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A simple model of COVID‑19 
explains disease severity 
and the effect of treatments
Steven Sanche1, Tyler Cassidy1, Pinghan Chu1,2, Alan S. Perelson1, Ruy M. Ribeiro1* & 
Ruian Ke1*

Considerable effort has been made to better understand why some people suffer from severe COVID‑
19 while others remain asymptomatic. This has led to important clinical findings; people with severe 
COVID‑19 generally experience persistently high levels of inflammation, slower viral load decay, 
display a dysregulated type‑I interferon response, have less active natural killer cells and increased 
levels of neutrophil extracellular traps. How these findings are connected to the pathogenesis of 
COVID‑19 remains unclear. We propose a mathematical model that sheds light on this issue by 
focusing on cells that trigger inflammation through molecular patterns: infected cells carrying 
pathogen‑associated molecular patterns (PAMPs) and damaged cells producing damage‑associated 
molecular patterns (DAMPs). The former signals the presence of pathogens while the latter signals 
danger such as hypoxia or lack of nutrients. Analyses show that SARS‑CoV‑2 infections can lead to 
a self‑perpetuating feedback loop between DAMP expressing cells and inflammation, identifying 
the inability to quickly clear PAMPs and DAMPs as the main contributor to hyperinflammation. The 
model explains clinical findings and reveal conditions that can increase the likelihood of desired clinical 
outcome from treatment administration. In particular, the analysis suggest that antivirals need to be 
administered early during infection to have an impact on disease severity. The simplicity of the model 
and its high level of consistency with clinical findings motivate its use for the formulation of new 
treatment strategies.

COVID-19 symptoms severity differs wildly between infected individuals. Some individuals are infected without 
experiencing many of the characteristic symptoms, such as fever, coughs, body aches and the loss of taste or 
 smell1. At the other end of the spectrum, a substantial minority will experience more extreme symptoms, such 
as acute respiratory distress syndrome and thrombotic complications that can lead to organ failure and  death1,2. 
What distinguishes individuals experiencing more severe symptoms has been extensively  studied3. These studies 
have identified a set of risk factors associated with severe COVID-19 such as older age, obesity, diabetes and past 
or present  cancer3. COVID-19 severity likely depends on both the trajectory of the viral infection and the trajec-
tory of the inflammatory response. An association was found between endothelial cell expression of angiotensin-
converting enzyme 2 (ACE2), the receptor for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) 
entry to host cells, and the presence of microthrombi in major organs such as the lung, heart, brain, and  liver4,5. 
This suggests that the spread of the infection may be responsible for damage to vital tissues and organ dysfunc-
tion. It also underlines the necessity of an appropriate innate and adaptive immune response to limit the spread 
of the infection. To this effect, inflammation plays a crucial role by coordinating the immune response. However, 
elevated inflammatory markers in COVID-19 patients (IL-1β, IL-2R, IL-6, IL-8, IL-10, TNF-α, to name a few) 
have been associated with increased symptom severity, the need for ventilation and  deaths6–8. This suggests that a 
sustained or exaggerated inflammatory response (hyperinflammation) may play an important role in determining 
the severity of disease outcomes. In particular, an inappropriate innate immune response was pointed out as a 
significant contributor to the hyperinflammatory state in COVID-199,10. Despite the large effort by the scientific 
community, there are still many unknowns with regards to the mechanistic drivers of severe COVID-19. In turn, 
this knowledge gap hampers our ability to find new treatment strategies aiming to improve clinical outcomes.

Our main objective was to provide a simple quantitative framework to understand the pathogenesis of severe 
COVID-19 and to determine the importance of potential mechanisms. We aimed to provide a model that is 
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simple and yet adequately captures the main clinical findings. Many within-host models of SARS-CoV-2 infection 
have been  published11–17 with a wide range of model complexities (from less than 10 to more than 80 parameters). 
These models mostly differ in terms of the complex interactions between the viral infection and the immune 
response that they include in their formulation (see Discussion for details). The large difference between model 
formulations suggests that identifying the key elements having an impact on clinical outcomes is a difficult task.

The model we formulated focuses on cells that trigger inflammation through molecular patterns: infected 
cells carrying pathogen-associated molecular patterns (PAMPs) and damaged cells producing damage-associated 
molecular patterns (DAMPs). We show that the clearance rate of infected and damaged cells by the innate 
immune response is of the utmost importance to reach a state of resolved inflammation. Our model can explain 
the following findings: (i) severe COVID-19 tends to be accompanied by hyperinflammation, (ii) those with 
severe COVID-19 generally experience a similar viral trajectory as mild cases, albeit with a slower viral load 
decay after the peak, (iii) the complex and conditional effect of antivirals and corticosteroids on disease sever-
ity, (iv) an inefficient type-I IFN response is associated with severe COVID-19, and (v) generation of bystander 
cell damage and infective removal of these cells are a critical component of severity. Note that this last point is 
reminiscent of clinical observations that, for example, less cytotoxic NK cells and higher levels of neutrophil 
extracellular traps (NETs) are associated with severe COVID-19. Overall, the simplicity of the model we propose 
along with its high level of consistency with clinical observations suggest it is an adequate framework for the 
study of COVID-19 pathogenesis and the effect of therapy.

Methods
The model. Our goal was to formulate a model that is simple enough to guide intuition, yet complex enough 
to allow relating with clinical outcomes. A schematic representation is provided in Fig. 1. The model is described 
below.

(1)
dT

dt
= −βTV − κ0TI + δRR

Figure 1.  Schematic representation of the model described by Eqs. (1–7). Target cells ( T ) transition to a 
productively infected state ( I ) after successful infection by virions ( V ) at rate β. Virions are cleared at per capita 
rate c, while new virions are produced by infected cells at rate p. Target cells become refractory to infection ( R ) 
at rate κ0I (we assume target cells are exposed to a concentration of type-I IFN that is proportional to I and that 
puts the cells into an antiviral state). Resting innate immune cells ( D0 ) become activated ( D1 ) at rate σ (I + J), 
where I and J are the number of infected and damaged bystander cells, respectively (we assume the extent of 
PAMP and DAMP signaling is proportional to I+J) . Also, activated immune cells ( D1 ) die at per capita rate δD . 
Damaged bystander cells ( J ) are generated from an extensive proinflammatory response at a rate that is a Hill 
function of the number of activated immune cells D1 . Infected cells die due to viral cytopathic effects at rate 
δI and damaged cells die from their injury at rate δJ . The clearance of these cells also occurs by the action of 
activated innate immune cells at rate κ1D1 . The effect of the adaptive immune response is modeled by adding a 
constant term κ2 to the clearance of infected cells at time τ after infection. Finally, homeostatic processes allow 
replenishment of the population of resting cells (D0) at rate �(D00 − D0) , where D00 is their homeostatic  level.
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Modeling the course of infection in the absence of immune responses. We describe the course of the infection in 
the absence of immune response through cells susceptible to viral infection ( T ) that can become infected ( I ) by 
contact with virions ( V  ). We assumed this process follows mass action with rate βV  . Infected cells die at constant 
rate δI due to viral cytopathic effects. Infected cells produce virions at rate p , which are cleared at per capita rate c.

Modeling inflammation and the innate immune response. The model focuses on molecular patterns that initiate 
an inflammatory response. Pathogen associated molecular patterns (PAMPs) trigger an inflammatory response 
by signaling the presence of  pathogens18. An inflammatory response can also be initiated in the absence of path-
ogenic infection through recognition of damage associated molecular patterns (DAMPs)19. Various conditions 
promote DAMP expression including hypoxia, low levels of glucose and amino acids, exposure to heat, physical 
stress or exposure to toxic molecular  products19–22. Many of the same conditions that promote DAMP expres-
sion can be induced by inflammation itself, for example, an excessive presence of neutrophil extracellular traps 
(NETs) released during inflammation is linked to  immunothrombosis23. This can contribute to hypoxia and 
nutrient deprivation that can lead to DAMP  expression24. Overall, a positive feedback loop between inflamma-
tion and DAMP expression may be  triggered22,24. Interestingly, patients with severe COVID-19 have increased 
levels of  NETs25,26. NETs and platelet dysregulation may be specific to COVID-19 and both are associated with 
lung microthrombi, conditions that can ultimately favor an inflammatory response in the  lungs27.

The inflammatory response signals a need to eliminate infected or damaged cells and protect the rest of the 
organism from the perceived danger. Infected cells carrying PAMPs and uninfected cells producing DAMPs 
are represented by I and J in the model, respectively. In the organism, these molecular patterns promote the 
downstream recruitment and activation of numerous innate immune cells such as neutrophils, monocytes, 
macrophages and natural killer (NK)  cells28. For simplicity, we lumped all cells that take part directly or indi-
rectly (through cytokine signaling) in cytolytic or phagocytic activities into two model compartments, D0 and 
D1 representing resting and activated phenotypes, respectively. In our model, the rate at which D0 cells become 
D1 is proportional to the amount of PAMPs and DAMPs, themselves assumed proportional to the number of 
cells carrying these molecules, i.e. σ(I + J). We further assumed resting cells D0 have a homeostatic level D00 , 
that they maintain through the recruitment of resting immune cells over the course of infection at rate � . We 
assumed D0 cells are long-lived compared to the duration of acute infection, and that activated cells decay at rate 
δD . The role of D1 in our model is to promote cytolytic and phagocytic activities to rid the system of PAMPs and 
DAMPs. Due to the innate nature of the modeled response, we assumed the effect to be similar on the decay of 
both I and J at per capita rate κ1D1 . This was partly motivated by the behavior of NK cells, which target injured 
epithelial cells through stimulation of receptor NKG2D, as well as infected cells having down-regulated major 
histocompatibility complex class 1 (MHC-I) molecules or upregulated MHC class I polypeptide–related sequence 
A (MICA) or sequence B (MICB)29,30.

We assumed that high levels of inflammation can induce significant cellular stress and promote the expression 
of DAMPs in bystander cells. This is represented by the Hill term in Eq. (5) for the rate of generation of uninfected 
cells expressing DAMPs with ν being the maximum damage rate, K being the D1 concentration leading to half 
of the maximum damage rate, and m is the Hill coefficient. We assumed damaged cells decay at rate δJ < δI in the 
absence of an innate immune response.

Finally, we assumed an additional innate immune response, e.g., a type-I interferon response. Type-I inter-
ferons signal danger to neighboring cells, making the latter refractory to infection ( R)31. For simplicity, we 
approximated the amount of interferon in the microenvironment to be proportional to the number of infected 
 cells32. Accordingly, we modeled the rate at which susceptible cells become refractory (R) by κ0I. Refractory cells 
expected to naturally revert to a susceptible state after 1/δR.

Modeling the adaptive immune response. The model mainly focuses on the innate response. To avoid unneces-
sary complexity, the adaptive immune response is represented by a single term that includes two parameters: κ2 , 

(2)
dR

dt
= κ0TI − δRR

(3)
dI

dt
= βTV − I(δI + κ1D1 + It>τ κ2)

(4)
dV

dt
= pI − cV

(5)
dJ

dt
=

νDm
1

Dm
1
+ Km

− J(δJ + κ1D1)

(6)
dD0

dt
= �(D00 − D0)− σ(I + J)D0

(7)
dD1

dt
= σ(I + J)D0 − δDD1
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which is the maximum decay rate of infected cells due to the adaptive immune response, and τ, which represents 
the time post-infection that the adaptive response takes effect. This approach is similar to that in Pawelek et al.33. 
This response is thus modeled using the indicator function It>τ(t).

Structural analysis of the model. A substantial minority of individuals with COVID-19 experience a 
state of sustained high inflammation or  hyperinflammation9. We evaluated whether the model allowed the exist-
ence of such a hyperinflammatory state. We used D1 as a marker of inflammation. Through a bifurcation analy-
sis, we searched for the existence of a stable steady state of resolved inflammation ( D1 = 0) and the existence of a 
second stable steady state of hyperinflammation where D1 is maintained well above 0. This type of analysis also 
allows identifying basins of attraction, i.e. regions in the space of variables that lead to specific inflammation tra-
jectories over time. We used analytical techniques combined with the numerical bifurcation software  Matcont34, 
a Matlab software package designed for the analysis of equations such as Eqs. (1–7)35,36. Matcont uses continu-
ation techniques to follow equilibria and performs normal form computations to classify bifurcation points.

Set of virtual markers. To analyze model behavior, a set of virtual markers were computed. These mark-
ers were used to compare model predictions to clinical observations and to investigate determinants of severe 
COVID-19. These markers are: (i) the peak viral load (peak VL, maximum value of V); (ii) the time of peak 
viral load; (iii) the difference between the viral load at its peak and the viral load 5 days after the peak; (iv) peak 
D1(used as a proxy measure for peak inflammation); (v) the time of peak D1 ; (vi) D1 at 60 days post-infection.

We further computed the hyperinflammation index, which takes a value of 1 if the value of  log10 (D1) at 
the end of the simulated period was more than 99% of its peak value, and 0 otherwise. This resulted in the 
categorization of each simulation into inflammation trajectory groups: (i) resolved inflammation (R) or (ii) 
hyperinflammation (H). Finally, we computed the Disease Score, defined as the total number of cells (I + J) that 
died over the 60-day period post-infection. This score is meant to describe disease severity, with higher scores 
representing more severe COVID-19.

Identifying a space of realistic parameter values. The next step consisted in identifying a space of 
parameter values for which model predictions are consistent with a minimal set of clinical observations to allow 
in silico investigation of the model. In particular, acceptable parameter values should result in: (i) peak viral 
loads (VL) values between 4 and 10  log10, (ii) peak viral loads achieved 2 to 14 days following infection, and 
(iii) an innate immune response during the course of infection (the activation of at least 1% of all resting innate 
immune cells). These are referred to as conditions (i)–(iii). Condition (i) was chosen to represent peak viral loads 
observed using nasopharyngeal swabs in a population of individuals infected by the  virus7,37. Condition (ii) was 
chosen based on reports of peak viral loads occurring around the time of symptom onset and symptom onset 
primarily occurring within 14 days of infection (median 4–5 days)14,16,32,38. Finally, we chose condition (iii) to 
ensure D1 reaches high enough values for an observable effect of D1 on either I(t) or J(t).

The determination of the space of parameter values that satisfy the above conditions was done iteratively. 
First, we established bounds of values for each parameter using literature estimates when available, results from 
the bifurcation analysis to ensure that hyperinflammation was achievable, and preliminary simulations when 
no estimate was available (see Table 1). We then selected n = 100,000 vectors of parameters from the parameter 
space using a Latin hypercube approach to minimize the chances of unexplored multidimensional  subspaces39. 
Simulations were performed for each selected vector of parameters using initial conditions listed in Table 2 to 
predict infection and inflammation trajectories from day 0 (day of infection) to day 60. We identified regions 
in the parameter subspace leading to unacceptable results based on the conditions (i)-(iii) listed above. We 
subsequently refined the parameter space and repeated the procedure until we were satisfied that a randomly 
selected vector of parameters would lead to a high likelihood of satisfying acceptance criteria (i) to (iii) (> 70% 
acceptance probability). Table 1 describes all parameters, the resulting space of parameter values along with 
references from the literature when applicable.

Simulating clinical observations. We sampled a large number of sets of parameter values (n = 1,000,000) 
from the space of parameter values described in Table 1 using a Latin hypercube  approach39. Accordingly, the 
marginal distribution of values being sampled for each parameter was uniform across the considered range 
(Table  1). For each selected vector, simulations were performed using initial conditions listed in Table  2 to 
predict infection and inflammation trajectories from day 0 (day of infection) to day 60. Analyses were only 
performed on the simulations satisfying the acceptance criteria (conditions (i)–(iii)). We first investigated the 
distribution of parameter values and virtual markers using histograms. We used violin plots to study bivariate 
associations between parameters and inflammation trajectory groups (resolved inflammation or hyperinflam-
mation). Multivariate analyses were performed using decision  trees45. We used the hyperinflammation index as 
the variable being predicted by model parameters. We first obtained a single tree. Cross-validation and deviance 
plots were used to guide the choice of the optimal  tree45. To account for uncertainty around the formulation of a 
single tree, we also performed a Random Forest analysis, generating 100 trees, and reported the mean decrease 
in GINI index (a measure of decreased node impurity from choosing a parameter for tree splits, i.e. its ability to 
discriminate inflammation trajectory groups)46.

Simulating the effect of treatments on COVID‑19 severity. Finally, we evaluated if the model could 
replicate clinical findings regarding the treatment of COVID-19. For this purpose, we selected 10,000 simula-
tions leading to lower Disease Severity scores and the same number of simulations leading to higher scores 
from the sample of accepted simulations. To allow comparison with clinical data, we assumed the former group 
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represents mild/moderate disease, while the latter represents severe COVID-19. To simulate the use of corticos-
teroids, we assumed a reduction of D1 by 50% for a period of 10 days. To simulate the use of potent antivirals, we 
decreased parameters β or p to 1% of their original value at peak viral load for the remainder of the simulation. 
For each simulation, we modified parameter values at the time of peak viral load as it is estimated that the peak 
is reached within the few days following symptom  onset14,32,38. We also simulated treatment administration a day 
prior to the expected viral load peak to study the effect of early treatment. The difference in  log10 Disease Score 
(with vs without treatment) was computed and reported.

Table 1.  Model parameters, the range of explored values used for the in silico investigation along with 
justifications and references. Par Parameters.

Par Description (unit) Range of explored values Justification and References

β Infectivity rate  (virion−1  day−1) [− 12;− 6]  (log10 scale)

β values of 1.9E-6 and 6.6E-7 were used in Ke et al. for the upper and 
lower respiratory tract,  respectively40. A value of 5.2 ×  10–6 was used in 
Kim et al.14. A larger range of values was used to account for variability 
between individuals and uncertainty in parameter values due to a pos-
sible correlation with parameter p

p Virion production rate (virions  cell–1  mL−1  day−1) [–1;4]  (log10 scale)

p values of 51.4 per swab per day and 0.35 per mL per day were used 
in Ke et al. for the upper and lower respiratory tract,  respectively40. A 
larger range of values was used to account for variability between indi-
viduals and uncertainty in parameter values due to a possible correla-
tion with parameter β . Accordingly, it was inefficient to sample β and p 
independently. It was determined through linear regression that a value 
of log10p determined by  6.8–1.0*log10β + U, where U is a uniform 
random variable with range [ 0.4;0.5], greatly enhanced the likelihood 
of peak viral loads being between 4 and 10  log10 and occurring between 
day 2 and 14 post-infection .

δI Death rate from viral cytopathic effects  (day–1) [0.05;0.1]

Jenner et al. used an infected cell death rate of of 0.014  day–1 in the 
preprint version of the paper 11. The lower bound was reviewed to allow 
a greater probability of satisfying the simulation acceptance conditions 
(see Methods). A study demonstrated that viral production from 
infected cells was maintained at high levels for up to 6 days in vitro41

c Virion clearance rate  (day–1) [10;30] Values explored in Goncalves et al. as well as Ke et al. were between 5 
and 20  day–132,37

κ0 Rate of transition to IFN induced refractory state  (cell–1  day–1) [− 8;− 5]  (log10 scale) A value of 1.3 ×  10–6 was estimated in Ke et al.32

δR Refractory state reversion rate  (day–1) [− 4;− 2]  (log10 scale) A value of 0.0044  day–1 was estimated in Ke et al.40

τ Time delay of adaptive immune response post-infection (days) [7;40]
The range was chosen to match the variability between individuals 
in time of viral clearance post-infection, with a median of around 
25  days7,40

κ2
Effect of adaptive immune response on the clearance of infected cells 
 (day–1) [2;6] This range was chosen to ensure viral clearance is achieved shortly after 

τ  days

m Hill coefficient for bystander cell damage 3
A value of 3 ensures a steep progression of the damage rate as a func-
tion of D1. In other words, we assumed that the damage due to inflam-
mation is not substantial unless inflammation reaches high levels

ν Maximum bystander damage rate (cells  day–1) [7.5;8.5]  (log10 scale)
An initial range of values was chosen based on bifurcation analyses. The 
range was refined to ensure that around 5–20% of simulations led to 
hyperinflammation

K D1 concentration leading to half the bystander damage rate (cell) [1.5 ×  106;2 ×  106]
An initial range of values was chosen based on bifurcation analyses. The 
range was refined to ensure that around 5–20% of simulations lead to 
hyperinflammation

δJ Death rate from cell damage [0.01;0.05] Chosen such that the death rate for damaged cells is slower than for 
infected cells

D00 Resting immune cells homeostatic constant (cells  mL–1) 106

A value of  106 was used for alveolar macrophages in Smith et al.42. Val-
ues ranging from 4 ×  105 and 3 ×  107 were used for various populations 
of innate immune cells in Jenner et al.11. A single value was used since 
we were not interested in investigating the impact of variability in D00 
on the severity of COVID-19

� Resting immune cells replenishing rate or recruitment rate  (day−1) [− 2;1]  (log10 scale) A comparative value of 0.22 was used in Jenner et al. for  monocytes11

σ Innate immune cell activation rate  (cell–1  day–1) [− 8.5; − 7.5]  (log10 scale)
A value of the order of 1 ×  10–6 was used in Jenner et al.11. The range 
of values was adjusted to ensure that at least 1% of all resting innate 
immune cells activated over the course of infection and that high 
inflammation levels ( D1 > 1 ×  106) did not occur prior to peak VL

δD Activated innate immune cell average death rate  (day–1) [0.1;0.3]

A value of 0.3 was used for activated macrophages in Jenner et al.11. A 
value of 0.04 was used for activated macrophages in Pawelek et al.43.
Natural killer cells are shown to have a turnover of around 2  weeks44. In 
Sadria et al., a value of 0.2 was used to represent the natural death rate 
of effector  cell13

κ1
Effect of innate immune response on the clearance of PAMP and 
DAMP expressing cells  (cell–1  day1) [− 8;− 4]  (log10 scale)

An initial range of values was chosen based on bifurcation analyses. The 
range was refined to ensure that around 5–20% of simulations lead to 
hyperinflammation



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14210  | https://doi.org/10.1038/s41598-022-18244-2

www.nature.com/scientificreports/

Results
The model allows two stable steady states (Hyperinflammation and resolved inflammation) 
under realistic parameter values. To understand the general dynamics of the model given by Eqs. (1)–
(7) and the types of infection outcomes predicted by the model, we first performed a bifurcation analysis using 
baseline parameter values (see Supplementary Material for detail). Interestingly, the analysis shows that under 
certain biologically plausible parameter values, there exists bistability in the system with both a stable hyperin-
flammatory state and a stable resolved inflammatory state. In more technical terms, there are three equilibria 
in the model: a stable high-inflammation state corresponding to hyperinflammation, an unstable equilibrium 
with non-zero, but low, inflammation and another stable equilibrium corresponding to resolved infection and 
resolved inflammation. The first two steady states appear/disappear following a saddle-node bifurcation as 
shown in the bifurcation plots (Figs. S1 and S2).

The bifurcation analysis identified important parameters that dictate the existence of a hyperinflammatory 
steady state: (i) κ1 , which represents the effect of the innate response ( D1) on the clearance of cells carrying 
PAMPs and DAMPs, and (ii) the parameter ν that dictates the amount of bystander cell damage resulting from 
inflammation (Fig. S1). Our analysis shows there is a threshold value of κ1 beyond which the hyperinflammatory 
state ceases to exist (Fig. S1A). Further, hyperinflammation can only occur if there is enough immune driven 
inflammation beyond a threshold value of ν (Figs. S1B and S2B).

When bistability exists in the system, inflammation trajectories could either converge to one stable state or the 
other over time. What determines the long-term inflammation trajectory is the amount of bystander cell damage 
J caused by inflammation over the course of the infection. Mathematically, this is represented by a saddle-node 
bifurcation. The unstable lower branch of equilibria acts as a separatrix between the hyperinflammatory and 
resolved-inflammation states and so defines the basin of attraction of the hyperinflammatory state (see Fig. S1). 
Thus, hyperinflammation can only occur if the infection induced inflammation is severe enough to force the 
system across this separatrix and into this basin.

Overall, these results suggest that the clearance of cells carrying PAMPs and DAMPs and the amount of 
bystander cell damage from inflammation are important determinants of disease outcomes. When the clear-
ance rate of infected and damaged cells is sufficiently high or bystander cell damage is low, infection leads to 
non-severe outcomes.

Model simulations of a virtual cohort of infected individuals. We next simulated the model by sam-
pling n = 1,000,000 sets of parameter values across biologically plausible ranges (Methods). We use these simula-
tion results to analyze the different viral load and inflammatory response trajectories in the population, such that 
key determinants of disease outcomes can be further identified. In our analysis, we only included simulations 
satisfying the acceptance criteria that are consistent with broad patterns seen in clinical studies (described in the 
Method section as conditions i-iii) (accepted simulations, n = 739,465 of 1,000,000 or 73.9%). The distribution 
of parameter values that led to accepted simulations are presented in Supplementary Material (Fig. S3). Most 
parameters preserved their sampling distributions, i.e., the distribution remained uniform across the considered 
ranges after discarding simulations that do not satisfy the acceptance criteria. Further, there was little correlation 
between almost all parameters. However, there was a strong correlation between β and p ( 0.99). Consequently, 
parameters β and p could not be independently sampled in order to output acceptable simulations (Fig. S4). 
Table 1 describes the sampling strategy used to account for this dependency.

A strong association between hyperinflammation and the disease score. To represent disease 
severity, we define the Disease score as the total number of infected and bystander cells I and J that died over 
a 60-day period. Simulations that give rise to the Disease Score distribution are illustrated in Fig. 2. They are 
categorized in groups by inflammation trajectory: (i) the inflammation marker D1 decreased after peak inflam-
mation or (ii) the inflammation marker D1 kept increasing or was maintained at high level following peak 
inflammation (hyperinflammation). There was a direct link between the presence of hyperinflammation and the 
Disease Score (see Fig. 2a). Overall, 13.5% of accepted simulations exhibited hyperinflammation. Hyperinflam-
mation and a high Disease Score were both associated with a higher number of cells that died following injury 
from inflammation (Fig. 2b).

Table 2.  Initial conditions for all simulations.

Variable Description Initial value

T Target cells 4.8 ×  108  cells40

R Refractory cells 0 cells

I Infected cells 10 cells

V Virions 0 virions

J Damaged cells 0 cells

D0 Resting innate immune cells D00 (see Table 1)

D1 Activate innate immune cells 0 cells
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Similar viral load but divergent inflammation trajectories. Viral load and inflammation trajectories 
over time by inflammation groups are presented in Fig. 3. Simulations resulting in both resolved inflammation 
or hyperinflammation exhibited similar viral load dynamics. The distribution of peak viral load and the time 
to reach this peak after infection largely overlapped between groups. However, those with resolved inflamma-
tion tended to have a faster VL decay after peak VL (Fig. 3c). The most remarkable difference between groups 
pertained to the dynamics of the inflammation marker D1 . Peak levels of inflammation were higher for simula-
tions resulting in hyperinflammation. For those with resolved inflammation, peak inflammation was generally 
observed around the time of peak viral load while for those with hyperinflammation, peak inflammation was 
observed much later (Fig. 3h).

Association between hyperinflammation and characteristics of the innate immune 
response. Next, we compared the distribution of parameter values between inflammation trajectory groups. 
Figure 4 shows violin plots for the 15 parameters that were allowed to vary between simulations. The most strik-
ing differences between groups are observed for parameters κ1, �, κ0, σ , δD and ν . Lower values of κ0 (type-I IFN 
secretion and/or response) and κ1 (cytolytic and phagocytic activities of innate immune cells) were associated 
with a greater risk of hyperinflammation and a high Disease Score. Similarly, higher values of � (innate immune 

Figure 2.  (a) Distribution of Disease Scores and (b) distribution of the total number of bystander cells that died 
by inflammation trajectory groups: Resolved inflammation (orange), Hyperinflammation (pink).

Figure 3.  Viral load and inflammation trajectory characteristics by inflammation trajectory groups. (a) Viral 
loads over the course of infection. The shaded area corresponds to the 10th and 90th percentiles of the viral 
loads, while the curve represents the median. (b) The distribution of peak viral loads, (c) the VL decay from 
peak infection to 5 days after peak infection and (d) the time of occurrence of peak VL after infection. (e) 
Inflammation trajectories by inflammation trajectory groups. The shaded area corresponds to the 10th and 90th 
percentiles of D1 , while the curve represents the median. (f) the distribution of peak D1 , (g) the distribution of 
D1 at 60 days post-infection and (h) the time of occurrence of peak D1 after infection. In orange and represented 
by the symbol R, Resolved inflammation. In pink and represented by the symbol H, Hyperinflammation.
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cell recruitment rate), σ (activation rate), 1/δD (survivability of activated innate immune cells) and ν (damage 
rate due to inflammation) were associated with hyperinflammation and a high Disease Score.

Figure 4.  Distribution of the model parameters by inflammation trajectory groups. Distribution overlap may 
be discriminated from multivariate models. Inflammation trajectory groups R: Resolved inflammation, H: 
Hyperinflammation.

Figure 5.  Regression tree analysis results. (a) Single optimal tree for the prediction of hyperinflammation 
from model parameters. The tree reads from left to right. At each labeled node, simulations either go up if 
the value for the associated parameter is higher than a threshold determined by the procedure (threshold not 
shown, see Supplementary Figure S7), or down otherwise. Branch length represents the amount of classification 
error explained by the node. At each terminal node, the percentage of simulations as well as the risk of 
hyperinflammation within members of the node are reported. (b) Parameter importance based on the GINI 
index. A greater mean GINI decrease indicates a parameter that is more discriminatory.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14210  | https://doi.org/10.1038/s41598-022-18244-2

www.nature.com/scientificreports/

Prediction of the risk of hyperinflammation from characteristics of the innate immune 
response. We used regression tree analysis to reveal the discriminatory importance of parameters from a 
multivariate perspective. The regression trees attempted to discriminate simulations leading to hyperinflamma-
tion from those leading to a resolved inflammatory state. Results are shown in Fig. 5.

The tree has a root (left side), branches, nodes (where branches separate) and terminal leaves (right side). 
Simulations enter at the root and separate at nodes. At each node, one parameter and one threshold value were 
chosen by the regression algorithm based on their ability to separate simulations into more homogeneous groups 
in terms of inflammation trajectory. Simulations are directed toward the lower branch if the value for the chosen 
parameter for the simulation is smaller than the threshold, or toward the upper branch otherwise. This resulted 
in 5 terminal leaves that partitioned all simulations into 5 groups. Longer branches following a node signify that 
the node allowed a better separation of the two inflammation trajectory groups.

Figure 5 illustrates the multivariate conditions favoring hyperinflammation. The most important param-
eters pertain to type-I IFN response, the ability of the system to clear cells carrying PAMPs and DAMPs ( κ0 
and κ1 ) and the immune cell activation and recruitment rate ( σ and � ). In particular, combined low values of κ0 
and κ1 and high values of σ and � led to a dramatically increased chance of hyperinflammation (73.2% risk of 
hyperinflammation).

Differences in the effect of treatments in terms of treatment type, administration time and 
predicted disease severity. To validate and demonstrate the utility of our model, we simulated the use of 
corticosteroids and antivirals in infected individuals and compared the model results with clinical findings. First, 
we modeled corticosteroid treatment by assuming the treatment leads to a reduction of D1 by 50% for a period 
of 10 days following peak infection. The in silico administration of corticosteroids had a remarkably different 
effect on the Disease Score depending on the inflammation trajectory groups (Fig. 6). Among those simulations 
where resolved inflammation is predicted in the absence of treatment (orange plot), corticosteroids were often 
detrimental (32% chance of an increase in Disease Score). Such a detrimental effect was not observed among 
those for which hyperinflammation was predicted in absence of treatment (pink plot). Greater improvements 
were observed in the latter group: 23% had a greater than 0.5  log10 decrease in Disease Score, compared to only 
0.7% in the former group. There were only small differences in the effect of corticosteroids across the investigated 
timing of drug administration (at peak viral load in Fig. 6a and a day prior in Fig. 6b). Corticosteroid treatment 
also had an effect on the slope of viral load decay, which was substantial for those simulations of mild/moderate 
disease and lesser among simulations of severe COVID-19 (Fig. S8).

Simulations of the effect of antivirals were performed by decreasing parameters p or β to 1% of their original 
value at peak viral load. Modifying p or β had a very similar effect on Disease Scores. None of the simulations 
revealed a substantial increase in Disease Score. However, the impact of antivirals was very different between 
inflammation trajectory groups and between times of drug administration. Earlier drug administration led 
to large improvements in Disease Score for both groups (Fig. 6b). However, administration at peak viral load 

Figure 6.  Violin plots of the effect of virtual treatment on the Disease Score. (a) represents administration of 
corticosteroids while (b) represents antiviral drug administration. Negative values represent improvements 
while positive values represent the worsening of symptoms. Note there were no clear difference between a 
reduction in β or p in the simulation of antivirals so the figure applies to both cases. Orange denotes the effect of 
treatment among individuals who would have resolved inflammation in the absence of treatment, whereas pink 
denotes the effect of treatment among individuals who would have had hyperinflammation in the absence of 
treatment.
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led to much reduced improvements in Disease Score (Fig. 6a), in particular for those simulations leading to 
hyperinflammation in absence of treatment. In this case, infection had already driven inflammation to high 
levels by the time peak viral load was reached (although peak inflammation was not reached until much later), 
which translated into a number of damaged cells that corresponded to being within the basin of attraction of 
hyperinflammation (Fig. S1).

Discussion
In this work, a mathematical model was formulated to represent the within-host dynamics of COVID-19 infec-
tion and inflammation. The objective was to provide a quantitative explanation for the range of COVID-19 
symptom severity among individuals and to reveal the discriminatory importance of modeled mechanisms. The 
hypothesis we explored was that high levels of inflammation in COVID-19 may produce a significant amount 
of damage to uninfected cells. These cells would then produce DAMPs that further stimulate the inflammatory 
response. This model produced predictions that are consistent with clinical observations.

Hyperinflammation and disease severity. The model predicts that those with higher Disease Scores 
had substantially higher levels of inflammation (Fig.  2a). Further, peak inflammation was not reached until 
much later in those simulations leading to hyperinflammation (Fig. 3h). These modeling results are consist-
ent with clinical findings that non-survivors tend to experience hyperinflammation and increasing levels of 
inflammatory biomarkers up to the time of  death7,9,47. Our analysis provides an explanation of these findings. 
In particular, the numerical bifurcation analysis suggests that viral infection can push the immune system into 
a self-sustaining high inflammatory state that can persist well beyond the resolution of infection. This hyper-
inflammatory state causes additional damage to uninfected cells, consequently leading to much higher Disease 
Scores. Due to the strong association between hyperinflammation and the Disease Score, we used those simula-
tions that led to hyperinflammation as an in silico description of severe COVID-19. The percentage of simula-
tions exhibiting hyperinflammation (13.5%) closely matched the reported proportion of the infected population 
with severe COVID-19 (14%), further motivating this  decision1.

Viral load dynamics and disease severity. In terms of viral load, the main difference that was reported 
between severe COVID-19 and those with milder disease pertained to the slope of VL after disease  onset7. In 
particular, a faster VL decay was observed for those with milder disease after symptom onset, as measured using 
nasopharyngeal  swabs7. This finding was also reported for VL sampled using other means and from various 
physiological  compartments48. Interestingly, disease severity does not correlate strongly with peak viral  loads7,48. 
Our simulation results are consistent with these findings (Fig. 3b and c).The model offers an explanation to 
the slower viral load decay after peak infection in cases of severe COVID-19 through parameter κ1; a lower κ1 
value both results in slower clearance of productively infected cells (see Eq. 3) and increases the risk of hyper-
inflammation (see Fig. 5). In fact, having a low κ1 value was the most important predictor of hyperinflamma-
tion (Fig. 5b). In the model, low κ1 values lead to the persistence of I and J cells, thereby prolonging PAMP 
and DAMP signaling and its downstream impact on the inflammatory response. The heightened inflammatory 
response promotes the generation of damaged cells J , strengthening DAMP signaling. Our analysis suggests that 
the ensuing feedback loop is the hallmark of hyperinflammation and severe COVID-19.

Characteristics of the innate immune response and disease severity. Many clinically observed 
associations were found between components of the innate immune response and disease severity. Among them, 
a dysregulated IFN response has been repeatedly associated with severe COVID-1910,49. Comparatively, our 
model suggests that a weaker IFN antiviral response (lower κ0) leads to a higher likelihood of hyperinflamma-
tion (see Figs. 4c, 5a,b). One of the roles of type-I IFN is to limit the number of target cells that can be  infected31. 
Although it did not have a big impact on peak VL or the time to reach this peak in our simulations, an efficient 
type-I IFN response (higher κ0 values) had a significant impact on inflammation. IFN by limiting the rate and 
the shear number of cells that carry PAMPs also constrains inflammation.

Poor NK-cell cytotoxic ability was also linked with severe COVID-1950. NK-cells are important actors in the 
innate immune response that can target both infected and damaged cells and release molecules that precipitate 
their  apoptosis29,30. In the model, poorer clearance of cells having PAMPs and DAMPs by the innate immune 
response is represented by lower κ1 values, the most important predictor of hyperinflammation and severe 
COVID-19 (Fig. 5b). A poorer response from NK cells could hence lead to severe COVID-19 by enabling pro-
longed PAMP and DAMP signaling. Patients with severe COVID-19 also have increased levels of neutrophil 
extracellular traps (NETs)25,26. These can lead to immunothrombosis and the generation of damaged  cells23,24. 
In the model, higher generation of damaged cells is represented by larger values of the parameter ν (Eq. 5). The 
bifurcation analysis suggests that larger values of ν lowers the threshold for the number of damaged cells that are 
required to reach a hyperinflammatory state (Fig. S1), facilitating severe COVID-19.

Finally, clinically defined severe COVID-19 has been associated with higher abundance and activation of 
proinflammatory  macrophages51. In the model, those with higher disease scores had a higher number of innate 
immune cells ( D0 + D1 ) and a higher proportion of these cells were activated. The parameters that dictate innate 
immune cell recruitment ( � ) and activation ( σ ) were both strongly associated with hyperinflammation and 
having a high Disease Score.

Effect of corticosteroids and antivirals on disease severity. We evaluated if the model could rep-
licate clinical findings regarding the treatment of COVID-19. We used the model to simulate the treatment of 
corticosteroid, such as dexamethasone, or an effective antiviral. The model predictions are consistent with many 
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clinical findings, suggesting that the model we developed here will be a useful tool to understand SARS-CoV-2 
pathogenesis and predicting the impact of treatment. Indeed, observational studies revealed the use of corticos-
teroids can lead to more severe symptoms in those with milder disease, but generally improves outcomes for 
those with more severe  symptoms51–55. Further, it is reported that those with milder COVID-19 generally experi-
ence slower viral load decay under corticosteroid treatment, an effect that was not found to be statistically sig-
nificant among those with severe  disease52. This latter result was also observed in our simulations (Fig. S8). One 
of the roles of inflammation is to stimulate cytolytic and phagocytic activities. By lowering this ability among 
those who experienced milder disease, the use of corticosteroids may lead to slower viral clearance. Hence, cor-
ticosteroids could have both a negative effect (slower clearance of PAMP carrying cells) and a beneficial effect 
(slower rate of bystander cell damage) on disease pathogenesis in those with mild disease. This could result in 
corticosteroids sometimes improving, sometimes worsening disease severity. Comparatively, the net beneficial 
effect of corticosteroids on those with severe COVID-19 may be the result of a smaller downstream impact of 
the drug on already less efficient NK  cells50.

For antivirals, simulations suggest that early administration is crucial for antivirals to impact disease sever-
ity, particularly for those that would have experienced severe COVID-19 in absence of treatment (Fig. 6). Our 
results also suggest the existence of an inflammation threshold beyond which antivirals may be unable to prevent 
hyperinflammation. It also suggests that early administration could reduce disease severity by preventing the 
infection from driving inflammation across the threshold. Comparatively, many clinical trials failed to show 
a substantial effect of  antivirals56. More recently, a reduction of around 50% in the risk of hospitalization was 
observed after administering the antiviral  molnupiravir57. The studied cohort consisted of individuals that had 
mild/moderate symptoms and were not expected to be hospitalized within 48 h of  randomization57. Our results 
suggest this latter criteria may be crucial to ensure the beneficial effect of antivirals on disease severity.

Fitting clinical markers of disease severity. We used the disease score as a proxy measure of disease 
severity in our model. Quantitatively fitting our model by comparing the disease score with usual clinical disease 
severity scores may be inappropriate as it would require an established relationship between these quantities. In 
addition, clinical score data may be too sparse to reliably estimate the parameters in our model. Instead, biologi-
cally plausible parameter ranges were used to investigate gross changes in disease severity. Accordingly, changes 
that give rise to sufficiently different distributions of disease severity, such as those effected by some variants of 
concern, may inform parameters characterizing the variants. For example, the delta variant may cause overall 
higher viral  loads58, which would lead to stronger immune activation on average, explaining the higher severity 
of this variant.

Other within‑host models of SARS‑CoV‑2 infections. The model we propose is unique, but many 
of the effects it includes are present in other within-host models of SARS-CoV-2 infection. Despite differ-
ences in model formulations, there is a general agreement across models about the necessity for early antiviral 
 administration12–15. However, models differed in terms of the components of the inflammatory, innate or adap-
tive immune response they  include11–17. Some of the models included an effect of type-I interferon, either as a 
promoter of the pro-inflammatory response or helping susceptible cells resist  infection11–13. One of these models 
concluded, as per our analysis, that an inefficient type-I IFN response can lead to accentuated tissue  damage11. 
In comparison, our model simultaneously explains the more important clinical associations between severe 
disease and biomarkers of the innate immune response. It distinguishes itself by the inclusion of both a positive 
feedback loop between damaged cells and inflammation and an effect of innate immune cells on both infected 
and damaged cells. This latter effect highlights the importance of cells capable of clearing both types of cells in 
the pathogenesis of severe COVID-19.

Clinically, it has been shown that many individual characteristics, such as age and immune markers, e.g. 
lymphocyte counts and neutrophil counts, are associated with COVID-19 disease  severity59.This complexity 
contrasts with the simplicity of the model we propose. While it is likely that many factors are involved in severe 
disease development, our model represents a high-level description of some of the physiological pathways, in 
particular, the innate immune response pathways, that may be involved in disease progression. This is consistent 
with the data from Li et al. and Lasso et al. that many immune markers predict disease severity better than other 
features, such as demographic  characteristics59,60. Although we investigated more complex models, we decided 
against the modeling of individual cytokines or cells, as they often exhibit overlapping functions, and because 
some of these functions have been poorly studied leading to uncertainties in parameter values. However, some 
of the more complex models reported in the literature did give rise to interesting hypotheses that may warrant 
further investigation, such as the role of monocyte-to-macrophage differentiation or the role of anti-inflammatory 
 cytokines11,12. Further, more complex models have provided complementary insight on the conditional impact 
of immunomodulatory treatment on disease severity that are consistent with the results reported  herein61,62.

Conclusion
Our analysis revealed key aspects of the innate immune response that dictate inflammation trajectories and 
disease severity. The most important parameter suggested by bifurcation and decision tree analyses was κ1 , rep-
resenting the ability of the system to rid itself of cells carrying PAMPs and DAMPs. The analysis suggested that 
when this parameter is high enough, hyperinflammation can be avoided. The bifurcation analysis also suggested 
that small values of ν , representing the amount of bystander cell damage due to inflammation has a similar effect. 
In other words, the ability of the innate immune response to target PAMPs and DAMPs carrying cells appears 
to be key to the determination of COVID-19 severity. This suggests that therapies that specifically target aspects 
of the innate immune response may prove beneficial in comparison to broadly acting anti-inflammatory agents. 
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The model also underlined the role of DAMPs in maintaining high levels of inflammation later in the course 
of infection. It suggests DAMPs may be an interesting therapeutic target for COVID-19. When exploring such 
novel treatment strategies, the model presented here could provide a means of exploring timing of treatment and 
dose effects in silico. Hopefully, a better understanding of the pathology of SARS-CoV-2 will lead to decreased 
mortality in this and similar diseases.
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