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Magic wavelength 
for a rovibrational transition 
in molecular hydrogen
H. Jóźwiak* & P. Wcisło*

Molecular hydrogen, among other simple calculable atomic and molecular systems, possesses a huge 
advantage of having a set of ultralong living rovibrational states that make it well suited for studying 
fundamental physics. Further experimental progress will require trapping cold  H2 samples. However, 
due to the large energy of the first electronic excitation, the conventional approach to finding a 
magic wavelength does not work for  H2. We find a rovibrational transition for which the AC Stark 
shift is largely compensated by the interplay between the isotropic and anisotropic components of 
polarizability. The residual AC Stark shift can be completely eliminated by tuning the trapping laser to 
a specific “magic wavelength” at which the weak quadrupole polarizability cancels the residual dipole 
polarizability.

Accurate spectroscopy of simple calculable atomic and molecular systems has proven its importance for study-
ing fundamental physics and testing quantum theory. A particularly important role has been played by atomic 
hydrogen. In addition to its large contribution to the development and tests of quantum electrodynamics, accu-
rate spectroscopy of atomic hydrogen provides the energy scale for ab initio quantum calculations (the Rydberg 
constant) and gives an important contribution to the global adjustment of fundamental  constants1. Several other 
calculable systems, such as helium  atom2,3,  HD+  ion4,5, exotic  atoms6–8 or hydrogen molecule, contribute to test-
ing quantum theory, determining fundamental constants and searching for new physics beyond the standard 
 model9–11. When considering a long-term perspective,  H2 possesses a huge advantage over other system, which 
is a set of a few hundred ultralong (a week) living rovibrational  states12. The ratio of the natural linewidth to the 
optical transition frequency is on the order of 10−20 which, for a typical ability of resolving a 10−4 fraction of the 
linewidth, gives the ultimate limit on testing fundamental physics with  H2 at 10−24 relative accuracy.

Fast progress in molecular hydrogen spectroscopy was triggered by implementing optical frequency combs 
over a decade ago. The present most accurate measurements were obtained with infrared-ultraviolet double 
resonance spectroscopy in molecular  beam13,14 and cavity-enhanced spectroscopy: for HD, the sub-Doppler 
saturation technique was  implemented15,16, while for homonuclear isotopologues, due to the lack of dipole transi-
tions, Doppler-limited techniques were  used17,18 (the Doppler-limited technique was also used for  HD19,20). The 
highest accuracy, 13 kHz, was obtained for the HD  isotopologue13. The factors that limit the accuracy depend 
on the approach used. For instance, for HD molecular beam experiments, the accuracy is limited by the residual 
first-order Doppler shift to the 12 kHz  level13.

To maintain the fast progress in  H2 rovibrational spectroscopy and progress towards the fundamental limita-
tion, a cold  H2 sample has to be trapped in an optical lattice. The first attempt to manipulate the  H2 velocity with a 
laser field was demonstrated in Ref.21. Recent progress in laser technology already gives the capability to generate 
a 1 mK-deep optical-dipole trap with a continuous-wave (CW) laser coupled to a high-finesse  cavity22. At this 
point, it is important to study this problem from the theory side and check if it is possible to eliminate the AC 
Stark effect caused by the trapping laser field. The conventional magic-wavelength  approach23 is not applicable to 
the  H2 molecule (see the next paragraph). Here, we demonstrate a new approach to finding a magic wavelength. 
First, we take advantage of the anisotropy of the dipole polarizability in  H2 to eliminate the dominant part of the 
light shift by choosing an excited state with a favorable spatial orientation. Second, we calculate that the residual 
light shift can be completely eliminated by tuning the trap laser close to one of the rovibrational quadrupole 
transitions. We consider the S(0) 1–0 line in the  H2 isotopologue. For this line, the magic wavelength is 2413 nm 
(0.23 MHz red detuned from the center of the Q(2) 1–0 line).
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Dipole polarizability (the interplay between the isotropic and anisotropic 
components)
The isotropic dipole polarizability, α, of the  H2 molecule in its ground electronic state, X1�+

g  , is at the level of 
5.4  e2a20/Eh

24,25, which for power densities achievable with today laser technology (1 MW/mm2 for a 0.4 mm laser 
beam waist)22 gives a depth of an optical dipole trap at the level of 1 mK. However, the polarizabilities in the 
vibrational ground, v = 0 , and first excited, v = 1 , states differ by almost 10%25; hence, the enormous light shift 
will ultimately dominate the uncertainty budget for the determination of the energies of the rovibrational transi-
tions (the AC Stark effect not only shifts the effective position of a resonance but also causes its inhomogeneous 
broadening). The conventional approach to finding a magic wavelength used in atomic  spectroscopy23 is not 
applicable to  H2 molecule. The two spectroscopic states share the same electronic state; hence, the difference in 
polarizabilities changes very slowly with laser wavelength for the infrared and visible regions and is close to its 
DC value. The difference increases in the UV  range24,26; see the left panel in Fig. 1. One may expect it to cross 
zero after the first electronic line, i.e., in the XUV range ( � < 110 nm), which is, however, difficult to access with 
available laser technology.

For the case of the X1�+
g -state  H2 molecule, we can benefit from the anisotropy of the dipole polarizability. 

When the electric field is aligned with the molecular axis, the static polarizability is larger by a quarter than α, 
and when the field is perpendicular, it is smaller by one eighth; the corresponding polarizability components are 
denoted by α‖ and α⊥ ; see Fig. 2a. The relative contribution of the two components to the effective polarizability 
in a given rovibrational state is determined by the direction of the trap laser electric field vector, �Et , and the distri-
bution of the molecular orientation in the laboratory frame, which is described by a specific spherical harmonic. 
We assume �Et to be directed along the Z axis in the laboratory frame. For cold para-H2 experiments, one of the 
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Figure 1.  Difference between the dynamical polarizabilities in the excited, |v = 1,N = 2,MN = ±2� , and 
ground, |v = 0,N = 0,MN = 0� , states (based on the data from Ref.  H2

24). The left panel shows the difference 
between the isotropic polarizabilities, while the right panel shows the difference between state-averaged 
polarizabilities. This plot involves only the dipole contribution to the polarizability. The secondary axis presents 
the light shift calculated for the trap depth of 0.12 mK, which corresponds to the trap laser intensity of 0.1 MW/
mm2.

Figure 2.  Orientation of the H 2 molecule with respect to the trapping field �Et and the definition of the 
parallel ( α‖ ) and perpendicular ( α⊥ ) components of the dipole polarizability (a). Panels (b, c) show the angle 
distribution of the  H2 molecule in the ground and excited states, respectively (the squared modulus of Y0

0  and 
Y
2
MN

 spherical harmonics), over which the two components of the polarizability are averaged to obtain 〈α〉v,N ,MN
.
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most preferable transitions to consider is the 1–0 S(0) line that links the |v = 0, N = 0� and |v = 1, N = 2� states; 
we focus the analysis on this transition. The distribution of the molecular orientation in these two states is given 
by Y0

0  and Y2
MN

 spherical harmonics; see Fig. 2b and c, respectively. For the ground state, the angle distribution 
is isotropic, and the corresponding average of α‖ and α⊥ simply gives α . For the excited state, the angle distribu-
tion depends on the projection of the rotational angular momentum, MN ; see Fig. 2c. For MN = 0 , a molecule 
is more likely to orient along the electric field, while for MN = ±2 , it is more likely to be orthogonal; hence, the 
corresponding average polarizability, 〈α〉 , is larger for MN = 0 and smaller for MN = ±2 . Direct integration of 
the two polarizability components over the angle distribution gives a general relation

where α = 1
3 (α� + 2α⊥ ) and γ = α� − α⊥ are called isotropic and anisotropic dipole polarizabilities. The Supple-

mentary Information provides a general derivation of Eq. (1) based on the time-dependent perturbation theory 
and irreducible spherical tensor formulation; we further use this derivation for the determination of the dynamic 
quadrupole polarizability. The isotropic and anisotropic polarizabilities depend on the rovibrational state; hence, 
we label them αv,N and γv,N . According to Eq. (1), the average value also depends on the MN number; hence, we 
label it 〈α〉v,N ,MN . The isotropic components in the ground and excited states differ by 9.3% , i.e., α0,0 = 5.4179 e2
a20/Eh and α1,2 = 5.9193 e2a20/Eh (the numbers in this paragraph are the DC-limit values). It follows from Eq. (1), 
however, that the difference is reduced to below 0.4% when considering the MN = ±2 angle distribution of the 
excited state, i.e., �α�0,0,0 = α0,0 = 5.4179 e2a20/Eh and �α�1,2,±2 = α1,2 − 4

21γ1,2 = 5.4390 e2a20/Eh . In Fig. 1, the 
right panel, shows the polarizability difference for this transition as a function of laser frequency. The upper left 
panel in Fig. 3, shows the corresponding Stark shifts, �E

dip
v,N ,MN

= −(Ē2/2)�α�v,N ,MN , of the ground state and 
the three components of the excited state.

To drive the transitions from the ground MN = 0 to excited MN = ±2 states, one should properly choose the 
polarization of the probe laser. The 1–0 S(0) transition is a quadrupole transition (the electric dipole transitions 
are not allowed in  H2); hence, the light-molecule interaction does not probe the local electric field vector but 
the gradients of its components. Therefore, the selection rule does not involve only the relative orientation of 
the polarizations of the trap and probe lasers but also the direction of the probe laser propagation. The spherical 
components of the electric field gradient tensor corresponding to the �MN = ±2 transitions are (see the Sup-
plementary Information for details)

where �Ep is the probe laser electric field vector. Assuming that the wavelength is much shorter than the beam 
diameter, we can neglect the gradient components perpendicular to the direction of the probe laser propa-
gation; hence, the (∂XEp,X − ∂YEp,Y ) term can be neglected. For the assumed �Et directed along the Z-axis, a 
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3
γ
3M2

N − N(N + 1)

(2N − 1)(2N + 3)
,

(2)T
(2)
±2(∇�Ep) = − (∂XEp,X − ∂YEp,Y )± i(∂XEp,Y + ∂YEp,X)

2
√
6

,

5 10 15 20
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Figure 3.  Stark shifts (the DC-limit values) of the |v,N ,MN � levels in  H2: |0, 0, 0� , and |1, 2,MN � (top left panel), 
and |0, 2,MN � and |1, 2,±2� (top right panel). The probe laser drives the �MN = ±2 components of the 1–0 
S(0) transition (red arrows in the bottom panel), while the trapping laser couples the |1, 2,±2� states with the 
|0, 2,±1� states, the two components of the 1–0 Q(2) line (blue arrows in the bottom panel).
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simple example of the configuration able to drive the �MN = ±2 transitions is �Ep directed along the X-axis 
and propagating along the Y-axis. At this point, the selection rule does not depend on the direction of the trap 
laser propagation. It matters when considering the quadrupole contribution to the polarization; see the next 
paragraph. For that case, we assume the trap laser to propagate along the Y-axis (the same as for the probe laser).

Quadrupole polarizability: the magic wavelength. The difference in dynamic polarizabilities, shown 
in the right panel in Fig. 1, involves only the dipole contribution. Once the dominant part of the difference in 
dipole polarizability is eliminated by a proper choice of the ground and excited rovibrational states (see the 
red dashed and black solid lines in the upper left panel in Fig. 3), the quadrupole contribution is not negligible 
when the laser is tuned close to one of the rovibrational transitions. The dynamic quadrupole polarizability can 
be calculated as a sum over contributions from all rovibrational lines and electronic resonances. The electronic 
contribution to the quadrupole polarizability is  negligible27. The quadrupole contribution to the polarizability 
is nonnegligible only when the trap laser is parked close to one of the rovibrational lines; in this regime, the 
contributions of all the other lines are completely negligible, and the full sum over the rovibrational transitions 
simplifies to

where k = 2πν/c is the magnitude of the wavevector of the trapping laser, h is the Planck constant, νv′N ′←vN 
denotes the frequency of the v′N ′ ← vN rovibrational transition, Q(rHH) is the quadrupole transition moment 

function, which depends on the internuclear distance, rHH , and 
(

j1 j2 j
m1 m2 m

)

 is the Wigner 3-j symbol. In the 

Supplementary Information, we give a full derivation and a detailed discussion of Eq. (3). The left panel in Fig. 4 
shows a close neighborhood of the Q(2) 1–0 line (at 2413 nm) that includes not only the dipole contribution to 
the polarizability difference, shown in the right panel in Fig. 1, but also the quadrupole contribution [given by 
Eq. (3)] due to the proximity of the Q(2) 1-0 line. Effectively, the difference in polarizabilities between the ground 
and excited states crosses zero at the point marked by the vertical gray line in the left panel in Fig. 4. At this 
wavelength, the total light shift vanishes, and following Refs.23,28, we refer to it as a magic wavelength. A major 
difference from a typical magic-wavelength approach is that in our case, the trap laser must be spectrally very 
narrow, and its absolute frequency must be well controlled, i.e., the value and dispersion of the trap laser fre-
quency should be much smaller than 100 kHz. This is achievable with current optical frequency comb and 
ultrastable laser technologies.

The magic wavelength can be achieved by tuning the frequency of the trapping laser close to any of the rovi-
brational transitions involving either the |v = 0,N = 0,MN = 0� or |v = 1,N = 2,MN = ±2� levels. Taking into 
account the selection rules associated with the 3-j symbols in Eq. (3) ( |N − 2| ≤ N ′ ≤ N + 2 , N ′ = 0 � N = 0 , 
and M ′

N = MN ± 1 ) and the fact that there are 15 vibrational levels in H 2 , we can identify 44 magic wave-
lengths for the 1–0 S(0) line. Table 1 lists the magic wavelengths that are the most beneficial from the perspec-
tive of experimental realization, i.e., the wavelengths are accessible with today laser technology and the magic 
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Figure 4.  (Left panel) Difference between the average dynamical polarizabilities in the excited and ground 
states in  H2. This figure shows the same quantity as the right panel Fig. 1, but also includes the quadrupole 
contribution and is zoomed around a close neighborhood of the 1–0 Q(2) line. In the simplest approach, 
the quadrupole contribution was calculated using perturbation theory (Eq. (3)), see the black solid line. Full 
calculations show that in a close neighborhood of a resonance, the quadrupole contribution to the polarizability 
depends on the intensity of a trap laser; for 1 MW/mm2 the actual difference between the polarizabilities 
considerably deviates from the perturbation approach (see the blue dashed line), while for 0.1 MW/mm2 the 
deviation is almost negligible (see the solid blue line). (Right panel) Shape of the 1–0 S(0) transition in  H2 
determined by solving a full master equation for a three-level system with two laser fields (see Supplementary 
Information) for different values of the detuning of the trapping laser, �t , and for It = 1 MW/mm2.
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wavelength detunings, δm , and Rabi frequencies, � , are the largest. Note that for transitions involving N ′ = 4 
levels there are two M ′

N components contributing to the sum in Eq. (3).
In a typical atomic dipole trap, the trap laser is far detuned from the nearest transition to avoid scattering 

 losses29. Here this condition is followed, but the frequency regime is different. Instead of a strong and wide elec-
tronic line, we have an ultranarrow quadrupole rovibrational line; the few hundred kilohertz detuning is many 
orders of magnitude larger than the line width.

The limitation of the perturbation approach
In this work, we consider very strong laser fields closely tuned to rovibrational resonance; hence, we should check 
if the perturbation approach [Eq. (3) and the black curve in the left panel in Fig. 4] is applicable. We do so by 
solving a full master equation for a three-level system interacting with two laser fields; see the Supplementary 
Information. In the extreme case (opposite to the perturbation approach regime), a strong trap laser is tuned to 
the resonance center, and the probe laser measures an Autler–Townes doublet; see the black curve in the right 
panel in Fig. 4. As the trap laser is getting detuned, one of the components becomes weaker, and effectively, for 
larger detunings, the doublet turns into a single line shifted from the unperturbed position, which reproduces the 
ordinary light shift described by perturbation theory [Eq. (3)]. The right panel in Fig. 4 shows the exact results 
of the polarizability difference calculated from the position of a dominant component of the Autler-Townes 
doublet (see Supplementary Information for details). The blue solid and dashed lines are for trap laser intensi-
ties of 0.1 and 1 MW/mm2 , respectively. These curves show that the resonant quadrupole contribution to the 
polarizability difference does not diverge to ±∞ at the line center as predicted by the perturbation approach, 
and hence, the corresponding light shift cannot be arbitrarily large. Furthermore, the intensity of the trap laser 
is limited by a demand that the polarizability should not depend on laser intensity (otherwise, only a fraction 
of the trapped molecules will be tuned to a magic wavelength). The left panel in Fig. 4 shows that this condition 
is fulfilled for trap laser intensities of 0.1 MW/mm2 but not for 1 MW/mm2 . This limits the maximum depth 
of an optical dipole trap for which the magic wavelength can be applied; the trap depth corresponding to the 
intensity of 0.1 MW/mm2 is 0.12 mK.

Choice of a magic wavelength
At first glance, one could suspect that the most appropriate choice of a magic wavelength from the perspective of 
experimental realization would be either the 2–1 S(2) or 2–1 Q(2) line, since for these two cases the detuning of 
the trap laser is the largest and the strength of the trap laser-molecule coupling (expressed by the Rabi frequency 
� ) is the largest, as shown in Table 1. In this analysis, we should, however, take into account one more factor. The 
position of the trap laser resonance (an example of which is shown in Fig. 4) is also shifted by the strong trap 
laser field, i.e., the denominator in Eq. (3) also depends on the MN and M ′

N numbers. We should ensure that the 
light shift of the trap laser resonance is much smaller than the magic wavelength detuning, δm . The last column 
in Table 1 shows the light shifts for each trap laser resonance for trap laser intensity corresponding to the trap 
depth of 10 µ K. The table shows that the optimal choice of a magic wavelength is 2413 nm (− 0.23 MHz from 
the 1–0 Q(2) transition). For the trap depth of 10 μK, the light shift of the 1–0 Q(2) line (the MN components 
marked with blue arrows in Fig. 3) is 8 kHz, which is over an order of magnitude smaller than the magic wave-
length detuning δm = −0.23 MHz.

Outlook
We demonstrate a new approach to reducing the AC Stark shift for rovibrational lines in hydrogen molecule. 
We analyze the para-H2 case; we identify a magic wavelength for the 1–0 S(0) at 2413 nm (−0.23 MHz from the 
1–0 Q(2) transition). Important future directions include analysis of ortho-H2 and other molecular hydrogen 
isotopologues that have nonzero nuclear spin and the corresponding hyperfine structure. The hyperfine structure 
will make the analysis more complex, but the much richer structure of states opens a perspective for identify-
ing a combination of levels that is more beneficial from the perspective of experimental implementation of the 
magic wavelength.

Table 1.  Magic wavelengths ( �m ) for the 1–0 S(0) transition calculated using time-dependent perturbation 
theory. In the second column ( δm ) an accurate value of the magic wavelength is given respectively to the 
neighboring transition (specified in column 4). � is a Rabi frequency and �ν a light shift of the given �MN 
component. � and �ν are calculated for the trap depth of 10 μK, which corresponds to the trap laser intensity 
of 8 kW/mm2

�m (nm) δm (MHz) � (MHz) Transition M
′

N
�ν (kHz)

1189 −0.10 0.014 2–0 S(0) ±1 − 50

1207 0.08 0.016 3–1 S(2) ±3/±1 − 50/− 80

1318 0.04 0.012 3–1 Q(2) ±1 70

2154 0.40 0.037 2–1 S(2) ±3/±1 − 32/− 57

2413 −0.23 0.028 1–0 Q(2) ±1 8

2558 0.40 0.037 2–1 Q(2) ±1 − 48

3003 −0.33 0.033 1–0 O(4) ±3/±1 − 2/14
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Data availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.
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