image features from low-dimensional to high-dimensional space. Factor E is used to expand 
the dimensional space in Fig. 3. When the features are input to the second CBL module, the high-dimensional 
spatial convolution is decomposed into a depthwise convolution in a low-dimensional space and a point-by-
point convolution that modifies the number of channels using a 3 × 3 depthwise separable convolution48. The 
convolution of high-dimensional space is decomposed into the depth convolution of low-dimensional space 
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and the pointwise convolution of modifying the number of channels. A convolution kernel is assigned to each 
channel in the convolution process. Reducing the amount of network calculation and ensuring the network’s 
complexity and effectiveness, the shrinkage factor e is set to 1.5, and the step size s is set to 2. To maintain the 
balance of the image feature map size; finally, a residual Res49 is added between the input and output connection. 
The residual Res formula is as follows:

Where x represents the input feature, H(x) represents the neural network learning feature, and F(x) represents the 
output result after the residual connection. When the residual F(x) = 0, the block module only does the identity 
mapping, which can keep the network performance unchanged. However, in the experiment, the residual F(x) is 
not 0, so the block module can continuously learn new features and better performance. Using residual connec-
tions can significantly preserve the spatial gradient structure, solve the phenomenon of gradient fragmentation, 
and facilitate network backpropagation.

Adjacent scale feature fusion and prediction.  The adjacent scale feature fusion (Neck) module (Fig. 5) 
is based on the feature extraction network RPDNet4. It adopts a serialized bottom-up structure design to fuse 
features of different abstraction levels to adjacent features. The Neck module performs upsampling three times in 
total. Layer4 is used as the starting feature map. After the CBL module, the feature map Neck4 is obtained, and 
then it is subjected to 2-fold upsampling, batch normalization, and merged with Layer3 for feature fusion. After 
the CBL module, the feature map Neck3 is obtained. The method obtains the feature maps Neck1 and Neck2 
and appends a CBL block to each merged map to generate the final feature map. The final output feature map 
has four scales of 160*160, 80*80, 40*40, and 20*20, corresponding to Layer1, Layer2, Layer3, and Layer4 with 
the same spatial size, respectively.

The Prediction module uses the 1 × 1 convolution operation for Neck1, Neck2, Neck3, and Neck4 instead of 
a real connection, to complete 4-scale target classification and positioning.

LOSS function.  Using the Iou Loss loss function to test the lightweight target detection network RPD, the 
predicted aircraft target position significantly deviates from the accurate position. The common Iou Loss only 
focuses on the intersection ratio between the predicted and actual frame. When intersecting, the value of Iou 
Loss is 1, and the network is difficult to converge. When two boxes intersect, the value of Iou Loss is also direc-
tional, which cannot guide the network to converge correctly. Therefore, Shortening the centre distance between 
the target and the natural frame can better reflect the actual deviation between the target and the natural frame. 
This paper uses GIou Loss50 to add a penalty based on the original Iou Loss Item to solve the problem, such as 
formula (9). It can guide the convergence direction of the network when Iou Loss does not play a role in moni-
toring and can effectively improve the convergence speed during network training.

Among them, spre represents the predicted target bounding box area, strue represents the natural target bounding 
box area, AC represents the minimum area enclosed by spre andstrue , and Au represents the area of the intersec-
tion of spre andstrue . lossloc represents the position deviation between the predicted target bounding box and the 
actual target bounding box.

(8)F(x) = H(x)− x

(9)loss loc = 1−
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Experiment
Experimental environment and dataset.  The experimental environment is Ubuntu 20.04 operating 
system, Intel� CoreTM i9-9900K processor, 32 GB memory, GPU is RTX 2080Ti*2, and the deep learning 
framework uses Pytorch1.8 and general parallel computing architecture CUDA11.1. Regarding training strategy, 
the Batch Size is 16, the training data set is iteratively trained 300 times in total, the initial learning rate is 0.001, 
and the learning decay rate is 0.92. In order to further optimize the model parameters, we use model pruning 
technology, and the steps are 1. Channel pruning of the network. By setting an appropriate pruning rate, and 
according to the value of γ , the high-contribution channels are retained, and the low-contribution channels are 
deleted. 2. Layer pruning of the network. For each CBL and Block of the RPDnet4 backbone network, the aver-
age value of each layer is sorted, and then the layer with the smallest average value is selected for layer pruning. 
3. After compressing the width and depth of the RPD network through steps 1 and 2, respectively, fine-tune the 
RPD network to restore the detection accuracy of the network model.

The data set used in this paper comes from the video images of Zhengzhou Xinzheng Airport, including 
different types of single-passenger aircraft, multiple occluded passenger aircraft, and other small target images, 
a total of more than 11,000 images, covering sunny, foggy, rainy, and other daytime weather conditions. The 
training, validation, and test sets are made according to 6:2:2.

Ablation experiments.  We perform a series of ablation experiments to understand better and analyze our 
key contributions’ impact. Table 2 shows that the PRD detection model adopts different image classification 
networks as the backbone. We validate our proposed model by comparing and analyzing model parameters, 
detection accuracy, and inference time, mainly since two modules (i.e., CBL and BLOCK) constitute the back-
bone network. We just changed the backbone network during the experiment, and other modules remained 
unchanged. The training strategy of the model remains the same, the data preprocessing steps are the same, and 
the initialization parameters are the same.

Results and discussion
To effectively evaluate the performance of the network model, the precision P (Precision), the recall rate R 
(Recall), Inference time and the mean average precision mAP (mean Average Precision) are selected to evaluate 
the detection ability of the network model. The formula is as follows:

(10)P =
TP

TP+ FP

(11)R =
TP

TP+ FN

(12)AP =

∫ 2

0

P(R)

Table 1.   Comparison of the algorithm performance.

Model AP (%) FPS (F/S) Param (M) Inference time (ms)

Faster-RCNN 82.3 1.2 350.8 25.7

SSD 67.7 2.5 117 8.6

YOLOV3 83.8 8.4 105 7.7

YOLOX-Tiny 79.4 38.6 17.4 1.3

YOLOX-Nano 73.6 55.2 8.7 0.6

RPD 88.6 13.6 69.6 5.1

Table 2.   Comparison of results of ablation experiments.

Model AP (%) FPS (F/S) Param (M) Inference time (ms)

RPD + VGGNet16 77.3 2.6 123 15

RPD + VGGNet19 77.8 2.6 123.7 15

RPD + ResNet50 84.9 1.9 131 15.6

RPD + ResNet101 88.7 1.5 256 21.4

PD + ResNet152 90.3 1.1 380.8 27.9

RPD + DarkNet53 89.1 8.9 147 10.8

RPD + RPDNet4 88.6 13.6 69.6 5.1
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In the formula, TP represents the correct positive sample detection. For example, the aircraft in the image is 
detected as an aeroplane. FP represents the negative sample falsely detected as a positive sample. For example, 
the aeroplane is incorrectly identified as the background. FN represents the positive sample falsely detected as 
a negative sample, such as the background detected as an aeroplane. P(R) represents the curve drawn with the 
detection accuracy P , and the recall rate R, the area enclosed by this curve and the coordinate axis is the detec-
tion class accuracy AP; C represents the target category, mAP is an average of all categories.

This paper compares RPD with Faster-RCNN, SSD, YOLOX-Tiny, YOLOX-Nano and YOLOV3 from four 
aspects: mAP, FPS (Frame Per Second), Inference time and Param (Parameter), as shown in Table 1.

Faster-RCNN uses VGGNet16 as the feature extraction network, uses the RPN (Region Proposal Network) 
network instead of the Selective Search method in R-CNN51 to generate regional proposal windows, and uses the 
non-maximum suppression algorithm to eliminate proposals with large overlapping areas. The window improves 
the quality of the proposed window, and the detection accuracy reaches 82.3%. However, Faster R-CNN is a two-
stage target detection. The RPN network uses the sliding method to detect the process of generating multi-scale 
anchors, which is time-consuming, and the model parameters are the largest, reaching 350.8M.

SSD, YOLOV3, and RPD are all based on single-stage detection, directly classifying and regressing images, 
and the model parameters are significantly lower, 105M, 117M, and 69.6M in sequence. SSD eliminates the 
proposal generation phase and the subsequent feature resampling process. Its FPS is 2.5, the detection speed is 
two times faster than Faster R-CNN, and FPS is 2.5, but in terms of detection accuracy, mAP is 67.7% among all 
models, the detection accuracy is the lowest.

The SSD prediction target bounding box is an offset relative to the default bounding box position of the net-
work. This prediction is not stable enough at the beginning of training. Yolov3 predicts the offset. The predicted 
result forces the output value between 0 and 1 through a sigmoid function, improving detection accuracy, reach-
ing 83.8%. YOLOV3 is three times faster than SSD in terms of detection speed, and the FPS gets 8.4.

YOLOX-Tiny and YOLOX-Nano are two lightweight models of YOLOX. Although the model parameters 
are significantly reduced, only 17.4M and 8.7M, the detection accuracy is far from the detection requirements 
of airport air traffic.

The RPD model in this paper has the following characteristics:
(1)Feature extraction network module (RPDNet4): The core component CBL module uses 11 and 33 con-

volution kernels to increase the receptive field, separate the critical contextual features, and reduce the network 
running speed; Separate convolution [50] extracts feature maps. From experience, the effect is almost the same 
as standard convolution, and the computational cost is significantly lower than that of standard convolution. The 
RPDNet4 feature extraction network is better than VGG-16 and Darknet-53 in parameter quantity.

(2)Adjacent scale feature fusion and prediction module. Faster-RCNN only uses the feature map of the 
network’s last layer to predict the target. SSD tried to use the pyramid level feature of the convolutional neural 
network to predict the target, but it gave up Shallow features. Compared with SSD, YOLOV3 uses shallow 
features, splices different feature maps, increases the number of channels, and predicts targets at three scales, 
significantly improving the detection ability of small targets. The neck module in this paper adopts the adjacent 
scale feature fusion technology to fuse the features of different abstraction levels of layers (Fig. 2) and build a 
low-level to high-level feature pyramid structure (Neck1, Neck2, Neck3, Neck4 shown in Fig. 5), and then use the 
CBL module to eliminate the aliasing effect of upsampling to generate the feature map required by the Prediction 
module. The four scales of 160*160, 80*80, 40*40, and 20*20 in the Prediction module can share classification 
and regression parameters at all levels. This structure enables our mAP to reach 88.6%, higher than YOLOV3. 
5.4%, which is 23.6% higher than SSD.

On the whole, compared with YOLOv3, Fast-RCNN, and SSD models, the detection accuracy of the RPD 
model is 88.6%, an increase of 5.4%, 7.1%, and 23.6%, respectively; in terms of model parameters, the RPD model 
is 69.6M, a decrease of 40.5%, 33.7%, and 80.2%, which can meet the real-time detection of airport aircraft.

Furthermore, we conduct an ablation study on the RPD model to assess our proposed technique’s perfor-
mance, particularly the two modules (i.e., CBL and BLOCK) that constitute the backbone network. The ablation 
experiments for our suggested model RPD+RPDNet4 are practical, and the comparison results are provided 
in Table 2. The results show an improvement in accuracy for each example, showing that the RPD models are 
all useful. In the first layer of PRDNet4, the size of the convolution kernel of the first two CBL modules is 3*3, 
which expands the receptive field and textcolorredreduces the parameters as much as possible. The size of the 
convolution kernel of the CBL module of the remaining layers is 1*1. Upscaling the dimension of the channel 
greatly increases the nonlinearity while keeping the scale of the feature map unchanged (that is, without losing 
resolution). The Block module reduces the computational parameters of the feature extraction network as much 
as possible while ensuring the detection accuracy of the network model. Therefore, the CBL and Block modules 
can pay more attention to the intricate details of the image and obtain better detection results. In other words, 
it proves that the RPDNet4 feature extraction network preserves the most critical information in the image and 
suppresses the unnecessary information, resulting in more discriminative features for surface aircraft recognition. 
Combining these two modules yields the best results, demonstrating that our approach is feasible and beneficial.

To further verify the effectiveness of the RPD model, the detection results of Faster-RCNN (Fig. 6), SSD 
(Fig. 7), YOLOV3 (Fig. 8), RPD (Fig. 9) and YOLOX-Tiny (Fig. 10) and YOLOX-Nano (Fig. 11) are visualized.

Comparing part (a) of the figures, we can find that SSD has missed detection because the model does not 
extract enough semantic information to distinguish the background. Faster-RCNN, YOLOV3, and RPD detec-
tion effects are sound; part (b) of the figure, YOLOV3 is better than Faster-RCNN, SSD, YOLOX-Tiny and 

(13)mAP =

∑C
i=1 APi

C
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YOLOX-Nano for small target detection, but some small targets have missed detection. RPD detects the most 
significant number of small targets and two more targets than YOLOV3 because our position loss function intro-
duces GIou Loss. Simultaneously, the adjacent scale feature fusion technology is used to fuse the deep semantic 
information into the shallow features layer by layer, improving the detection accuracy of small objects. It can be 
found in part (c) that Faster-RCNN, SSD, YOLOX-Tiny and YOLOX-Nano can not recognize the aircraft in the 
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Figure 6.   RPD detection renderings in different scenarios.
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Figure 10.   YOLOX-Tiny detection renderings in different scenarios.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14474  | https://doi.org/10.1038/s41598-022-18263-z

www.nature.com/scientificreports/

airport night scene. Still, both YOLOV3 and RPD can recognize it, which verifies that the RPD detection model 
in this paper can effectively suppress the interference of complex environments.

Conclusion
In this paper, we have solved the problem of poor identification of small target aircraft at airports in complex 
scenes, and it is challenging to meet the real-time detection task of airport air traffic control. We propose and 
build a lightweight object detection network model suitable for scene video planes. Firstly, the feature extraction 
backbone network RPDNet4 is designed using the depth separable convolution technology and residual module. 
The network model structure is composed of CBL module and Block module, which greatly reduces the network 
model parameters while ensuring the accuracy of target detection. Secondly, through the adjacent scale feature 
fusion module, a low-level to high-level feature pyramid structure is constructed, and the four-scale prediction 
module is used to share classification and regression parameters at all levels. Finally, the loss function of the RPD 
network model structure is optimized to reduce the actual deviation between the target frame and the real frame.

Compared with different target detection algorithms, the validity of the RPD network model structure in 
this paper is verified. In the future, the model proposed in this paper is planned to be used for aircraft tracking 
in busy airports with complex background changes, to try to solve the problem of poor recognition rate at night 
and to facilitate monitoring by air traffic controllers and flight crews.

Data availibility
The data supporting this study’s findings are available from the corresponding author upon reasonable request.
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