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Rapid‑SL identifies synthetic lethal 
sets with an arbitrary cardinality
Mehdi Dehghan Manshadi1, Payam Setoodeh1,4* & Habil Zare2,3,4*

The multidrug resistance of numerous pathogenic microorganisms is a serious challenge that raises 
global healthcare concerns. Multi‑target medications and combinatorial therapeutics are much 
more effective than single‑target drugs due to their synergistic impact on the systematic activities 
of microorganisms. Designing efficient combinatorial therapeutics can benefit from identification of 
synthetic lethals (SLs). An SL is a set of non‑essential targets (i.e., reactions or genes) that prevent 
the proliferation of a microorganism when they are “knocked out” simultaneously. To facilitate 
the identification of SLs, we introduce Rapid‑SL, a new multimodal implementation of the Fast‑SL 
method, using the depth‑first search algorithm. The advantages of Rapid‑SL over Fast‑SL include: 
(a) the enumeration of all SLs that have an arbitrary cardinality, (b) a shorter runtime due to search 
space reduction, (c) embarrassingly parallel computations, and (d) the targeted identification of 
SLs. Targeted identification is important because the enumeration of higher order SLs demands the 
examination of too many reaction sets. Accordingly, we present specific applications of Rapid‑SL for 
the efficient targeted identification of SLs. In particular, we found up to 67% of all quadruple SLs by 
investigating about 1% of the search space. Furthermore, 307 sextuples, 476 septuples, and over 9000 
octuples are found for Escherichia coli genome‑scale model, iAF1260.

A number of human pathogenic microorganisms show multidrug resistance, which is a serious challenge in the 
era of global  healthcare1,2. Most of these species benefit from several pathogenicity factors (i.e., the production 
of antigens) and broad drug-resistance mechanisms (i.e., antibiotic target mutations). Hence, disrupting the 
activity of only a single gene in these microorganisms does not guarantee to prevent their growth or the biosyn-
thesis of virulence factors. Furthermore, targeting the essential reactions or genes in some pathogens may cause 
a significant increase in biofilm-associated reactions. This implies that single essential genes may not be proper 
targets for these types of  microorganisms3. In contrast, multi-target medications and combinatorial therapeutics 
synergistically impress the microorganisms’ systematic activities; thus, they have been recommended to be much 
more operative and they show less drug resistance than single  targets4.

Computational systems biology proposes powerful methodologies to address biomedical queries (e.g., human 
disease metabolism, the identification of potential drug targets) via a multidisciplinary systems-level study that 
considers multifaceted interactions between many elements in biological  networks5. Constraint-based models 
(CBMs) are very influential in this regard. These models are successfully employed as operative mathematical 
representations of genome-scale metabolic models (GEMMs) by imposing the governing context- and condition-
specific constraints on genome-scale metabolic network reconstructions (GENREs). CBMs can comprehensively 
analyze metabolic activities and examine the physiological properties of biological systems. Deploying CBMs, 
systematic analyses can be performed by applying the potent class of computational techniques that are available 
in constraint-based reconstruction and analysis (COBRA)  toolbox6–8.

Because in silico studies save significant time and expense, these methods are widely employed to identify 
the various effects of reaction and gene knockouts on the flux distribution of the metabolic networks of interest. 
These knockout studies can be implemented to identify new drug targets from three  perspectives9: (a) targeting 
virulence  factors3, (b) metabolite-centric  targeting10–12, and (c) targeting essential reactions and  genes13–17. The 
last perspective is known as the most common method for identifying potential drug targets, and it is not limited 
to the deletion of only one reaction or gene. Synthetic lethals (SLs) are pairs of non-essential reactions or genes 
that are deleterious to an organism when they are disrupted  simultaneously18. Similarly, when the number of 
targets increases, higher order synthetic lethal sets (n > 2) can be  obtained18.
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We should note that although the identification of higher order synthetic lethal sets can bring in new tar-
gets for utilizing different drugs in the design of combinatorial therapeutics, this approach is not common in 
 practice19. However, this concept, not certainly by design, might have been deployed already for many drug 
combination strategies. One example of this strategy is the combination of daptomycin, cefoperazone, and 
doxycycline for eradication of Borrelia burgdorferi, through loss of membrane potential as well as inhibition 
of energy metabolism, cell wall peptidoglycan synthesis, and protein  synthesis20. There are other examples in 
cancer therapeutics such as the combination of BRAF and EGFR inhibitors which effectually influence AKT, 
MEK and ERK signaling, suggested for colon cancer patients with BRAF  mutations19. In the mentioned cases, 
combinatorial therapeutics resulted in more effective impacts compared to monotherapies due to the synergistic 
effects on different functionalities of the cells.

Two approaches are used to computationally identify SLs: exhaustive search and search space reduction. 
Exhaustive search is straightforward and has been used in some  studies17,21, but applying this approach to identify 
higher order SLs, especially when the cardinality of SLs is greater than three, is not feasible due to computational 
time problems. Based on the available computational resources, we estimated that the required computational 
time for the exhaustive search would be over 180 days to obtain all quadruple SLs for Escherichia coli using 
 iAF126022 GEMM. Therefore, other methods are required to handle such problems by reducing the search space. 
Depending on the suggested criteria used to reduce the search space, some of these methods can find only a 
fraction of the higher order  SLs18, while some other methods aim to find all the  SLs23–28.

One of these methods, called “SL Finder,” performs an optimization-based search for the exhaustive and 
targeted identification of  SLs18. In order to reduce the search space, this method employs the flux-coupling 
 analysis29 to add only one of the fully coupled reactions in the knockout list. This approach was used to discover 
all double and triple SLs and conduct a targeted identification of a few quadruple and quintuple SLs for iAF1260 
GENRE of E. coli.

MCSEnumerator finds instead intervention strategies by enumerating the elementary modes of the dual 
 network30 of the corresponding metabolic  network23. It is a powerful approach especially for metabolic engi-
neering applications. Further improvements were made on this approach to obtain the generalized framework 
of MCSEnumerator and accelerate the dual  calculations24–26. MCSEnumerator was applied to find all double to 
quintuple SLs in  iAF126023. However, the computational time increases exponentially for SLs that have higher 
cardinalities, and therefore, the search procedure needs to be stopped after finding a predefined number of SLs 
or a time limit is reached. Alternatively, in this paper, we propose a targeted enumeration algorithm aiming to 
increase search efficiency.

Fast-SL is a powerful algorithm that drastically reduces the search space by purging the search space of reac-
tions that are guaranteed not to produce  SLs27. Fast-SL computes a flux distribution that maximizes the growth 
rate using a minimum value for the sum of fluxes ( l1-norm) in order to identify flux-carrying reactions. In the 
next step, the algorithm searches only through these flux-carrying reactions, as well as their combinations, to 
identify SLs within a reduced search space. The authors reported the identification of 127 new synthetic lethal 
genes in E. coli, which had not been found by SL Finder. Also, Fast-SL outperforms the MCSEnumerator by 
finding the same SLs about four times faster. Fast-SL provided a valuable idea for finding SLs in a reduced search 
space, but the implementation of this method has two major drawbacks. First, the authors developed different 
procedures in order to obtain the SLs with different cardinalities, up to quadruple SLs. Therefore, to obtain SLs 
with more than four targets in each set, an entirely new procedure for each cardinality must be developed. Con-
sequently, if one follows the implementation footsteps in the original Fast-SL, the procedure becomes extremely 
complicated and requires labor-intensive work to develop. The second drawback is that Fast-SL lacks an organ-
ized search method; therefore, several duplicated cases are studied in the original Fast-SL. This causes serious 
problems when searching for SLs with high cardinalities.

Logic transformation of model (LTM) is another method used in this field. This method changes the stoi-
chiometry matrix (i.e., the S matrix) by adding pseudo-metabolites and reactions to consider the gene-protein-
reaction associations (GPRs)28. However, the LTM method increases the size of the S matrix, which in turn 
enlarges the problem size. Thus, more linear programming problems (LPs) must be solved to find SLs. Hence, 
this method becomes extremely time consuming to perform knockouts regarding higher order SLs.

As mentioned earlier, drug resistance is an important concern and identification of new drug targets based 
on the concept of synthetic lethality can be a suitable solution for this issue. However, comparing the effects of 
the different synthetic lethal sets on the metabolic network and its functionalities reveals that some of the sets 
with higher cardinalities can make stronger and deeper impacts on the network. For instance, we can categorize 
the synthetic lethal sets into two types: (a) SLs that yield auxotroph strains and (b) SLs that yield strains lacking 
essential functionalities. The first type of SLs yields strains that are able to restore their growth if the missing 
nutrients are supplied. In contrast, the strains yielded in the second group cannot restore their growth even if 
extra components are provided in the growth medium. We expect that the SLs of the second group function more 
effectively and enable us to aim targets that are harder to resist by pathogens. Based on our in silico observations, 
higher order SLs provide us with more of these more effective SLs.

The purpose of the current work is to develop a comprehensive and straightforward reimplementation of 
the Fast-SL algorithm to facilitate the identification of higher order SLs. We call our implementation Rapid-SL, 
which has two major steps that are iteratively performed based on the depth-first search (DFS)  algorithm31: (1) 
identification of the seed space (i.e., reactions with nonzero fluxes) and (2) searching within the seed space to find 
the solutions. The main difference between this new implementation and the original Fast-SL is the compartmen-
talization of the searching process into several branches. This branching allows embarrassing  parallelization32 
and prevents the examination of duplicate cases. This reduces the search space by about 35–60% compared to 
Fast-SL. However, in the modern drug discovery process, the target identification is typically the beginning 
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step. Therefore, as in the case of Fast-SL, further analysis on the Rapid-SL results, as a biological hypothesis, is 
required to reach an approved drug.

In order to examine the performance of the developed method, we compared the results of Rapid-SL and Fast-
SL for three microorganisms. Afterwards, we introduced three applications for Rapid-SL that could be effective 
for the targeted identification of higher order SLs, particularly when the cardinality of SLs is greater than four 
targets. Accordingly, we can: (1) search among a specific list of reactions chosen consistent with a biological con-
text, (2) apply graph-based search methods, and (3) selectively enumerate the SLs among the DFS branches. Based 
on our in silico experiments in the current work, over 9000 octuple (n = 8) SL reactions were reported for E. coli 
using iAF1260 GEMM. We hope that the identification of higher order synthetic lethal sets using efficient tools 
such as Rapid-SL paves the way for systematic designing of effective combinatorial therapeutics in future studies.

Materials and methods
To make the identification of the higher order SLs feasible, we must reduce the search space. The knockout of a 
reaction set that includes only non-flux-carrying reactions does not change the flux through biomass formation 
 reaction27. Therefore, to reduce the search space, we first identify and focus on the set of flux-carrying reactions, 
which we denote as the seed space  (Jnz) in this work. In the second step, we search for the SLs within the seed 
space. Moreover, each non-lethal subset of the seed space defines a new proliferating mutant strain. Using a DFS 
approach, we repeat the first and second steps for each of the new mutant strains (Fig. 1). This iterative process 
continues until certain stopping conditions are met. Each step of the process, as well as the stopping conditions, 
are described in the following.

First step: identification of the seed space. We denote the flux of reactions by νjs. In the first step, two 
flux-balance-analysis (FBA)-related  LPs33 are considered and solved. These LPs lead to the identification of a flux 
distribution that maximizes the flux of the biomass objective function (νbio), while the l1-norm of the fluxes is set 
to its minimum value. The first LP is defined as

where νbio,WT is the growth of the wild-type strain calculated by solving the following LP problem:

The goal of computing this flux distribution is to characterize the flux-carrying reactions, or the seed space.
Applying flux-variability analysis (FVA)34 instead of computing l1-norm of the fluxes would provide us with 

more information about the effect of each reaction on the biomass objective function. However, FVA is a time 
consuming process and using this method repetitively would cripple the whole process.

(1)

min
∑

j

∣

∣νj

∣

∣

s.t.

νbio = νbio,WT

S ν = 0

νlb ≤ ν ≤ νub

(2)

max νbio

s.t.

S ν = 0

νlb ≤ ν ≤ νub

Figure 1.  The flowchart of Rapid-SL. Calling Rapid-SL from itself represents the recursive feature of our 
implementation.
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Second step: searching within the seed space. All combinations of the reactions in the seed space 
have the potential to form SLs; therefore, the exhaustive search is performed in the second step. However, when 
an SL is found in this step, the corresponding supersets are excluded to prevent the investigation of duplicated 
cases or the production of trivial answers. Furthermore, each non-lethal set identified in this step defines a 
proliferating mutant (i.e., a new virtual strain). This second step also includes the listing of all non-lethal sets 
to investigate their related proliferating mutants by removing more potential reactions in the next level of the 
search. Figure 2 depicts these explanations using a toy model. This step is performed in a parallel loop in the first 
level for the wild-type strain to decrease the wall-clock time.

Backtracking and the stopping conditions. As described by Pratapa et al.27, removing a set of reactions 
that includes only non-flux-carrying reactions would have no effect on the flux of biomass formation reaction; 
therefore, at least one reaction in the seed space of the wild-type strain  (Jnz) should participate in each SL. Here, 
we generalized this statement from the wild-type strain to any virtual strain obtained during our search pro-
cedure. In other words, each reaction designated for removal in subsequent steps of the DFS algorithm should 
originate from the seed space of the parent virtual strain. Therefore, after we evaluate the first and the second 
steps for the wild-type strain, we iteratively repeat these two steps for all the resulting virtual strains identified in 
the second step of the previous level. Each of these mutants is treated the same as the wild-type strain; therefore, 
we face an iterative problem, which is handled using the DFS algorithm (the associated pseudocode is available 
in Supplementary Note B). Note that, other organized search algorithms such as breadth-first  search35 and best-
first  search36 instead of DFS can be used easily in our implementation.

The search proceeds from the root node, which consists of a nonlethal set. As an example, consider a general 
non-lethal set, ∆m with m members, which is derived from the evaluation of the second step for the wild-type 
strain. Let J�m

nz  be the seed space of the mutant strain that results from the removal of the non-lethal set of Δm. 
The set of J�m

nz  is evaluated by passing the corresponding mutant to the first step. Because all the reactions in 
 Jnz and their combinations are studied in the other branches, only the flux-carrying reactions of this mutant, 
which belong to  Jnz, are considered at this level. If there are any reactions at this level (i.e., J�m

nz − Jnz �= ∅ ), the 
second step is triggered for all the members of J�m

nz − Jnz . In Rapid-SL, backtracking occurs in three cases, and 
extensions cannot go deeper:

(a) when a set is found to be lethal.
(b) when no new reaction gains non-zero flux after removing a set (i.e., J�m

nz − Jnz = ∅).
(c) when the size of the examined set reaches the maximum desired cardinality.

Pratapa et al.27 state that Fast-SL is not an embarrassingly parallel algorithm; however, they provide a parallel 
version of the Fast-SL only for the evaluation of quadruple SLs. This parallel version performs parallel calculations 

Figure 2.  The effect of removing a non-lethal reaction of  Jnz. (a) Toy model;  Ri denotes the reaction names, 
and υRi represents the flux through  Ri. (b) Flux distribution of the wild-type strain.  Jnz =  (R1,  R2,  R3,  R6). (c) Flux 
distribution of the mutant strain in which  R2 is removed. In order to maximize the flux of  R6, the  R4 and  R5 
reactions gain nonzero fluxes unlike the wild-type strain. Therefore, removing any of the activated reactions  R4 
or  R5 will block the flux through  R6 and the biomass objective function.
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for some specific parts of the Fast-SL algorithm. Unlike Fast-SL, Rapid-SL is an embarrassingly parallel algorithm 
because it is possible to evaluate the branches of the DFS algorithm using a parallel procedure.

Figure 3 shows an example that illustrates the backtracking process. In this toy example, the maximum 
cardinality is five (n = 5).

Enumeration of synthetic lethal gene sets. To enumerate the synthetic lethal gene sets, the same pro-
cedure is employed, except that those non-zero-flux reactions obtained in each part are converted to the func-
tioning genes using GPR rules (Supplementary Note C). In this work we focused on the enhancement of the 
identification of SL reactions, which is the main step in the process of finding SL genes. To find SL genes, other 
improvements can be made by involving and translating GPR rules to make further reduction in the search space 
prior to the main identification process. Methods such as  gMCS37 effectively use this feature for identification of 
synthetic lethal genes.

Results
We present our results in two parts. First, the performances of Fast-SL and Rapid-SL were compared in the 
identification of SLs for three microorganisms (see the Supplementary Note D for the comparison between 
Rapid-SL and duality-based methods). Then, we report the results of the three applications of Rapid-SL for 
the targeted enumeration of the higher order SLs. The overall computation time of the Fast-SL and Rapid-SL is 
mostly dependent on the time that is spent on solving the LPs. Therefore, to ensure a fair comparison between 
Fast-SL and Rapid-SL, we reported the number of LP problems that were solved by each approach. Furthermore, 

Figure 3.  Schematic of a typical example of the depth-first search in our implementation. The squares represent 
targets. Here  (R1,  R6) is a non-lethal set from the second step. The Roman numerals show the order of progress 
in examining the lethality of different sets. Light blue squares represent the targets that gain non-zero fluxes 
after removing some reactions. Node I and node III are non-lethal sets and their removal activates new potential 
targets ( ). Node II shows a lethal set and thus branching from this node is stopped ( ). Branching in node V 
is stopped because no new potential target could be activated ( ). Branching in nodes IV and VI are stopped 
because the maximum desired cardinality is reached ( ). After examining the sets corresponding to the  R16 
branch, the process will continue for the  R18 branch.
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a comparison of wall-clock runtime is provided in Supplementary Note E. The results were obtained using a 
workstation with a 2.2 GHz Intel Xeon E5-2696 v4 processor, which has 12 cores available for computation.

Synthetic‑lethals of the three microorganisms. Table 1 shows the respective numbers of SLs with 
different cardinalities (up to quadruples) obtained by our implementation and obtained by the original Fast-SL. 
Since the SLs identified by the both methods were found to be the same, the table does not report the number of 
these SLs found by each method.

Table 1 indicates that our new implementation explores about 40–65% of the search space of the original 
Fast-SL, and it does not omit any potential cases (Supplementary Files S1–S3). This reduction in the search space 
is achieved by preventing the investigation of identical cases produced in different branches.

Applications of Rapid‑SL. As the maximum desired cardinality of SLs increases, there is an exponential 
increase in both the search space and the number of cases to be examined in order to find all possible SLs. As a 
result, it is not feasible to find all possible SLs with high cardinalities (e.g., octuple SLs) using the algorithms that 
are currently  available23,27. Therefore, we take advantage of our new implementation to effectively investigate 
these large search spaces. Here we introduce three applications of Rapid-SL to perform the targeted enumeration 
of higher order SLs.

Searching a list of specific targets. The simplest method to find a fraction of solutions is to specify only a limited 
group of reactions. However, it is not clear what reactions should be selected. These reactions may be selected 
from a specific subsystem or pathway that has been diagnosed as important for the growth of the microorgan-
ism. For example, we performed a search to find octuple SLs (i.e., with eight reactions in a set) among 65 core 
reactions introduced by Hädicke and Klamt for generating a core model from  iJO136639,40. The results obtained 
in this application are presented in Supplementary File S4.

Our new implementation makes this analysis feasible, but at the first sight, it may seem that using Rapid-SL 
is not necessary, and it may seem sufficient to find these results using an exhaustive search because of the small 
number of reactions involved in the analysis. However, Rapid-SL uses a search space that is about 50 times smaller 
than the exhaustive search, which consequently requires an extremely time-consuming process even for small 
numbers of reactions. Also, it is not feasible to perform this analysis using the original Fast-SL, because separated 
algorithms should be devised for the cardinality of each SL.

Applying constraints on the branching of the DFS. Since Rapid-SL applies the DFS algorithm to investigate the 
search space, it is possible to define thresholds or conditions to limit the branching and search only the more 
probable parts of the corresponding tree. For example, we established a criterion in which sets are allowed to 
branch only if their deletion reduces the growth rate of the corresponding strain by at least 1%. The results 
obtained by applying this criterion to the process of identifying octuple SLs (n = 8) for iAF1260 are presented 
in the Supplementary File S5. Here, the critical value of 1% was selected based on trial and error. Other values 
could be employed based on the studied GEMM and the growth medium. Also, other types of constraints could 
be defined, such as the change in the pool of a specific metabolite or the fluxes of other reactions.

Selective enumeration among the DFS branches. Consider the process of seeking the quadruple SLs of E. coli 
using iAF1260. If we group the branches of the Rapid-SL algorithm based on the number of reactions in the 
starting node of each branch, it is evident that the number of LPs solved in each group substantially increases 
as the cardinality of the starting node increases. On the other hand, the number of identified SLs per LP solved 
dramatically decreases (Table 2). Therefore, a large portion of the SLs can be identified by performing a lethality 
analysis on a limited number of branches.

Table 1.  Comparison of the number of LPs solved by Rapid-SL vs. Fast-SL for three GEMMs. a The exchange 
and diffusion reactions are not generally considered in the lethality analysis.

Escherichia coli Salmonella Typhimurium Mycobacterium tuberculosis

Model name iAF126022 STM_v1.014 iNJ66138

Medium iM9/glucose iM9/glucose Middlebrook 7H9

Number of reactions 2382 2546 1028

Number of exchange and diffusion  reactionsa 331 378 86

Number of reactions in  Jnz 406 484 414

Single lethal reactions 278 329 309

Lethal reaction pairs 96 152 75

Lethal reaction triplets 247 275 140

Lethal reaction quadruplets 402 1008 463

Total number of LPs solved

Fast-SL 1.45    ×  107 3.01 ×  107 1.19 ×  107

Rapid-SL 7.35 ×  106 1.98 ×  107 4.90 ×  106
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According to Table 2, it is possible to extend only the branches in Group (I) to identify over 34% of all SLs 
(excluding single lethals), while about 0.65% of all LPs are examined. It should be noted that 254 SLs identified 
in Group (I), consist of 74 double, 98 triple, and 82 quadruple SLs. The same analyses were performed for the 
same microorganism (E. coli) with a different genome-scale model (i.e. iJO1366) and also for a different type of 
microorganism (i.e. Klebsiella pneumoniae,  iYL122841) to check the generalizability of this observation (Table 3).

It could be inferred from Table 3 that an evaluation of the branches in Group (I) is a reliable approach to find 
a considerable fraction of all SLs. For the GEMMs that were studied, we found up to 67% of all SLs (i.e. including 
double, triple and quadruple SLs) using the illustrated method by examining only about 1% of the search space 
that must be evaluated to find all quadruple SLs. We applied this method to find the octuple SLs of iAF1260 to 
investigate the efficiency of this approach for identification of higher order SLs with more than four targets in 
each set (Supplementary File S6).

Table 4 summarized the results of the three applications of Rapid-SL and according to this table, over 9000 
octuple SLs were found using the illustrated application of Rapid-SL. Based on the size of the GEMM and the 
maximum desired cardinality of SLs, it is possible to consider other groups of branches. For instance, Table 2 
shows that evaluating both Groups (I) and (II) for iAF1260 reduces the search space by over 90% while identify-
ing over 63% of all SLs.

Table 2.  The number of SLs and corresponding LPs solved in each group of branches of the Rapid-SL, while 
searching for single lethals to quadruple SLs in iAF1260. The branches are grouped based on the number of 
members in their starting node. Evaluating only the first group of branches identifies over 34% of SLs, while 
only about 0.65% of LPs must be examined.

Group identifier Cardinality of the starting node Number of SLs identified Number of LPs solved

I One reaction 254 47,869

II Two reactions 220 646,501

III Three reactions 192 2,679,417

IV Four reactions 79 3,974,889

Table 3.  SLs identified by evaluation of only the branches with one reaction in the starting node (Group I).

Model Cardinality of SLs All SLs Enumerated in Group (I) Fraction (%)

iJO1366

Double SL 259 237 91.5

Triple SL 1162 871 75.0

Quadruple SL 3585 2275 63.5

Total SLs 5006 3383 67.6

Total number of LPs solved 32,615,092 322,670 1.0

iYL1228

Double SL 146 127 87.0

Triple SL 289 178 61.6

Quadruple SL 1090 513 47.1

Total SLs 1525 818 53.6

Total number of LPs solved 12,283,617 125,159 1.0

Table 4.  Results of three introduced applications.

Search through a specific list of 
targets

Applying constraints on the 
branching of the DFS

Selective enumeration among the 
DFS branches

Model name iJO1366 iAF1260 iAF1260

Medium iM9/glucose iM9/glucose iM9/glucose

Double SLs 11 10 74

Triple SLs 18 27 98

Quadruple SLs 68 41 82

Quintuple SLs 22 11 159

Sextuple SLs 86 59 307

Septuple SLs 319 125 476

Octuple SLs 681 402 9126

Total number of LPs solved 78,297,112 27,803,258 89,958,961
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Discussion
In this paper, we introduce Rapid-SL as a new implementation of Fast-SL that enables the algorithm to find higher 
order SLs with arbitrary cardinalities. Unlike Fast-SL, this new implementation fully supports embarrassingly 
parallel computations. Furthermore, compared to Fast-SL, the application of the DFS algorithm (a structured 
search method) decreased the number of evaluated LP problems by about 35–60%. The original implementation 
of Fast-SL is not embarrassingly parallel and suffers from time consuming sequential computations in some of 
its steps. Accordingly, for larger models and higher order SLs, the difference between the computational time 
of Fast-SL and Rapid-SL increases and Rapid-SL becomes more and more efficient. Although Rapid-SL is not 
limited in terms of the cardinality of SLs, it is not feasible to seek for all SLs with higher cardinalities, especially 
when n > 4, without using computer clusters. When using a single conventional computer, the runtime of this 
examination may extend to several months because of the tremendous number of potential cases. Owing to our 
proper implementation, Rapid-SL can effectively find a considerable portion of higher order SLs by searching 
only a relatively small fraction of potential cases. Accordingly, three Rapid-SL applications were introduced: (a) 
searching among a selected list of potential reactions, (b) applying constraints on the branching of the DFS, and 
(c) selective enumeration among the DFS branches. These applications identified up to 67% of quadruple SLs 
by searching about 1% of the potential cases. Particularly, over 9,000 octuple synthetic reactions were found for 
iAF1260 in the third application. Accordingly, Rapid-SL can be effective for investigating large models such as 
genome-scale metabolic models of human cells to find drug targets with high cardinalities.

Although the first two applications find fewer SLs than the other application, they may still be useful for 
seeking SLs with specific biological considerations. The importance of this feature becomes clearer noting that 
a single organism may have more than several thousands SLs with high cardinalities, and experimental valida-
tion of all of these SLs is not feasible due to the immense number of required experiments. Therefore, the both 
scenarios require the consideration of biological criteria when searching for useful SL sets. In future work, we 
will focus on defining new criteria to reduce the number of potential drug-targetable SLs.

Conclusion
Although the combinatorial therapeutics are expected to be effective against drug resistance pathogens and 
higher order SLs can potentially nominate candidates for simultaneously attacking multiple targets, it is still 
challenging to determine which combination would be practical and most useful. For example, possible negative 
synergistic effects narrow down the practical drug combinations. Furthermore, when the number of targets in 
an SL increases, the chance of finding a set with all druggable targets decreases. Therefore, it would be desirable 
to devise a systematic pipeline to investigate the identified higher order SLs as the starting point and derive a 
combinatorial therapeutic design as the outcome.

Data availability
Rapid-SL is publicly available at https:// github. com/ CSBLa borat ory/ Rapid SL (Supplementary File S7).
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