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The cross‑scale correlations 
between individuals and nations 
in COVID‑19 mortality
Lei Zhang1, Yu‑Rong She1, Guang‑Hui She1, Rong Li1,2* & Zhen‑Su She1,2*

It is challenging to quantitatively clarify the determining medical and social factors of COVID‑19 
mortality, which varied by 2 to 3 orders of magnitude across countries. Here, we present evidence that 
the temporal evolution of mortality follows a logistic law for 54 countries in four waves. A universal 
linear law is found between the early mortality growth time and the epidemic duration, one of the 
most important quantities, with a factor of 7.3 confirmed by data. Saturation mortality is found to 
have a power law relationship with median age and bed occupancy, which quantitatively explains the 
great variation in mortality based on the two key thresholds of median age (= 38) and bed occupancy 
(= 22%). We predict that deaths will be reduced by 38.5% when the number of beds is doubled for 
countries with older populations. Facing the next wave of the epidemic, this model can make early 
predictions on the epidemic duration and hospital bed demand.

Since COVID-19 was declared a pandemic by the World Health Organization (WHO) on March 11, 2020, 
approximately 5 million deaths have been reported across 184 countries or regions as of October 1, 2021. 
Therefore, lessons learned from the past waves, such as quantitative assessment of the severity of the epidemic 
and clarification of the determining medical and social factors, are urgently needed to help policymakers prevent 
more deaths in the next wave. Reliable death statistics and quantitative modelling are essential for understanding 
the  pandemic1. However, it is a great challenge to quantitatively interpret observational data presenting a high 
variation in mortality evolution across countries, which reaches two to three orders of magnitude for the 
difference in case fatality rate (deaths per confirmed case) and crude death rate (deaths per 100,000 population). 
We attempt to propose a reliable understanding of this observation.

Previous studies have not yet reached a conclusion regarding this issue because they focused only on the 
individual scale or the national scale and ignored the cross-scale correlation. Specifically, patient-level studies 
have shown that older patients, men, and patients with underlying diseases have a greater risk of death and 
require respiratory assistance in the intensive care unit (ICU)2–7. However, the demographics of confirmed 
cases are changing over time, with more young people being infected in the later stages than in the early stages 
of the outbreak. On the other hand, country-level studies have suggested that healthcare resource availability, 
infection scale, etc., are associated with  mortality8–11. However, countries’ capacity to prevent, detect, and respond 
to the outbreak varies widely over  time12, so COVID-19 mortality presents great heterogeneity in space (across 
countries) and  time13. Therefore, the commonly used method of a cross-sectional study, in which the mortality 
data for a given day are selected, yields a misleading representation by comparing the mortality data at different 
evolutionary stages. For example, studies concluded differently on whether there was a correlation between the 
case fatality rate and the number of  tests8,9,14–16. Moreover, these various factors analysed at individual or national 
scale must form a coherent view to offer effective guidance for fighting against the pandemic.

In sharp contrast to the above-mentioned studies, we adopt a dynamic study with a complete description of 
the complete evolution of mortality to better uncover robust features and explain the underlying mechanisms, 
which yields a quantitative prediction about future epidemic evolution. Considering that almost all countries 
have already experienced the 2 or 3 waves of the epidemic, it is time to derive a law governing the dynamics 
of COVID-19 mortality based on the data. Here, we present a logistic model that accurately describes the 
complete evolutionary patterns of COVID-19 mortality (deaths per 100,000 population, S(t) ) across 54 countries, 
quantitatively explaining the great variation in mortality based on two key thresholds from exact scales of the 
median age (= 38) and bed occupancy (= 22%), finding the cross-scale correlations between the early mortality 
growth time ( τ ) and epidemic duration with a dimensionless coefficient k . This time is also found, for several 
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states with available data, to be very close to reported non-survival ICU time, which is a time of rebuttal against 
the virus at the individual level. As a result, cross-scale correlation analysis between individual and national 
scales is achieved in the first wave of COVID-19 mortality (see Fig. 1).

Specifically, the data show that, for all countries with substantial death (above 100), the temporal evolution 
of mortality during the first pandemic wave well fits a logistic pattern with just two parameters (see “Methods” 
for details), which allows decoupling the complex evolutionary behaviour into two independent processes with 
close medical and social correspondences. One is saturation mortality ( s0 ) in the late stage of the epidemic, which 
is positively correlated with the state’s median age and bed occupancy (see Fig. 2a,b). This finding allows us to 
derive, from data, a law that yields a prediction of practical interest, namely, how many hospital beds need to be 
reserved in the continuing fight against the next wave of the epidemic if the aim is to cut the number of deaths 
by half (see Fig. 2c,d). The other is a characteristic growth time ( τ ), which is closely related to the ICU time in 
the early stage and shows a universal linear correlation with epidemic duration across different countries in four 
waves (see Figs. 3, 4). If this is further confirmed, it would be possible to predict the epidemic duration from 
collected clinical data (i.e. non-survival ICU time) at the early stage of the outbreak (see Table 1). Thus, we highly 
recommend testing the current model, which, if successful, would greatly enhance our ability to understand and 
predict the current epidemic.

Results
Two key thresholds associated with age, beds, and saturation mortality ( s

0
). When the 

epidemic ends, the mortality S(t) evolves to s0 , so the saturation mortality parameter s0 quantifies the epidemic. 
Previous published cross-sectional  studies3–7 did show a correlation between age, hospital beds, and mortality, 
but it is not clear which role these factors play in different countries and at different stages of the outbreak. In 
Fig. 2, we plot s0 as a function of the nation’s median age and available hospital beds, which immediately reveals 
some remarkable features. First, the high-mortality patterns, which are defined that the s0 are larger than the 
average value s̄0 (12.0), were all found in countries with a median age over 38 years old, suggesting that median 
age is one of the key factors influencing mortality, consistent with previous  studies3–7. The current finding is 
more quantitative: it presents a scaling between the saturation mortality and median age, with a power law 
exponent of 3.7 (see Fig. 2a).

On the other hand, the deviation from this scaling is quite substantial for countries of high median age 
(most blue dots are outside of the confidence interval, see Fig. 2a). The strong scattering suggests that there must 
be other important factors causing high mortality. Indeed, we found that there exists a nice scaling between 
saturation mortality and bed occupancy at the peak of the first wave (confirmed cases at peak time over bed 
number, see “Methods” for details) for countries with a median population age above 38 years old (see Fig. 2b). 
The saturation mortality increases with the peak bed occupancy, following a power law of exponent 0.7, which 
attributes the large variation in the mortality of older countries to the great variation in peak bed occupancy 
(almost by two orders of magnitude) across countries. The peak bed occupancy reflects the degree of countries’ 
medical support during the pandemic. It would be interesting to discover a critical value of the peak bed 
occupancy to separate low and high mortality. As shown in Fig. 2b, a value between 20 and 24%, e.g., 22%, may 
be a reference.

This power law predicts that the deaths will be reduced by approximately 38.5% when the number of beds is 
doubled (see Fig. 2c). In other words, increasing the number of beds is very effective in preventing deaths in older 
countries. Specifically, if Italy could double the number of beds, approximately 13,400 deaths could be prevented 
in the first wave, and similarly, approximately 3500 deaths could be prevented in Canada, as shown in Fig. 2c.

The above discussion on the cross-scale correlations in the first wave of COVID-19 mortality also yields a 
method for the quantitative evaluation of the efficacy of interventions and the prediction of epidemic duration. 
For example, Wuhan City (Hubei Province, China) is comparable in population size and pandemic scale to some 

Figure 1.  The cross-scale correlation between the individual scale and the national scale in this paper.
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Figure 2.  The mortality variation is explained by the median age and bed occupancy in the first wave. (a) The 
scaling between saturation mortality and the median age for countries without low pattern-2 ( N = 40 ). (b) 
The scaling between saturation mortality and peak bed occupancy for countries aged over 38 years old except 
Belgium ( N = 26 ). (a, b) take the double logarithmic coordinates for a better display of the data. The orange, 
blue and pink dots correspond to the low pattern-1, low pattern-2, and high pattern, respectively. The black 
lines are the fitting predictions by power functions. The grey areas are the 95% confidence intervals. Note that 
the red circle furthest from the confidence interval in (b) represents Belgium, probably because it uses a broader 
inclusion criterion for COVID-19  deaths18. (c) Reduction in saturation mortality when changing the number of 
beds. The black and orange lines represent Italy and Canada, respectively. (d) Contribution of the construction 
of Fang Cang hospital to the reduction in mortality in Wuhan City (Hubei Province, China). The grey circles 
are the official reported data. The red line represents the simulation of mortality evolution without Fang Cang 
hospital, while the blue line represents the simulation of mortality evolution with Fang Cang hospital. R2 is the 
goodness of fit and r is the Pearson correlation coefficient.

Table 1.  The predictions of epidemic duration by using k = 7.3 in the first wave. *Data are expressed as the 
median in Refs.19–23.

Country/region τ (days) Predicted duration (days) Actual duration (days) ICU time* (days)

Wuhan 6.2 45 51 7

Germany 9.5 69 73 9

Italy 11.6 85 87 10

Denmark 9.8 72 70 7.02

Greece 10.9 80 84 8
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countries. Its bed occupancy (at the peak) based on the number of beds before the outbreak was 39.2%, and 
the saturation mortality ( s0 ) was predicted to be 24.8. However, after the construction of Fang Cang Hospital, 
the number of beds increased by 15,00017, and s0 reduced to 22.4, which is very close to the actual saturation 
mortality of 21.9. Thus, the power law could explain a reduction of 82% (or 268 deaths) in the number of deaths, 
as shown in Fig. 2d.

In summary, the high variation in mortality across countries can be explained quantitatively. First, two key 
quantities of median age and bed occupancy can classify all countries into three typical patterns. Older countries 
(> 38) with high bed occupancy (> 22%) defined as the high pattern have far greater mortality than the other two 
low-mortality groups, which include younger groups (< 38) defined as the low pattern-1, without exception, and 
the group with low bed occupancy (abundant medical supplies) defined as the low pattern-2. What is interesting 
is that some older countries (> 38) can evolve into the low-mortality pattern if they have a low bed occupancy 
(< 22%). This indicates that bed occupancy is an essential indicator to evaluate the effectiveness of national anti-
COVID-19 measures.

The dimensionless coefficient k between τ and epidemic duration. The present two-parameter 
model not only explained the large variations in mortality across countries but also discovered a cross-scale 
correlation between the early mortality growth time ( τ ) and epidemic duration, which provides new insights 
regarding the spread and evolution of COVID-19. First, a dimensionless coefficient k can be derived from our 
model (see “Methods” for details), which is the ratio of the epidemic duration to the model parameter τ (which 
coincides with the ICU time of non-survivors in the early stage of the epidemic). Importantly, we find that the 
k values are nearly constant across different continents in all four waves, and the average value k̄ is 7.3 (IQR 
6.8–7.8), as shown in Fig. 3. This linear law is better obeyed for countries with shorter τ (< 20), while the data 
are more diffused for countries with longer τ (> 20) (see Fig. 3a). This suggests that τ is a good indicator of the 
“strength” of the epidemic, or how long it may last. The longer the τ is, the longer the epidemic will last.

Knowing the value of k , one may predict the duration of the outbreak by the estimate of τ in the early stage. 
Using the average value k̄ = 7.3 and the early mortality growth time ( τ ), the durations are predicted and shown 
to be very close to the actual values, as presented in Table 1. As a result, policymakers can more accurately 
anticipate the difficulties of the fight against the pandemic and better optimize the load on the health system to 
minimize the number of deaths.

Note that τ is also found, for several states with available data, to be very close to reported non-survival ICU 
time in the early stage, as compared to published clinical  data19–23 (see Table 1). This indicates the importance 
of the ICU time of non-survivors in the early stage, which is often overlooked in clinical studies; the latter is 
related to an individual’s antiviral ability, while the duration of the epidemic is a social scale anti-epidemic effect. 
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Figure 3.  The cross-scale correlation between τ and epidemic duration in four waves. (a–e) are the correlations 
with different but similar correlation coefficients k for all countries, Europe, Africa, Asia, and America, 
respectively. The abscissa variable is the fitting parameter τ , which is the characteristic time for early mortality 
growth. The ordinate variable is the duration of four waves. The dots are the data across countries in each wave. 
The black lines are the fitting predictions by linear functions. The grey areas are the 95% confidence intervals. R2 
is the goodness of fit and r is the Pearson correlation coefficient.
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Currently, the ICU time is a clinical statistic with predictive accuracy greatly limited by the samples, we call for 
more accurate statistical studies of this critical indicator, which is sparsely reported now. Thus, this linear law 
reveals an important property of COVID-19, which needs further investigation.

Take the case of Switzerland, for example, which has complete 1st, 2nd, and 4th waves data showing 
considerable variation (see Fig. 4a). Our model provides a good description of all data, and in addition, reveals 
some underlying evolutionary mechanisms. First, the saturation mortality s0 quantifies the severity of the second 
versus first wave, by a factor of 4.7 (see Fig. 4b), while the fourth wave is more severe than the first wave by a 
factor of 1.7. Secondly, the early mortality growth time τ is found to increase, showing a decline in the toxicity 
of the virus, which is consistent with clinical  studies24. The currently prevalent Omicron strain has a τ which is 
4.8 times longer than the first wave, and 1.7 times longer than the second wave (see Fig. 4c), while its epidemic 
duration is 4.1 times longer than the first wave and 1.8 times longer than the second wave (see Fig. 4d). One then 
finds an approximately constant ratio k between the early mortality growth time ( τ ) and epidemic duration (see 
Fig. 4e), which has been verified above through 54 countries in four epidemic waves.

Discussion
The COVID-19 pandemic has forced us to rethink the way countries prepare for public health crises. Although 
the end of the crisis is not yet in sight, it is time to learn from data the rules governing the evolution of the 
epidemic, which may help to improve the global capacity to respond to health crises of this magnitude. This 
becomes possible since, for the first time in the history of science, so much information has been collected and 
shared worldwide, so that one may gain a deeper understanding of epidemic  evolution25.

The present study demonstrates the validity of a logistic model to describe the complete evolution of COVID-
19 mortality in the first wave across 54 countries. We then find, from the data, a remarkable correlation for 
epidemic characteristics between the individual scale (age and non-survival ICU time) and national scale (global 
mortality and epidemic duration). This correlation quantitatively answers two crucial questions of major interest, 
namely, why does COVID-19 mortality vary so widely from country to country, and how long will the epidemic 
last?

Figure 4.  The mortality evolution of Switzerland in four waves. (a) The reported daily deaths data. The red line 
is the 10-day smoothed results. (b) The model simulation of the mortality in each wave. (c) The early mortality 
growth time ( τ ) in each wave. (d) The epidemic duration in each wave. (e) The key coefficient k in each wave. 
Note that the third wave is not discussed in (c), (d), and (e), because it did not have a complete evolution.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13895  | https://doi.org/10.1038/s41598-022-18179-8

www.nature.com/scientificreports/

For the first question, the power-law correlation between the median age, bed occupancy, and saturation 
mortality yields a quantitative explanation for the large observed variation in mortality across countries (see 
Fig. 2), with two key thresholds, 38 years old for median age and 22% for bed occupancy, which classifies 
countries into three typical patterns. Specifically, older countries could flatten the mortality curve by reducing bed 
occupancy to under 22%, offering an impressive model for other countries in reducing deaths in the next wave.

For the second question, the linear law between the two different time scales makes it possible to predict the 
duration of the epidemic wave by using the early mortality growth time ( τ ) and the key coefficient k (see Fig. 3, 
Table 1). It is well known that the long-term forecasting of outbreaks is a great challenge since there are so many 
unpredictable and complex factors, such as virus mutations, policy changes, etc., that can influence epidemic 
evolution. But, the discovered linear relation between τ and the epidemic duration (as a consequence of the 
logistic law) suggests the existence of a global organization law governing the human fight against the epidemic. 
Natural, some countries display deviations from the linear law with much longer epidemic duration, and the 
reason behind this deserves more careful study in the future (see Fig. 3). For instance, it is interesting to verify 
and compare the values of the dimensionless coefficient k with the values in other epidemics, such as SARS or 
the annual flu, which may bring new insights into understanding the spread and evolution of the epidemic.

An important finding of the present study is the possible relation between τ and the ICU time of non-survivors 
in the early stage, which is often overlooked in clinical studies. We found that Wuhan City had the smallest τ 
(6.2 days) among all the regions included in the study, which was very close to the 7 days of the clinical  study19 
(see Table 1). This result is consistent with the fact that Wuhan City was the first outbreak point so the virus is 
more toxic, and that the community knew little about the virus at the beginning of COVID-19. Moreover, the 
wide range of τ across countries (see Fig. 3) needs to be studied and explained in the future, and the current 
findings suggest collecting more accurate ICU time data for better prediction of the next wave of the pandemic.

Our study still has several limitations. First, the data analysed here are from public databases. The limited 
quality, different statistical standards, and incompleteness of databases may affect the precision of our description. 
Second, our study does not include countries with complex evolutionary behaviours, such as repeated rebounding 
of the outbreak. Third, we used median age data at the national level instead of at the patient level; the latter is 
currently lacking in most countries. Finally, we use the number of beds before the outbreak instead of the actual 
data that tend to increase during the epidemic, which is currently difficult to obtain. Although these factors 
influence the precision of the description, they would not affect the main conclusions of the study for the first 
wave of COVID-19 in most countries.

In conclusion, we present a dynamic model that decouples the complex evolution of COVID-19 mortality 
into two key processes: the mortality growth time in the early stage and the saturation mortality in the late 
stage. This analysis uncovers three cross-correlations between the individual scale and the national scale in 
COVID-19 mortality, which enables us to evaluate interventions quantitatively and predict the epidemic duration. 
This framework also has other potential applications, such as providing country-specific suggestions for the 
reservation of hospital beds to fight against the next wave of COVID-19 so that more deaths can be prevented.

Methods
Study design. As of October 1, 2021, 184 countries or regions had reported COVID-19 deaths. Due to 
technical limitations, government interventions, and multiple corrections of the data, the mortality evolution in 
some countries shows complex behaviours. For example, in 70 countries, the second wave breaks out before the 
first wave of the epidemic ends. Since the goal of this study is to analyse the complete evolution of mortality in 
the first wave, we propose the explicit inclusion criterion that only countries with post-peak daily deaths falling 
to less than one-tenth of the peak should be considered a qualified sample. Although the model provides a good 
description of mortality for some countries with total deaths less than 100 (see Supplementary Information), we 
conservatively quantify samples greater than 100, for statistical significance and clarity of the criteria. Finally, 
54 countries or regions were included in this study (see Fig. 5). In addition, we have selected 17, 11, and 10 
countries, within the 54 countries, that have a clear and complete evolution in the second, third, and fourth 
waves respectively.

Data and metrics. The data used in our study all come from open-access databases. Specifically, the 
COVID-19 case data are aggregated from the Johns Hopkins University  database26 (as of June 10, 2022), while 
the data of Wuhan are from the Health Commission of Hubei  Province27. The population, median age, and 
hospital beds (per 1000 population) are from the database of Our World in  Data28. For China, we chose the data 
of Wuhan City (Hubei Province, China) instead of national data because of Wuhan’s comparable population size 
and pandemic scale. The population and bed data in Wuhan are from the Wuhan Statistics  Bureau29. It is worth 
mentioning that the data of these state-level variables are updated to the most recent year but often not to the 
same year.

Bed occupancy. We propose the “Bed occupancy” to evaluate the availability of hospital beds across 
countries, which is calculated by dividing the number of hospitalized cases by the number of beds at the peak of 
the epidemic. Here, “the number of hospitalized cases” is calculated by the following relation: hospitalized case
s = confirmed − recovered − deaths.

The epidemic duration. The epidemic duration is defined to eliminate the long-tail effect when comparing 
different epidemic waves across countries. Using the peak of daily new deaths as a reference, we define the date 
when the new deaths climb to more than one-tenth of the peak as the outbreak date ( toutbreak ) and the date 
when the new deaths fall below one-tenth of the peak as the saturation date ( tsaturation ). The period between the 
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outbreak date and the saturation date is then defined to be the duration of the epidemic. A 10-day smoothing is 
carried out on the daily new deaths to obtain a smooth curve.

Model and parameters. In the early stages of the outbreak, the number of deaths increased almost 
exponentially due to weak intervention. With the expansion of the death toll, the social system takes actions to 
slow down the growth of mortality, such as increasing available medical resources, controlling the spread of the 
epidemic, and protecting high-risk groups. Eventually, the death toll tends to be saturated in the late stages of the 
epidemic. Therefore, we use the logistic model to fit the COVID-19 mortality (deaths per 100,000 population, 
S(t)):

The solution to Eq. (1) can be written as:

s0—When t ≫ 0 , S(t) ≈ s0 . Therefore, s0 denotes the saturation mortality in the late stage of the epidemic.
tc—When t = tc , S(t) = s0/2 . Therefore, tc denotes the characteristic time when mortality reaches half of the 

saturation mortality.
τ—When t ≈ 0 , S(t) ≪ s0 , Eq. (1) can be written as τ−1 ≈ S(t)

′

/S(t) . Therefore, τ−1 denotes the exponential 
growth rate of mortality, while τ is the characteristic time for death growth in the early stage of the epidemic.

The dimensionless coefficient k. When t = toutbreak or t = tsaturation , Eq. (2) can be written as:

Then, the duration can be obtained by subtracting the two equations above:

(1)dS(t)
dt

=
1

τ
S(t)

(

1−
S(t)
s0

)

(2)S(t) = s0

1+e
(tc−t)

τ

(3.1)toutbreak = tc − ln

(

s0
S(toutbreak)

− 1

)

∗ τ

(3.2)tsaturation = tc − ln

(

s0
S(tsaturation)

− 1

)

∗ τ

Figure 5.  The inclusion criteria of first wave data in this paper.
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Here, k is:

Thus, we can see that the duration is strictly linearly related to τ by the factor k , which is a property of the 
logistic variation of the death.

Parameter determination. We used the Curve Fitting Toolbox of MATLAB to fit the reported data across 
countries to obtain their parameters respectively, based on the analytic Eq. (2). Further, we used the function 
predint to obtain the uncertainty of the parameters at 95% confidence intervals, which showed to be very small 
(see Supplementary Information).

Data availability
All the data and code used in this study are publicly available at https:// github. com/ zhang lei- pku/ Model- COVID- 
19- morta lity.
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