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S‑Pred: protein structural property 
prediction using MSA transformer
Yiyu Hong1, Jinung Song1, Junsu Ko1, Juyong Lee1,2 & Woong‑Hee Shin1,3,4*

Predicting the local structural features of a protein from its amino acid sequence helps its function 
prediction to be revealed and assists in three‑dimensional structural modeling. As the sequence‑
structure gap increases, prediction methods have been developed to bridge this gap. Additionally, as 
the size of the structural database and computing power increase, the performance of these methods 
have also significantly improved. Herein, we present a powerful new tool called S‑Pred, which can 
predict eight‑state secondary structures (SS8), accessible surface areas (ASAs), and intrinsically 
disordered regions (IDRs) from a given sequence. For feature prediction, S‑Pred uses multiple 
sequence alignment (MSA) of a query sequence as an input. The MSA input is converted to features by 
the MSA Transformer, which is a protein language model that uses an attention mechanism. A long 
short‑term memory (LSTM) was employed to produce the final prediction. The performance of S‑Pred 
was evaluated on several test sets, and the program consistently provided accurate predictions. The 
accuracy of the SS8 prediction was approximately 76%, and the Pearson’s correlation between the 
experimental and predicted ASAs was 0.84. Additionally, an IDR could be accurately predicted with an 
F1‑score of 0.514. The program is freely available at https:// github. com/ aront ier/S_ Pred_ Paper and 
https:// ad3. io as a code and a web server.

Proteins play an important role in biological processes, and their structures are closely linked to their functions. 
To characterize their structures, various experimental methods, such as X-ray crystallography, nuclear magnetic 
resonance spectroscopy, and cryogenic electron microscopy have been employed. However, because experimental 
protein conformation is difficult to obtain, the gap between the number of experimentally solved protein 
structures and the number of determined amino acid sequences is gradually  increasing1. As of February 2022, 
approximately 225 million sequences have been compiled in the UniProt  database2, and the structures of 108 
thousand unique proteins structures have been deposited in the Protein Data Bank (PDB)3. Several protein 
structure prediction algorithms have been developed and are being routinely utilized to bridge the sequence-
structure gap.

Several methods exist for extracting protein structural features from the amino acid sequence, known as 
the primary structure of proteins, to study its function. In 1961,  Anfinsen4 discovered that a protein’s tertiary 
structure is encoded by its amino acid sequence. Based on this observation, numerous approaches for predicting 
the structural properties of proteins, such as secondary structures, accessible surface areas (ASAs), and 
intrinsically disordered regions (IDRs), have been  developed5–17. These features can also be useful for protein 
structural modeling by providing insights into local structures.

Since the early 2010s, numerous structural feature prediction approaches have been proposed, and as 
structural datasets expand, machine learning techniques, especially deep learning, have become more powerful. 
SPOT-1D8 uses long short-term memory (LSTM) and ResNet hybrid models to predict the eight-state secondary 
structures (SS8), ASAs, backbone dihedral angles, and contact numbers. The program uses a position-specific 
scoring matrix (PSSM) from multiple sequence alignment (MSA) and the predicted contact map from SPOT-
Contact as input features. SPOT-Disorder9,10 predicts IDRs by employing multiple models sequentially, such 
as IncReSeNet, LSTM, and fully linked topological segments. The software uses both PSSM and structural 
information predicted by SPOT-1D to predict the disordered regions. NetSurfP-2.014 uses a convolutional neural 
and LSTM from the protein sequence profile to predict the secondary structures, relative surface areas, IDRs, 
and backbone dihedral angles. MUFOLD-SS uses inception-inside-inception networks to predict the secondary 
structure from PSSM and seven physicochemical attributes of amino  acids16.  AUCpreD17 predicts IDRs using a 
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convolutional neural network, considering seven physicochemical properties of amino acids, predicted secondary 
structures, solvent-accessible areas, and PSSM as input features.

In this paper, we present a new structural feature prediction method, S-Pred, which uses an LSTM and MSA 
 Transformer18 for feature extraction from the MSA. The MSA Transformer is an unsupervised protein sequence 
language model introduced by Rao et al.18, which uses the MSA of a query sequence instead of a single amino 
acid sequence. The key attribute of this model is the use of row and column attentions for a given MSA and 
masked language model objectives. This model was successful in predicting long-range contacts between residues. 
Ultimately, this demonstrates that this protein language model is effective in extracting protein properties from 
MSA profiles. S-Pred uses the extracted features from the MSA Transformer and an LSTM to predict three 
structural features: SS8s, ASAs, and IDRs. The results indicate that S-Pred successfully predicts structural features 
accurately, and its performance is comparable to or superior to that of other state-of-the-art programs.

Methods
Network architecture. The overall architecture of the algorithm is illustrated in Fig. 1. The input to the 
network is the MSA of a query sequence. The MSA is defined as an r × c matrix, where r is the number of 
sequences, and c is the sequence length. Through the token and position embedding of the MSA Transformer, 
the matrix is embedded into an  r × c × 768 tensor, which is the input and output of each attention  block18. The 
MSA Transformer is composed of a stack of 12 attention blocks. The attention blocks consist of three layers: two 
attention layers (row and column attention layer) with 12 attention heads and one feed-forward layer. Herein, for 
each layer, a normalization operation was performed.

A one-dimensional (1D) feature vector for each residue of a given sequence was generated by extracting two 
feature types from the MSA Transformer. The first was labelled as MSA features, which is the output tensor of 
the last attention block with dimensions of r × c × 768 . From the MSA features, only the row that corresponded 
to the query sequence was selected, yielding a 1× c × 768 dimensional tensor. The dimension of the tensor was 
further reduced to 1× c × 192 using a multilayer perceptron (MLP) neural network consisting of three linear 
layers with 768, 384, and 192 neurons.

The second feature was the row attention map from every attention head. The MSA Transformer is composed 
of attention layers derived from 12 blocks with 12 attention heads. Thus, 144 attention maps were collated in the 
shape of a c × c × 144 tensor. The average pooling operation was applied to the row- and column-wise tensor to 
obtain 1× c × 144 and c × 1× 144 tensors. The second tensor was transposed and concatenated with the first 
to yield a 1× c × 288 tensor.

The aforementioned two features were further concatenated to produce a 1× c × 480 tensor. Consequently, 
each residue for a given query sequence had a 480-dimensional feature vector. The feature tensors were 
sequentially proceeded to a set of two LSTM layers with 256 hidden units and a classification layer designed to 
predict the structural properties of each residue of a protein.

Three independent models were trained for the three structural properties by changing only the output neuron 
sizes of the final classification layer. Here, the classification layer possessed eight output neurons for SS8 and a 
single output neuron for ASA and IDR prediction.

Figure 1.  Architecture of the S-Pred method. The MSA Transformer extracts features and row attention 
maps from the input MSA of a query sequence. Next, through a series of transformations, the MSA features 
corresponding to the query sequence and the row attention maps are combined to 1D feature vectors. The 1D 
feature vectors are then input in an LSTM to predict protein structural properties including, SS8, ASA, and IDR.
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MSA generation. A procedure similar to that used for the MSA Transformer was used to generate the 
MSA of a query  protein18. HHblits 3.3.019 with the uniclus-ter30_2017_1020 and  BFD21 databases were used 
to generate the MSA of the query sequence. The maximum number of sequences used in the MSA was set to 
256. If the number of homologous sequences detected by HHblits was greater than the maximum number, 256 
sequences were selected by minimizing the diversity.

Training and inference. The parameters of the MSA Transformer have been fixed and described by Rao 
et al.18. The parameters of the other networks (i.e., MLP, LSTM, and classification layer) were trained using a 
batch size of 16 with gradient accumulation steps and a learning rate of 1e-3 using the RAdam  optimizer22. 
Three independent models were used to individually train the SS8, ASA, and IDR datasets. The SS8, ASA, and 
IDR datasets were classified as multi-classification, regression, and binary classification, respectively. Thus, three 
different loss functions were generated including categorical cross-entropy for the SS8 data, mean squared error 
for the ASA data, and binary cross-entropy for the IDR data. For the ASA dataset, the values were divided by 200 
prior to training to make the values smaller. All the models were trained for approximately 15 epochs using an 
NVIDIA Quadro RTX 8000 graphics processing unit (GPU) (48 GB).

An MSA subsampling strategy was applied during training. This was done not only for data augmentation to 
train a robust model, but also to prevent the GPU from running out of memory when filled with a large MSA. 
MSA rows were randomly selected for subsampling, with a maximum of 214/c and a minimum of 16, to ensure 
that the query sequences in the first row were always included. Large proteins with a length greater than 1023 
residues were discarded during training. The MSA was subsampled with 256 sequences at the inference stage by 
adding the sequence with the lowest average Hamming distance.

Datasets for SS8 and ASA. Datasets from Hanson et al.8 were used to train and test the SS8 and ASA 
networks. From the PIECES  server23, 12,450 proteins with a resolution < 2.5 Å, R-free < 1, and sequence identity 
cutoff of 25% were extracted in February 2017. The proteins were further classified into three datasets: training 
(10,200 proteins), validation (1000 proteins), and test (1250 proteins) datasets. The authors generated another 
test set composed of 250 proteins, which were deposited in the  PDB3 between 1/1/2018 and 7/16/2018 under 
identical conditions of resolution, R-free, and sequence identity. The two test sets were labeled as TEST2016 
(collected February 2017) and TEST2018.

In addition, S-Pred’s SS8 prediction module was further tested on the Critical Assessment of protein Structure 
Prediction 13 (CASP13) dataset. To compare with other programs, the target list was kept the same as the DNSS2 
 paper24. Since the CASP13 was held in 2018 and our training set was culled in Feb. 2017, there is no overlap 
between the two datasets. The proteins were categorized as template-based modeling (TBM) and free modeling 
(FM) following the official classification.

Datasets for IDR. Datasets from the SPOT-Disorder study were used to obtain the IDR prediction  model9. 
Zhou et al. collected 4229 proteins from DisProt 5.025, composed of 4157 X-ray crystallography structures and 
72 fully disordered proteins. These data were divided into 2700 proteins for training, 300 proteins for validation, 
and 1229 proteins for testing. Proteins that contained more than 1023 amino acids were eliminated because the 
MSA Transformer could not treat large proteins. Thus, the remaining 2689 proteins were used for training, 300 
proteins were used for validation, and 1225 proteins were used for testing. To compare with methods other than 
SPOT-Disorder, the IDR prediction model was also tested on three independent datasets: SL250,  DisProt22810, 
and the Critical Assessment of Protein Intrinsic Disorder (CAID)  dataset26. As its name suggests, SL250 is 
composed of 250 proteins and re-annotated DisProt proteins that include reliable disordered and ordered 
regions. DisProt228 contains 228 proteins collated from DisProt 7.0 but not included in DisProt 5.0; therefore, 
the proteins were not included in any training, validation, or test sets. The last dataset used was the  CAID26. 
CAID is a blind IDR prediction experiment organized by Dr. Tosatto of Padua University. The dataset was 
constructed using 646 proteins that were annotated in the DisProt database from June 2018 to November 2018 
and have been evaluated using 32 IDR prediction programs. The complete CAID prediction data were collected, 
and only the sequences predicted by all 33 predictors (32 from CAID and S-Pred) were retained (550 proteins) 
to provide a reasonable performance comparison.

AlphaFold2 dataset. The aim of S-Pred is to predict the structural features of a protein from its sequence 
to study the molecule’s structure and function. In the recent CASP,  AlphaFold227 (AF2) showed the highest 
performance, which was around twice as high as the second-placed  group28. Additionally, the AF2 predicted 
model is used to resolve the phasing problem in many proteins. Sequence-based structural feature prediction 
techniques might become obsolete due to AF2’s strength. We gathered a dataset called the AF2 dataset to see 
if S-Pred might provide any further value beyond AF2 prediction. 2176 protein structures deposited in PDB 
 database3 from 4/26/2022 to 6/28/2022 were collected. To remove the redundancy, PIECES  server23 were used 
with the conditions of sequence identity < 25%, resolution < 2.5 Å, R value < 0.25, and sequence length between 
50 and 1000, resulting 263 chains. We searched AlphaFold Protein Structure  Database29 (Accessed 7/12/2022) 
with the UniProt  ID2 of the chains and downloaded 92 structures. The structural features of predicted structures 
and corresponding crystal structures were calculated using  DSSP30 and compared with S-Pred prediction results 
from their sequences. The qualities of models were measured by using TM-align31.

Evaluation metrics and performance comparison. Because the S-Pred method predicts three different 
features (i.e., SS8, ASA, and IDR), several metrics and methods were utilized to evaluate its performance. For 
SS8, accuracy was evaluated to compare overall performance against previous data obtained from Hanson 
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et  al.8, Uddin et  al.11, and Guo et  al.24. To further investigate the performance of S-Pred on each secondary 
structure state, the precision, recall, and F1-score were calculated for the TEST2016 dataset. Pearson’s correlation 
coefficient (PCC) was used to assess the performance of the ASA model and was compared with that obtained 
in the study by Hanson et al.8. The IDR model was evaluated by calculating the area under the receiver operating 
curve (AUC ROC), Matthew’s correlation coefficient (MCC), and F1-score. The performance of the S-Pred IDR 
prediction model was compared with that of several methods presented in the SPOT-Disorder210 and CAID 
 studies26.

Results and discussion
SS8 prediction. The secondary structure of a protein is defined by the local structure of its peptide backbone. 
In general, the local backbone conformation is categorized into three states (SS3): helix (H), strand (E), and 
coil (C). Kabsch and  Sander30 introduced a more detailed SS8 classification: α-helix (H),  310-helix (G), π-helix 
(I), β-strand (E), isolated β-bridge (B), turn (T), bend (S), and others (C). H, G, and I in the SS8 classification 
correspond to the helix states in SS3, E and B are members of the strand states of SS3, and the remaining (T, S, C) 
are classified as the coil states of SS3. As the secondary structure provides information on the local conformation, 
SS8 may provide information for structure prediction that is more useful than the information provided by SS3 
when used as a classifier.

The accuracy of the S-Pred method in classifying the validation dataset was 0.780, which is comparable with 
that of the state-of-the-art SS8 prediction methods, SPOT-1D (0.776)8 and SAINT (0.782)11, using the same 
training, test, and validation datasets. The SPOT-1D and SAINT programs use identical input features: 50 features 
of a PSSM derived from PSI-BLAST32 and  HHblits19, seven physicochemical properties such as Van der Waal’s 
volume and polarizability, and a contact prediction map from SPOT-Contact33. SPOT-1D operates by employing 
an ensemble of LSTM networks in a bidirectional recurrent neural network and ResNet hybrid  models8, whereas 
SAINT utilizes an ensemble of a self-attention mechanism with Deep3I  network11. In contrast, S-Pred only 
requires an MSA constructed from HHblits and uses a single model to predict the SS8s.

The performance of S-Pred on the TEST2016 and TEST2018 datasets for SS8 prediction is presented in 
Table 1. S-Pred demonstrates a prediction accuracy of 0.776 for the TEST2016 set, which ranks 2nd among 
the tested methods in SPOT-1D8 and  SAINT11 papers. The prediction accuracy of S-Pred is similar to that of 
SAINT, which is the best-performing method, and outperforms the SPOT-1D method. Additionally, S-Pred 
outperforms SPOT-1D-base, which utilizes an ensemble collection of nine models trained without contact map 
prediction, and SAINT-base, which uses a single model. With the TEST2018 set, the S-Pred method achieves 
the highest accuracy (0.764), whereas the accuracy of SAINT is slightly lower (0.761). Interestingly, S-Pred is the 
best-performing program in terms of the accuracy for SS3 prediction (0.865, Supporting Information Table S1). 
An example of SS8 prediction using the 7,8-dihydro-8-oxoguanine triphosphatase sequence (PDB ID: 5WS7) 
from the TEST2016 dataset is illustrated in Fig. 2.

To provide a better understanding, we further investigated the performance of the individual secondary 
structure state from the TEST2016 dataset with regards to precision, recall, and F1-score, and the results 
are presented in Table 2. The F1-score is a harmonic average of the precision and recall, balancing the two 
metrics, thus widely used for imbalanced data. As can be observed, the S-Pred method performs better than 
the other methods in predicting four of the eight secondary structure classes (H, E, G, and C). Interestingly, our 
methodology produces an F1-score higher than 0.6 for states with more than 30,000 residues (H, E, T, and C) 
in the dataset. For non-ordinary states, such as B, G, I, and S, the program generates F1-scores lower than 0.5. 
SAINT and SPOT-1D, which use two-dimensional contact map information as the primary additional input 
features, perform better than S-Pred for non-ordinary secondary structure states. Because the secondary structure 
is defined by the local hydrogen bond patterns of the backbone, two-dimensional contact map information may 
be useful in predicting non-ordinary secondary structures. This predictive trend on non-ordinary states was also 

Table 1.  Comparison of the SS8 accuracy obtained from several methods on the TEST2016 and TEST2018 
datasets. The data acquired from other methods except DNSS2 were obtained from Hanson et al.8 and Uddin 
et al.11. The method that performs the best is represented in bold. a Data adapted from Hanson et al.8. b Data 
adapted from Uddin et al.11.

Method TEST2016 TEST2018

S-Pred 0.776 0.764

SPIDER-3-Singlea N/A 0.598

DNSS2 N/A 0.655

RaptorXa N/A 0.704

POTTER-5a N/A 0.732

MUFOLD-SSb 0.756 0.737

NetSurfP-2.0b 0.757 0.730

SPOT-1D-basea 0.760 0.743

SPOT-1 Da 0.771 0.754

SAINT-baseb 0.762 0.745

SAINTb 0.777 0.761
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observed in studies conducted by Wang et al.12 and Zhang et al.13 that used deep learning for SS8 prediction. This 
result suggests that S-Pred may improve its performance when contact information is included.

S-Pred also showed a good performance on the CASP13 benchmark (Table 3). Among the tested methods, 
S-Pred showed the second highest accuracy in the All and TBM category (0.724 and 0.738, respectively), 
comparable to DNSS2, the top-performed method (0.727 and 0.753 for the All and TBM category). Interestingly, 
our program performed best in the FM category (0.714), which is composed of proteins with few available 
templates to model the structure. The difference in accuracy between the TBM and FM categories is only 0.024, 
the smallest gap among the tested methods. This implies that S-Pred could perform consistently although there 
are few or no structural templates.

ASA prediction. A key structural feature of a protein residue is its ASA. This metric is regarded as a 
significant factor in protein folding and  stability34. The ASA metric can be used to classify the residue as buried 

Figure 2.  S-Pred SS8 predictions mapped on the 7,8-dihydro-8-oxoguanine triphosphatase (PDB ID: 5WS7) 
structure. The color codes for α-helix (H),  310-helix (G), β-strand (E), turn (T), bend (S), and others (C) are red, 
orange-red, blue, green, light green, and lime green, respectively. It should be noted that none of the residues 
were predicted as π-helices (I) or β-bridges (B).

Table 2.  Precision, recall, and F1-score for individual secondary structure states obtained from the TEST2016 
dataset. The numbers in parentheses represent frequencies of the secondary structure states. The data from 
all other methods except S-Pred were obtained from Uddin et al.11. The method that performs the best is 
represented in bold. a S-Pred (SP). b SAINT (SA). c SPOT-1D (S1). d NetSurfP-2.0 (NS). e MUFOLD-SS (MU).

Label

Precision Recall F1-score

SPa SAb S1c NSd MUe SPa SAb S1c NSd MUe SPa SAb S1c NSd MUe

H (98139) 0.886 0.879 0.884 0.885 0.868 0.953 0.948 0.941 0.933 0.943 0.918 0.912 0.911 0.908 0.904

B (3018) 0.660 0.760 0.671 0.650 0.609 0.101 0.104 0.097 0.070 0.115 0.176 0.183 0.169 0.126 0.193

E (62657) 0.859 0.843 0.852 0.822 0.850 0.874 0.887 0.878 0.903 0.842 0.866 0.864 0.865 0.861 0.846

G (10770) 0.588 0.581 0.547 0.536 0.519 0.394 0.390 0.375 0.334 0.348 0.471 0.467 0.445 0.412 0.417

I (47) 0.235 1.000 1.000 0.044 0.857 0.085 0.447 0.128 0.426 0.383 0.125 0.618 0.227 0.079 0.529

T (32297) 0.622 0.663 0.641 0.615 0.631 0.648 0.618 0.612 0.585 0.586 0.635 0.639 0.626 0.599 0.608

S (23466) 0.674 0.639 0.624 0.579 0.589 0.286 0.367 0.337 0.278 0.313 0.402 0.466 0.438 0.376 0.409

C (57483) 0.640 0.648 0.631 0.613 0.607 0.748 0.731 0.741 0.704 0.727 0.690 0.687 0.682 0.655 0.662

Table 3.  Prediction of SS8 on CASP13 dataset. All values except S-Pred were taken from Guo et al.24. The 
method that performs the best is represented in bold.

Method All TBM FM

S-Pred 0.724 0.738 0.714

SSPro5.2 0.644 0.664 0.640

DeepCNF 0.665 0.689 0.653

MUFOLD 0.667 0.684 0.661

Porter 5 0.677 0.709 0.657

DNSS2 0.727 0.753 0.710
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inside a protein or exposed on the surface. Thus, for protein structure prediction, the ASA metric is crucial in 
indicating the location of the residue. The S-Pred predictive performance was evaluated by the PCC for the 
predicted and real ASA values, which were calculated using the DSSP  algorithm30. The PCC for the validation 
set was 0.850, which was higher than that of SPOT-1D (0.823) with the same dataset.

Table 4 compares the performance on the TEST2016 and TEST2018 datasets. As can be observed, PCC 
values of S-Pred for the TEST2016 (0.843) and TEST2018 (0.831) datasets are larger in magnitude than the 
PCCs obtained from the other computational methods on the same datasets. Similar to the validation set, 
S-Pred produces larger PCCs than SPOT-1D. However, unlike SPOT-1D, which requires PSSM as well as 
physicochemical features and contact map information, S-Pred only requires an MSA from HHblits and 
provides improved performance. Zhou et al. compared the performance of the retrained SPIDER3 and SPOT-1D 
algorithms by calculating PCCs on the same training  set8 because the size of the SPOT-1D training set is twice 
as large as that of SPIDER3 (4590 proteins). The PCC obtained from SPIDER3 increased to 0.796, from 0.76, 
but was still lower than that obtained from S-Pred. NetSurfP-2.0, which uses an MSA from  HHblits14 similar to 
S-Pred, also generates lower PCCs than our computational method. An example of ASAs predicted by S-Pred is 
displayed on chain A of PDB ID 6FC6, the nuclear fusion protein BIK1, from TEST2018 (Fig. 3).

SPOT-1D is an improvement on the SPOT-1D-base method because it incorporates the contact map 
information from SPOT-Contact. As the contact information contains the number of residues surrounding the 
target amino acid, it may provide additional information on ASAs. This implies that the performance of S-Pred in 
predicting ASAs can potentially be improved if the contact information is used as a supplementary input feature.

IDR prediction. IDRs and intrinsically disordered proteins (IDPs) do not possess fixed three-dimensional 
structures. IDPs and IDRs are involved in various biological processes because they can adopt multiple 
conformations and bind to several protein partners. According to a recent  study35, eukaryotic proteomes are 
more disordered than other domains, with a 20.5% disordered content. In addition, IDRs are linked to various 
human diseases, such as cancers and Alzheimer’s disease; therefore, they have been employed as potential 
drug targets. From a structural prediction perspective, eliminating the IDRs before modeling can be helpful in 
excluding regions that cannot be successfully modeled. Thus, IDR prediction is crucial for both the biological 
function prediction and computational modeling of proteins.

The S-Pred model produced AUC ROC values of 0.929 and 0.914 for the validation and test sets, respectively. 
For comparison, two additional independent datasets (i.e., SL250 and DisProt228) were employed (Table 5). 
The performance of S-Pred on these datasets was evaluated using two metrics, AUC ROC and MCC. S-Pred and 
the other state-of-the-art methods performed comparably on both test sets. For the SL250 set, S-Pred ranked 
2nd for both the AUC ROC and MCC metrics (0.884 and 0.650, respectively), whereas for the DisProt228 dataset, 
it ranked 2nd for AUC ROC (0.797) and 4th for MCC metrics (0.457). An example of IDR prediction using the 

Table 4.  Prediction of ASAs and comparison among methods. PCCs  between the predicted and experimental 
values. The PCCs obtained from methods except S-Pred were used from the study conducted by Hanson et al.8. 
The method that performs the best is represented in bold.

Method TEST2016 TEST2018

S-Pred 0.843 0.831

SPIDER-3 0.787 0.768

NetSurfP-2.0 N/A 0.801

SPOT-1D-base 0.813 0.799

SPOT-1D 0.816 0.803

Figure 3.  S-Pred ASA predictions mapped on the structure of nuclear fusion protein BIK1 (PDB ID: 6FC6). 
The residues are represented using a gradient color scale from cyan (buried) to maroon (exposed).
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DisProt ID DP00874 (actin-related protein 7) is illustrated in Fig. 4. As can be observed, S-Pred predicts three 
disordered regions that are in a location similar to that of the annotated regions.

The top-performing method in both datasets was SPOT-Disorder2. SPOT-Disorder2 is a profile-based IDR 
prediction method that utilizes PSSM profiles from PSI-BLAST and  HHblits10. In addition, it also employs 
23 structural properties predicted by SPOT-1D (SS8, SS3, four sine and cosine values of backbone dihedral 
angles (θ, τ, φ, and Ψ), ASA, contact number, and two half-sphere exposure values) as input  features10. The final 
prediction of SPOT-Disorder2 is based on a combination of five models. By contrast, S-Pred uses only an MSA 
as the input feature and a single model. Zhou et al. examined the effects of the structural input features predicted 
by SPOT-1D10. The AUC ROC of Model 0 on the Mobi9414 test set was 0.943; however, it reduced to 0.920 when 
the features from SPOT-1D were omitted. This implies that the performance of S-Pred in IDR prediction can be 
potentially improved by incorporating structural features from the SS8 and ASA modules.

CAID IDR prediction. The final benchmark was the CAID experiment. A probability threshold for 
estimating the IDR residue of each method was optimized to acquire the highest F1-score (Fmax), the same as 
in the original benchmark  study26. After relabeling the residues with the thresholds, all metrics were examined. 
Table 6 presents the results obtained from the CAID experiment. As can be observed, among the 33 predictors, 
S-Pred ranks 2nd for all metrics: 0.514, 0.791, and 0.384 for the F1-score, AUC ROC, and MCC, respectively. The 
top-performing method is  fIDPnn15, which is a meta-predictor of DFLpred, DisoRDPbind, and fMoRFpred 
using a neural network. Thus, S-Pred is the best performing method among non-meta-predictors.

The organizers of the CAID experiment also tested the predictors to determine whether they could predict 
fully disordered proteins, also referred to as IDPs. IDPs are targets of interest because they are difficult to be 
structurally characterized experimentally, but they possess unique biological functions. In the CAID benchmark 
set, proteins were considered as IDPs if the percentage of disordered annotated residues was higher than 95%. 
Using these criteria, 41 of 550 proteins were labeled as IDPs. Under the same conditions, the IDR prediction 
program predicted IDPs after labeling all amino acids as an input. The performance of the IDP prediction is 
presented in Supporting Information Table S2. As can be observed, S-Pred provides the most accurate IDP 
prediction (F1-score: 0.637; MCC: 0.609). Even if a more rigid IDP definition (99%) is used, the result does 

Table 5.  Comparison of IDR predictions by several methods. The AUC ROC and MCC metrics for methods 
other than S-Pred were obtained from the study conducted by Hanson et al.10. For the DisProt228 dataset, only 
sequence-profile-based methods are presented. The method that performs the best is represented in bold.

Set Program AUC ROC MCC

SL250

S-Pred 0.884 0.650

s2D 0.737 0.360

MobiDB-lite 0.818 0.534

DISOPRED2 0.825 0.508

ESpritz-N 0.833 0.454

ESpritz-D 0.843 0.555

DISOPRED3 0.857 0.596

ESpritz-X 0.859 0.566

NetSurfP-2.0 0.869 0.572

ACUpreD 0.869 0.605

SPINE-D 0.875 0.599

SPOT-Disorder 0.893 0.629

SPOT-Disorder2 0.901 0.679

DisProt228

S-Pred 0.797 0.457

s2D 0.727 0.267

AUCpreD 0.748 0.434

JRONN 0.753 0.379

ESpritz-D 0.759 0.379

MFDp2 0.768 0.371

DISOPRED 0.771 0.406

MobiDB-lite 0.772 0.422

NetSurfP-2.0 0.774 0.421

Espritz-N 0.776 0.432

MFDp 0.776 0.357

SPINE-D 0.786 0.423

SPOT-Disorder 0.792 0.462

ESpritz-X 0.796 0.476

SPOT-Disorder2 0.809 0.499
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not substantially change. S-Pred is still the best IDP predictor with an F1-score and MCC of 0.652 and 0.624, 
respectively.

Comparison with AF2 models. To investigate whether S-Pred could still provide valuable information 
beyond AF2, the most powerful tertiary structure prediction method, we collected 92 crystal structures from 
PDB that do not share high sequence identities (< 25%). S-Pred predicted SS8 and ASA from their UniProt 
sequences and compared them with AF2 models extracted from AlphaFold Protein Structure Database.

S-Pred reported that ASA PCC was 0.844 and SS8 accuracy was 0.778. In contrast, AF2 models outperformed 
S-Pred, scoring 0.900 and 0.915 for ASA PCC and SS8 accuracy, respectively. It is natural that AF2 has higher 
accuracy than S-Pred since AF2 might infer structural information from templates and contact maps, while 
S-Pred only has MSA as an input without structural information. When we examine the individual proteins, 
S-Pred performed better than AF2 in 7 (SS8) and 18 (ASA) cases out of 92 proteins. It’s interesting to note that the 
AF2 models for the proteins that S-Pred surpassed are not very accurate. The seven proteins with greater S-Pred 
SS8 predictions have an average TM-score of 0.747, while the remaining proteins have an average TM-score of 
0.959. The 18 proteins that S-Pred outperformed in ASA prediction have an average TM-score of 0.841, compared 
to 0.968 for the other proteins. In four protein cases, S-Pred performed better in both SS8 and ASA than AF2 
models. The four proteins have a mean TM-score of 0.682, while the other proteins have an average TM-score 
of 0.955. This result implies that the quality of AF2 models might be improved by S-Pred prediction.

In addition, even though the AF2 model has improved accuracy, S-Pred is still valuable due of its quickness. 
S-Pred takes roughly 10 min to complete the input MSA construction for proteins with around 300 amino acids, 
and less than a second to complete the prediction. On the other hand, AF2 takes around 10 min for modeling 
and 4 h for MSA with a single  GPU36. Protein structural characteristics might be quickly predicted and applied 
to studies like IDP prediction using S-Pred.

Conclusions
Prediction of the structural properties of proteins from an amino acid sequence can aid in the prediction of 
the structure and biological function of proteins. In this paper, we report a novel structural feature prediction 
program called S-Pred. The program utilizes the MSA Transformer to obtain input features and predicts three 
structural features (SS8, ASA, and IDR) using an LSTM. This study demonstrated that our program successfully 

Figure 4.  S-Pred IDR prediction for the DisProt ID DP00874 protein. (A) DisProt annotations. Disordered 
annotated residues are highlighted in brown. (B) S-Pred prediction. The probability of disorder is represented 
as a function of the background color intensity. Thus, the higher probability of disorder is portrayed as a darker 
brown color.
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predicted all the three features, and the performance was better than or comparable with that of other state-of-
the-art algorithms.

The benchmark result also provided useful information for improving the performance. For SS8 prediction, 
S-Pred failed to predict non-ordinary secondary structure states, such as isolated β-bridges and π-helices. In 
contrast, the SAINT and SPOT-1D methods successfully predicted these states because contact prediction was 
used as an input feature. For IDP prediction, SPOT-Disorder2, which demonstrated better performance in both 
the SL250 and DisProt228 benchmark sets, employed structural features predicted by SPOT-1D. Further studies 
should investigate approaches to improve the performance of S-Pred by incorporating components or modules 
from other prediction programs.

Data availability
The datasets analyzed during current study are available at https:// doi. org/ 10. 5281/ zenodo. 68736 54.

Code availability
The code can be accessed at https:// github. com/ aront ier/S_ Pred_ Paper.
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Table 6.  CAID benchmark results. Raw predictions were obtained from Necci et al.26. The threshold value of 
each method for labeling IDR residues was optimized to obtain a Fmax. The method that performs the best is 
represented in bold.

Method F1-score AUC ROC MCC

SPred 0.514 0.791 0.384

fIDPnn 0.521 0.813 0.390

SPOT-Disorder2 0.507 0.780 0.378

fIDPln 0.504 0.794 0.367

SPOT-Disorder 0.499 0.769 0.367

RawMSA 0.496 0.791 0.357

SPOT-Disorder-Single 0.488 0.769 0.348

AUCpreD 0.483 0.762 0.346

AUCpreD-np 0.481 0.761 0.335

ESpritz-D 0.479 0.775 0.332

MobiDB-lite 0.473 0.745 0.325

IUPred-long 0.473 0.752 0.324

IUPred2A-short 0.473 0.752 0.324

Predisorder 0.472 0.753 0.322

DisoMine 0.472 0.771 0.323

IsUnstruct 0.471 0.756 0.321

IUPred-short 0.471 0.751 0.321

IUPred2A-long 0.471 0.751 0.321

ESpritz-X 0.471 0.752 0.321

VSL2B 0.464 0.746 0.311

DISOPRED-3 0.463 0.727 0.313

JRONN 0.454 0.736 0.297

ESpritz-N 0.447 0.724 0.286

DynaMine 0.437 0.719 0.271

PyHCA 0.432 0.709 0.264

FoldUnfold 0.422 0.655 0.249

DisEMBL-465 0.413 0.695 0.239

S2D-1 0.401 0.668 0.216

S2D-2 0.387 0.653 0.192

DisEMBL-HL 0.375 0.657 0.174

DisPredict-2 0.368 0.634 0.158

GlobPlot 0.358 0.625 0.147

DFLpred 0.322 0.411 -0.029

https://doi.org/10.5281/zenodo.6873654
https://github.com/arontier/S_Pred_Paper
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