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Feasibility of low‑cost particle 
sensor types in long‑term indoor 
air pollution health studies 
after repeated calibration, 
2019–2021
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Previous studies have explored using calibrated low‑cost particulate matter (PM) sensors, but 
important research gaps remain regarding long‑term performance and reliability. Evaluate 
longitudinal performance of low‑cost particle sensors by measuring sensor performance changes over 
2 years of use. 51 low‑cost particle sensors (Airbeam 1 N = 29; Airbeam 2 N = 22) were calibrated four 
times over a 2‑year timeframe between 2019 and 2021. Cigarette smoke‑specific calibration curves 
for Airbeam 1 and 2 PM sensors were created by directly comparing simultaneous 1‑min readings 
of a Thermo Scientific Personal DataRAM PDR‑1500 unit with a 2.5 µm inlet. Inter‑sensor variability 
in calibration coefficient was high, particularly in Airbeam 1 sensors at study initiation. Calibration 
coefficients for both sensor types trended downwards over time to < 1 at final calibration timepoint 
[Airbeam 1 Mean (SD) = 0.87 (0.20); Airbeam 2 Mean (SD) = 0.96 (0.27)]. We lost more Airbeam 
1 sensors (N = 27 out of 56, failure rate 48.2%) than Airbeam 2 (N = 2 out of 24, failure rate 8.3%) 
due to electronics, battery, or data output issues. Evidence suggests degradation over time 
might depend more on particle sensor type, rather than individual usage. Repeated calibrations of 
low‑cost particle sensors may increase confidence in reported PM levels in longitudinal indoor air 
pollution studies.

Abbreviations
PM  Particulate matter
NAAQs  National ambient air quality standards
SFH  Smoke-free housing
EPA  Environmental Protection Agency
PHA  Public Housing Authority

Studies of air pollution-associated health impacts often require measuring ambient concentrations of air pollut-
ants. While monitoring of  PM2.5 concentrations has contributed to understanding and reducing ambient  PM2.5 
to improve air quality standards, rigorous measurement of indoor air pollution remains a challenge.

Conventionally, the measurement of ambient  PM2.5 concentrations requires either a labor-intensive gravimet-
ric filter-based method with size-specific inlets, or sophisticated and manufacturer-calibrated real-time instru-
ments. Such equipment is expensive and not readily portable, thus limiting the number of locations that can be 
sampled within a given time. Central monitoring networks that use advanced instruments utilizing gravimetry, 
light scattering, or beta attenuation have been mounted by states and federal agencies to address efforts to achieve 
federal national ambient air quality standards (NAAQS). Use of central monitoring is essential for monitoring 
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 PM2.5 exposures within the microenvironments of cities, in contrast, personal monitoring is considered the 
optimal approach to assess an individual’s exposure levels to  PM2.5

1,2.
Until recently, monitoring indoor settings at a high spatial and temporal resolution was impractical due to 

the cost, size, and expertise needed to operate monitoring equipment. Real-time personal monitoring or multi-
location monitoring is, however, not a new concept. Innovations in air quality monitoring have addressed cost 
in the last decade. A combination of technological advancements (cheaper electronic boards and smaller light 
scattering sensors), public interest in air pollution, and the increased popularity of citizen science have resulted 
in the development and proliferation of low-cost  PM2.5 sensors and devices. These low-cost sensors have gained 
in popularity for a range of uses from home and personal monitoring to citizen science and to larger scale aca-
demic  research2–4.

The advantages of low-cost  PM2.5 sensors for research include: (1) deployment in large numbers to increase 
spatial and temporal coverage; (2) ease of use and maintenance; and (3) a battery power source that permits 
remote or portable use [https:// www. epa. gov/ air- sensor- toolb ox]5–7. In addition, they can be connected via Wi-Fi 
or Bluetooth technology to transmit data, sometimes in real time, to central servers and crowdsourcing platforms 
to share data and cover large geographic areas with extended spatial and temporal resolution. However, these 
simple, low-cost sensors have limitations and require routine testing and calibration prior to use in scientific 
studies. Much work has been done in recent years to address these limitations, and results have demonstrated 
that low-cost sensors generally have acceptable reliability but also technological limitations and inter-instrument 
 variability5–14. A key finding of many of these studies is that important research gaps remain regarding durability 
and the need for calibration of individual units prior to use for  research7,10,11.

Few studies, for example, have examined the performance of a network of low-cost sensors over an extended 
period. One such study showed that some  PM2.5 sensors were relatively stable over time when tested over a year, 
however that study focused on measurements in outdoor environments with concentrations ranging from 6 to 
41 µg/m315. Other short-term studies have demonstrated that careful calibration of low-cost sensors demon-
strate their utility for indoor measurements of  PM16,17. In tandem, public housing authorities (PHAs) have been 
federally mandated to implement smoke-free housing (SFH) policies in their  developments18–20. Despite policy 
implementation in July 2018, there is still some evidence of cigarette smoking within New York City Housing 
Authority (NYCHA)  developments18. Stemming from a larger, quasi-experimental study evaluating the impact 
of SFH policies on secondhand smoke exposure in select NYCHA buildings, we utilized a network of low-cost 
sensors to evaluate indoor PM. This current analysis sought to assess whether rigorous calibration allows low-cost 
sensors to be used for indoor air quality measurements in the field for long periods of time without degradation 
in reliability. To achieve this objective, we repeatedly calibrated and utilized many low-cost first and second gen-
eration Airbeam  PM2.5 sensors, over a 2-year period, to assess  PM2.5 concentrations in urban high-rise buildings 
with a focus on measuring indoor tobacco smoke.

Methods
Generation of calibration curves for cigarette smoke. Cigarette smoke-specific calibration curves for 
the Airbeam 1 and 2  PM2.5 sensors were created in a laboratory setting via the direct comparison of the output of 
the low cost Airbeam sensors with simultaneous 1-min readings produced by a factory-calibrated Thermo Sci-
entific Personal DataRAM PDR-1500 unit with a 2.5 µm inlet (Thermo Environmental Instruments, Waltham, 
MA). The PDR-1500 unit is a widely used instrument and shown to be reliable from previous  studies21–29. Over 
the course of the 2-year period, our low-cost sensors were calibrated four times using the same PDR-1500 unit. 
We took pre and post weight measurements of the internal filter within the PDR-1500 unit to calculate the gravi-
metric concentration which allowed for the calibration of the real-time readings. The Airbeam 1 and 2 devices 
utilize two low-cost sensors: The Shinyei PPD60PV and Plantower PMS 7003 infra-red light scattering particle 
sensors, respectively. The PDR 1500 unit was zeroed with particle-free air prior to each run.

To perform the calibration, 8–12 Airbeam units were placed into an airtight stainless-steel chamber, where 
temperature is room temperature and humidity matches the building’s at below 50%, with access ports permit-
ting the introduction of cigarette smoke or HEPA filtered air. The PDR-1500 was connected to a sampling port 
for measuring the  PM2.5 concentrations inside the chamber. This instrument has both an inlet and outlet where 
tubes are connected to inject cigarette smoke into the chamber; the PDR-1500 was not placed inside the chamber 
to prevent contamination resulting from its enclosure with cigarette smoke. A smoking machine (Borgwaldt, 
Hamburg, Germany) was used to inject fresh mainstream cigarette smoke using 3R4F reference cigarettes into 
the chamber until the PDR-1500 registered a particle mass concentration greater than 1000 µg/m3. A high con-
centration value such as 1000 µg/m3 exceeds the upper limit for  PM2.5 values for both low-cost particle sensor 
types. Airbeam 1 and Airbeam 2 sensors have different saturation points at 80 µg/m3 and 200 µg/m3, respectively 
(i.e., the light scattering derived  PM2.5 output plateaus), ensuring the decreasing  PM2.5 calibration curve would 
begin above their detection ceiling (approximately 180 µg/m3 and 800 µg/m3, respectively). After cigarette smoke 
generation was stopped, the sample pump and internal filter of the PDR-1500 slowly removed cigarette smoke 
from the chamber which was replaced by HEPA-filtered room air. The resulting time-dependent decrease in 
 PM2.5 was used to develop the calibration curve. The start times of the Airbeam units and PDR-1500 particulate 
matter readings were synchronized, and the 1 min outputs were recorded beginning above the nominal upper 
detection limit and continued until the PDR-1500 values stabilized in the low single digit µg/m3 range. Each run 
lasted approximately one hour.

Readings from each Airbeam (X-axis) were matched by synchronized timestamp with the corresponding 
values from the PDR-1500 (Y-axis). Using Excel, a unique calibration equation for each Airbeam unit was cal-
culated by linear regression up to 80 µg/m3 which was the expected upper limit for indoor  PM2.5. Polynomial 
regression models were also generated; however, the output of these models was linear up to 80 µg/m3, which 

https://www.epa.gov/air-sensor-toolbox
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strengthened our decision to use linear models. Each unique equation and accompanying R value was recorded 
and assigned to the unit by serial number. Because of differences in the sensor type’s output, for consistency, we 
calculated calibration coefficients using the total PM reading from Airbeam 1 sensors, and the  PM10 output from 
Airbeam 2 sensors. There is no physical cutoff point within Airbeam 2 sensors to differentiate between  PM2.5 
and  PM10, so we used the highest value reported in the Airbeam to approximate  PM2.5 from the PDR-1500 unit. 
The  PM10 values from the Airbeam 2 sensors aligned closely with the corresponding values from the PDR-1500 
instrument, which strengthened our decision to use  PM10 output rather than  PM2.5 output from the Airbeam 
2 sensors to approximate  PM2.5 from the PDR-1500. Both sensor types use an algorithm based on an internal 
equation to generate PM output; Airbeam 1 sensors do not have the split for  PM1,  PM2.5 and  PM10 values. The 
calibration coefficient for cigarette smoke was developed as a multiplication factor to correct the Airbeam  PM2.5 
output and calculated as:

To assess the effect of particle composition on the calibration curve, the Airbeam devices were also calibrated 
using airborne particles in the NYC subway system. As in the cigarette smoke calibration procedure, the output 
of four Airbeam 1’s and four Airbeam 2’s was compared to the PDR 1500  PM2.5 output and a calibration coef-
ficient was calculated for subway  PM2.5.

Field sampling periods. We calibrated 51 low-cost particle sensors (Airbeam 1 generation N = 29; Air-
beam 2 generation N = 22) at 4 different timepoints over a 2-year period spanning from 2019 to 2021. After each 
laboratory calibration, the Airbeam units were deployed in a large, natural experiment evaluating the impact of 
new smoke-free housing (SFH) policies on air quality in public housing units every 6  months18,30. Due to the 
onset of the COVID-19 pandemic, we were unable to perform Airbeam sensor calibration from April-Septem-
ber 2020. A technician-based calibration error for select Airbeam 2 sensors only, from December-March 2021, 
led to their exclusion from data analysis at that timepoint. The final calibration timepoint was collected for all 51 
Airbeam sensors from May–September 2021 to obtain a final calibration coefficient.

Data analysis. We descriptively tabulated the mean (SD) calibration coefficients at four different 6-month 
timepoints over a 2-year period from 2019 to 2021 for the two different Airbeam sensor types. We performed 
independent t-tests to measure statistically significant differences in calibration coefficient means between parti-
cle sensor types, and characterized the between-and-within variability for calibration coefficient measurements. 
Because the light scattering properties of airborne particles are influenced by particle composition, we compared 
the mean (SD) calibration coefficients for cigarette smoke and subway  PM2.5 using an independent t-test. Lastly, 
we used a difference-in-difference (DID) approach to compare within-group changes between Airbeam 1 and 
Airbeam 2 sensors across four different calibration timepoints. Regression models included fixed effects for 
particle sensor type (Airbeam 1 vs Airbeam 2 sensors) and data collection timepoints (12, 18, 30 and 36 months 
post-SFH policy  implementation13). We adjusted for the clustering of individual Airbeam IDs and repeated 
measures overtime. Model-based mean differences with 95% confidence intervals were calculated for each par-
ticle sensor type over time. P-values were reported after implementation of the independent t-tests, with a sig-
nificance level set at p < 0.05, using a two-sided test. All analyses were performed using SAS statistical software, 
version 9.4 (SAS institute).

We examined the individual time trends in calibration coefficient measurements for low-cost particle sensors 
over a 2-year period, grouped by particle sensor type (Supplemental Figure S1), and descriptively categorized all 
low-cost particle sensors that were taken out of circulation over the 2-year period (Supplemental Table S1). We 
then examined the correlation between the number of unique instances of use for individual Airbeam sensors, 
and their final calibration coefficients at the end of the 2-year period (Supplemental Table S2 and Supplemental 
Figure S2).

Results
Sample characteristics. We conducted a descriptive characterization of the mean (SD) calibration coef-
ficients at four different timepoints over a 2-year timeframe from 2019 to 2021 (Table 1). At our first timepoint, 
our sample included a total of N = 56 Airbeam 1 sensors and N = 24 Airbeam 2 sensors. We observed more 
equipment failure over time in Airbeam 1 sensors (n = 27 out of 56, failure rate 48.2%) than in Airbeam 2 sen-
sors (n = 2 out of 24, failure rate 8.3%). These equipment failures occurred for a variety of reasons including, but 

Calibration Coefficient = slope of the PDR−1500 (Y - axis) vs Airbeam (X - axis) calibration curve

Table 1.  Descriptive characterization of calibration coefficient measurements among two low-cost particle 
sensor types over a two-year timeframe, 2019–2021. SD standard deviation.

Time frame

Airbeam 1 (N = 29) Airbeam 2 (N = 22)

p-valueMean SD Min Max Mean SD Min Max

TimePoint 1 1.43 0.44 0.96 2.64 1.56 0.26 1.23 2.07 0.21

TimePoint 2 1.14 0.22 0.65 1.69 1.58 0.26 0.97 2.02  < 0.0001

TimePoint 3 1.19 0.34 0.63 2.24 – – – – –

TimePoint 4 0.87 0.20 0.55 1.23 0.96 0.27 0.74 1.89 0.2
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not limited to cockroach infestations, not recording data properly (i.e., inconsistent relative humidity, tempera-
ture, or PM outputs), reading null values in PM measurements, and failure during calibration (Supplemental 
Table S1). As a result, our effective sample size decreased to N = 37 Airbeam 1 sensors and N = 21 Airbeam 2 
sensors at the second timepoint, and N = 29 Airbeam 1 sensors and N = 22 Airbeam 2 sensors at the third and 
fourth timepoints. We thus restricted the analyses to the N = 29 Airbeam 1 sensors and N = 22 Airbeam 2 sen-
sors available across all 4 calibration time points. We performed a secondary analysis to include all data points, 
both from units that performed well and from units that failed, and found no significant effect on outcome (see 
Supplement Table S3). The  PM2.5 concentration readout of Airbeam  PM2.5 sensors was less than that of the PDR-
1500 reference instrument at each calibration timepoint.

Between‑and‑within variability in calibration coefficients for low‑cost particle sensor 
types. On an individual unit basis, we observed a high degree of inter-sensor variability in calibration coef-
ficients across both low-cost particle sensor types over a 2-year timeframe (Fig. 1). There was a notable decline 
in Airbeam calibration coefficients consistent across both low-cost particle sensor types, with values trending 
downward to below one at the final calibration timepoint. Inter-monitor variability was high in Airbeam 1 sen-
sors at the first calibration timepoint and in Airbeam 2 sensors at the fourth calibration timepoint. During the 
second calibration timepoint, the mean (standard deviation (SD)) calibration coefficient for Airbeam 1 sensors 
was lower compared to Airbeam 2 sensors [M(SD) = 1.14(0.22) vs. M(SD) = 1.58(0.26), p < 0.0001] (Table 1). 
Because of the technical errors in the Airbeam 2 calibrations, a calibration coefficient mean was determined only 
for Airbeam 1 sensors (1.19 (0.34)) during the third calibration timepoint.

Least square mean differences in calibration coefficients for low‑cost particle sensor types. We 
conducted a DID model approach for repeated measures and characterized the least square mean differences 
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Figure 1.  Between-and-within variability for calibration coefficient measurements over a 2-year timeframe: 
low-cost Airbeam 1 and Airbeam 2 particle sensors.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14571  | https://doi.org/10.1038/s41598-022-18200-0

www.nature.com/scientificreports/

[(MD (95% CI)] spanning from 2019 to 2021, for each low-cost particle sensor type (Table 2). Among Airbeam 
1 sensors, the degree of inter-monitor change over time was statistically significant across all four time points, 
apart from change between the second and third timepoints [(-0.05 (−0.23, 0.14)] (p = 0.6). Among Airbeam 2 
sensors, the degree of inter-monitor change over time was only statistically significant between the second and 
fourth timepoints [(0.62 (0.46, 0.78)] and between the first and fourth timepoints [(−0.60 (−0.76, −0.44)], but 
not statistically significant between the first and second timepoints [(0.02 (−0.14, 0.18)] (p = 0.8). We calculated 
the inter-monitor change over time among three timepoints only for Airbeam 2 sensors due to a calibration 
malfunction from December-March 2021.

Comparison of calibration coefficients for cigarette smoke versus subway particulate mat‑
ter. Because particle composition can affect light scattering properties, we characterized the comparison of 
calibration coefficient mean differences by particulate matter from two different sources at a single timepoint 
(Table 3), for cigarette smoke and particulate matter present in subway stations. The calibration coefficients, 
resulting from a pooled analysis grouped by calibration method, of 1.79 (0.76) for cigarette smoke and 1.22 
(0.39) for subway  PM2.5 were not statistically different (p = 0.078).

Correlation between unique instances of use and final calibration coefficient for individual 
low‑cost particle sensor types. To determine if sensor usage affected Airbeam output over time, we 
characterized the unique instances of use (i.e., the number of 7-day indoor sampling periods that a sensor was 
used), and the final calibration coefficient for all 51 individual Airbeam sensors (Supplemental Table S2). We 
examined the correlation between the number of 7-day indoor sampling periods that an individual sensor was 
used, and its final calibration coefficient at the fourth calibration timepoint (Supplemental Figure S2). We did 
not observe a strong correlation for Airbeam 1 sensors  (R2 = 0.16) or for Airbeam 2 sensors  (R2 = 0.09). The slope 
of the curve for Airbeam 1 suggests that the more the sensors were used, the greater the deviation of its output 
from the PDR-1500’s output, while the Airbeam 2 curve suggested no change with an increase in usage.

Discussion
To our knowledge, this analysis is one of the first long-term longitudinal assessments of performance and reliabil-
ity of low-cost particle sensors in measuring indoor tobacco smoking. We observed a high degree of inter-sensor 
variability across both particle sensor types, particularly in Airbeam 1 sensors at the study’s initiation. Change 

Table 2.  Characterization of the least square mean differences for each low-cost particle sensor type over a 
two-year timeframe, 2019–2021.

Effect
Mean difference (95% CI)
Airbeam 1 sensors P-value

Mean difference (95% CI)
Airbeam 2 sensors P-value

Timepoint 1 to 2 −0.29 (−0.42, −0.15)  < 0.0001 0.02 (−0.14, 0.18) 0.79

Timepoint 1 to 3 −0.24 (−0.41, −0.07) 0.007 – –

Timepoint 1 to 4 −0.56 (−0.70, −0.42)  < 0.0001 −0.60 (−0.76, −0.44)  < 0.0001

Timepoint 2 to 3 −0.05 (−0.23, 0.14) 0.63 – –

Timepoint 2 to 4 0.28 (0.14, 0.42) 0.0002 0.62 (0.46, 0.78)  < 0.0001

Timepoint 3 to 4 0.32 (0.14, 0.50) 0.0004 – –

Table 3.  A comparison of calibration coefficient mean differences by particulate matter source composition: 
an individual and pooled analysis across all units at a single timepoint. SD standard deviation.

Individual unit
Calibration using cigarette smoke
Mean

Calibration using subway PM
Mean Absolute mean difference

1 1.23 0.84 0.39

2 1.30 0.99 0.31

3 2.07 0.82 1.25

4 0.97 1.25 0.28

5 2.61 1.33 1.28

6 2.63 1.16 1.47

7 2.58 2.04 0.54

8 0.93 1.31 0.38

Calibration using cigarette smoke (N = 8)
Mean (SD)

Calibration using subway PM (N = 8)
Mean (SD) P-value

Pooled analysis by calibration method

1.79 (0.76) 1.22 (0.39) 0.08
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in calibration coefficients over time for individual Airbeam units was detected, suggesting a degradation of low-
cost particle sensors for longitudinal assessment (Supplemental Figure S1). There were also notable downward 
trends in calibration coefficients over time, whereas the accompanying calibration coefficient for both Airbeam 
1 and 2 sensors was below 1 at the final calibration timepoint. Findings lend support to the conclusion that the 
routine calibration of individual Airbeam units might help to improve their utility and performance over time. 
Overall, Airbeam 2 particle sensors fared better than Airbeam 1 sensors, suggesting greater durability of Airbeam 
2 sensors for longitudinal assessment.

Our findings suggest that low-cost particle sensors might be differentially subjected to degradation, seen in 
the greater loss of Airbeam 1 sensors than Airbeam 2 sensors over time. While two of these failures, and the loss 
of units, resulted directly from the public housing environments (i.e., roach infestation), other failures were more 
generally concerning for the use of non-calibrated low-cost particle sensors for longitudinal assessment of air 
quality. Interestingly, we did not observe a strong correlation between the unique instances of field use of sen-
sors over the 2-year period and their final calibration coefficients measured at the fourth calibration timepoint, 
suggesting that low-cost sensor degradation over time might be more contingent on particle sensor type, rather 
than individual sensor usage.

Calibration coefficients differed modestly between cigarette smoke or subway PM (primarily combustion 
products and iron-rich friction particles, respectively), suggesting that the light-scattering physics of these low-
cost particle sensors may slightly be affected by these two particle source types. Our finding, however, is limited 
to two particular particle types, and further studies are needed to assess calibration across a range of particles 
with different source-dependent compositions. Other researchers have observed that, in addition to particle 
composition, the accuracy of  PM2.5 sensor output also depends upon particle size and  humidity13. Thus, low-cost 
sensors require routine calibration in the laboratory with the  PM2.5 and environmental conditions of interest.

Our current analysis provides a robust assessment of the longitudinal utility of low-cost particle sensors. 
Previous studies have measured the utility of low-cost particle sensors for PM monitoring where reference-
standard equipment is not available or feasible, and for improving the study of spatially localized airborne PM 
 concentrations5–14. One study conducted in the United Kingdom evaluated the performance of four models of 
low-cost PM sensors and examined inter-model performance across 19 different particle sensor units. Despite 
differences in the way each sensor type derived PM concentrations, the researchers found general agreement in 
PM readings across sensor  types8. Another study evaluated the performance of two widely-used particle sen-
sors, the Plantower PMS A003 and Shinyei PPD42NS, and developed PM calibration models for seven different 
metropolitan areas (i.e., Los Angeles, Chicago, New York, Baltimore, Minneapolis-St. Paul, Winston-Salem and 
Seattle) using a sample of 72 sensors. The authors found that good calibration models were feasible only with the 
Plantower PMS A003 model after running simulations for region-specific  models7. Another study found that a 
Plantower PMS 1003 sensor provided reliable PM data outputs over a 13-month  period15. Our study extended 
this time period to over 2 years of reliable output from Plantower PM sensors (albeit a different model), although 
the reproducibility of the calibration coefficients varied by individual units over time. One of the largest programs 
of low-cost sensor use is currently underway with the U.S. EPA’s AirNow network of low-cost PurpleAir sensors 
for the nationwide monitoring of wildfire-generated PM (https:// www. airnow. gov/ fires/ using- airnow- during- 
wildfi res/). As demonstrated in our study of Airbeam sensors, the PurpleAir sensors report PM levels that differ 
from more expensive and reliable monitoring instruments, but these offsets can be corrected by a ‘correction 
equation.’ The underlying design of the PurpleAir device is based on the fact that low cost sensors may degrade 
over time and therefore the PurpleAir device evaluates individual sensor degradation by continually comparing 
the output of two low-cost Plantower PM sensor units built into each monitoring  device31. As such, the EPA has 
published guidelines on the use and performance testing of low-cost air pollution sensors (https:// cfpub. epa. 
gov/ si/ si_ public_ record_ Report. cfm? dirEn tryId= 35078 5& Lab= CEMM). Without such corrections, caution is 
necessary regarding the reliability of low-cost PM sensors over time.

There were several limitations to our research. Overall, the PM output of each low-cost particle sensor differed 
from the PM output of the widely used PDR-1500 which has an air flow regulation and infra-red laser that are 
far more precise than what is available in the low-cost PM sensors, suggesting a potential for under- or over-
estimation of PM levels when calibration methods are not utilized. Over time, we experienced equipment failures 
in a significant number of sensors, particularly the Airbeam 1 generation, thus reducing our effective sample size 
in this calibration study. The results in our paper may fail to cover all the low-cost sensors and calibration of low-
cost PM sensors is imperative. Our routine calibration and inspection of low-cost particle sensors ensured careful 
use for the long-term sampling of indoor tobacco smoke. Unfortunately, this type of calibration would likely be 
challenging for many community groups or citizen science groups that may not have access to higher quality 
PM monitors. There were also several strengths to our research. Our study provides a robust assessment of the 
utility of low-cost particle sensors among a large number of a single brand of two generations of particle sensors 
available for purchase and utilized in citizen science across the U.S32. We compared the robustness of these two 
low-cost Airbeam particle sensor types, as well as across two different calibration particle types. We restricted our 
analysis to sensors that did not provide evidence of malfunction over time, and measured calibration coefficients 
over a 2-year period, allowing for the assessment of the reliability of these particles for air quality monitoring.

Conclusions
We observed modest changes in calibration coefficient measurements over a 2-year timeframe among both 
low-cost Airbeam particle sensor types, but in general the later generation Airbeam 2 model was more reliable, 
suggesting that specific particle sensors may yield better longitudinal consistency. While we did observe a degree 
of inter-monitor variability, changes in calibration coefficient measurements were relatively consistent across 
Airbeam 1 and 2 sensors. Finally, while not significant, we observed a modest difference in calibration coefficients 

https://www.airnow.gov/fires/using-airnow-during-wildfires/
https://www.airnow.gov/fires/using-airnow-during-wildfires/
https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=350785&Lab=CEMM
https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=350785&Lab=CEMM
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when using cigarette smoke and subway PM as the calibration PM. As noted by our results and that of other 
researchers, low-cost PM sensors can provide reliable and consistent air quality data but regular calibration of 
the monitors is necessary to optimize their utility.

Data availability
Data generated or analyzed during this study can be found within the published article and its supplementary 
materials found in the appendices of this article.
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