
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14017  | https://doi.org/10.1038/s41598-022-18152-5

www.nature.com/scientificreports

Considering epitopes conservity 
in targeting SARS‑CoV‑2 
mutations in variants: a novel 
immunoinformatics approach 
to vaccine design
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Mirza Ali Mofazzal Jahromi3,4,5* & Majid Pirestani6*

Severe acute respiratory syndrome coronavirus‑2 (SARS‑CoV‑2) has gained mutations at an alarming 
rate in the past years. Developing mutations can increase the virus’s pathogenicity and virulence; 
reduce the efficacy of vaccines, antibodies neutralization, and even challenge adaptive immunity. 
So, it is essential to identify conserved epitopes (with fewer mutations) in different variants with 
appropriate antigenicity to target the variants by an appropriate vaccine design. Yet as, 3369 SARS‑
CoV‑2 genomes were collected from global initiative on sharing avian flu data. Then, mutations in 
the immunodominant regions (IDRs), immune epitope database (IEDB) epitopes, and also predicted 
epitopes were calculated. In the following, epitopes conservity score against the total number of 
events (mutations) and the number of mutated sites in each epitope was weighted by Shannon 
entropy and then calculated by the Technique for Order of Preference by Similarity to Ideal Solution 
(TOPSIS). Based on the TOPSIS conservity score and antigenicity score, the epitopes were plotted. 
The result demonstrates that almost all epitopes and IDRs with various lengths have gained different 
numbers of mutations in dissimilar sites. Herein, our two‑step calculation for conservity recommends 
only 8 IDRs, 14 IEDB epitopes, and 10 predicted epitopes among all epitopes. The selected ones 
have higher conservity and higher immunogenicity. This method is an open‑source multi‑criteria 
decision‑making platform, which provides a scientific approach to selecting epitopes with appropriate 
conservity and immunogenicity; against ever‑changing viruses.

About 2 years have passed since the first case of new coronavirus disease-19 (COVID-19) has been identified in 
Wuhan, China. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the notorious claimant behind 
COVID-19, has spread all around the world, soon after confirmation of the first cases in Wuhan, which resulted 
in a global health problem till  now1–3. On 11 March 2020, the World Health Organization (WHO) announced 
this worldwide health problem as a new pandemic. Although the pandemic is quite young, now our knowledge 
about the etiology, pathogenesis, and treatment of COVID-19 has  improved4–6. SARS-CoV-2, the new member 
of the Coronaviridae family (Betacoronavirus), has improved its ability to survive and preserve its  generation5. 
Compared to other Coronaviridae members, higher virulence besides significant pathogenicity may justify this 
unprecedented  pandemic7.

According to the latest report of WHO on 2/13/2022, so far 404,910,528 people in the world have been 
infected with the SARS-CoV-2, and 5,783,776 have died from COVID-191. COVID-19 clinical presentations 
range from non-symptomatic infection to severe acute respiratory distress syndrome (ARDS) and even death, 
but it is best known for its flu-like symptoms (cough, low-grade fever, chills, myalgia, sweating, and fatigue), as 
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well as  pneumonia8,9. By passing time, observations in clinical practice declared other organ involvement like 
the gastrointestinal and central nervous system in COVID-19 that just complicated the  issue10,11. The impact of 
COVID-19 on individuals and also public health although is drastic, it is far to be understood. So far, several vac-
cines with different platforms have been approved by Food and Drug Administration (FDA) or local  authorities12. 
Vaccination and adhering to safety protocols (reducing human-to-human transmission through monitoring, 
social distancing, and hygienic principles) are promising possible  options13,14.

Therefore, the vaccine-mediated immunity (vaccination) of the population seems to be even more impor-
tant in the current situation of the COVID-19 pandemic, where SARS-CoV-2 spreads rapidly and there are 
therapeutic challenges in the management of patients suffering from COVID-19. In another hand, the naturally 
acquired immunity (NAI) could not prevent the spread of the SARS-CoV-215. So, the importance of developing 
vaccines to target SARS-CoV-2 during this particular circumstance is  undeniable16. Many noteworthy consider-
able efforts have been made in this field around the world. Till now, different approaches have been administrated 
for COVID-19 vaccine design, such as mRNA-based vaccines (Comirnaty (BNT162b2 or Pfizer, BioNTech) and 
Moderna), adenovirus vaccine (AstraZeneca), recombinant adenovirus vaccine (Sputnik V), non-replicating viral 
vector (Janssen (JNJ)), inactivated vaccine (CoronaVac), peptide vaccine (EpiVacCorona), nanoparticle vaccine 
(NVX-CoV2373), and DNA vaccine (plasmid) (ZyCoV-D). Meanwhile, some have international approval for 
global use, some have limited licenses in some countries, and a large number of vaccines are under the clinical 
trials and development phase (more information on vaccine tracker-NY)17. According to WHO, as of 2/13/2021, 
10,095,615,243 vaccine doses have been administrated in the  world1.

As vaccines are being developed in the laboratories and vaccination is under process, the novel coronavirus 
is cleverly changing and mutating in nature. So far, lots of mutations have been identified in the SARS-CoV-2 
genome, which resulted in new specific variants. Potentially developing mutations can result in structural changes 
in key proteins involved in the pathogenesis and spread of the virus. The frequent and rapid genetic mutations 
and the consequent changes in SARS-CoV-2 implicate the necessity of a method for naming new variants. As 
expected, new mutations in the target sequences of vaccines could decrease vaccines efficacy against new variants, 
besides increasing pathogenicity, transmission, and virulence, a point that has also been shown in  studies18–20. 
According to the United States centers for disease control and prevention (CDC), variant of interest (VOI) stands 
for a variant with specific genetic markers, which potentiate changes to receptor binding, decreased neutraliza-
tion by antibodies generated against vaccination, and some other clinical issues in diagnosis and treatment. In 
another hand, variant of high consequence (VOHC) indicates a variant with significantly reduced effectiveness 
of prevention measures or medical countermeasures relative to previously circulating variants, in literature with 
acceptable  evidence21.

The CDC illustrated that B.1.617.2 and AY lineages (Delta), B.1.1.529 (Omicron), are categorized as current 
variant of concern (VOC), which means they are associated with reduced neutralizing antibodies titer in the 
convalescent and post-vaccination sera besides increased transmissibility and more severe  disease22–24.

It shows regardless of various approaches to vaccine design; the vaccine target needs to be selected precisely. 
As SARS-CoV-2 evolves spontaneously, two major points should be considered in selected parts’ properties; 
first, the selected part must have an acceptable antigenicity to induce the significant immune response, second, 
it must be conserved during mutations in order to obtain proper coverage against different present variants. 
Also, it helps to maintain its efficacy against new variants. But on the other side of the coin, it might be more 
tremendous. Deployment of data and tools to understand the manner of SARS-CoV-2 mutations and simulation 
of the immune response against new variants seem to be a reliable way to deal with this  issue25.

On the other hand, different bioinformatics approaches have been utilized for finding potential  drugs26–28, 
designing  vaccines29,30, and finding the concept behind COVID-19  pathogenesis31,32. Many complex biochemical 
processes that have to be spent in the laboratory with a lot of time and money can be modeled and  predicted33,34. 
For example, finding herbal drugs’ interaction with SARS-CoV-2  proteins33,35,36, predicting immunogen and 
antigen epitopes from SARS-CoV-2  proteins37,38, and finding new potential pathways in COVID-19 progression 
and  pathogenicity32,39 and etcetera are all available through different bioinformatics techniques.

In this study, first, we demonstrated how investigated immune-dominant parts of SARS-CoV-2 proteins have 
mutated significantly. Furthermore, we presented evidence of alterations the spike (S), membrane (M), nucle-
ocapsid (N), and envelope (E) proteins of SARS-CoV-2, which are discussed in peer reviews from the immune 
epitope database (IEDB)40–42. Because of the necessity of finding the appropriate target for vaccines, we wondered 
how an algorithm could propose an epitope with significant antigenicity besides being adequately conserved.

Here, we predicted B cell, helper T lymphocyte (HTL), and cytotoxic T lymphocyte (CTL) epitopes and then 
aligned them to their reference sequence to find mutations in each epitope. Then we scored their events (muta-
tions) with the Shannon entropy and Technique for Order of Preference by Similarity to Ideal Solution (TOP-
SIS) method to quantify their conserved manner. In the setting of this algorithm, the final output still included 
dozens of different types of epitopes from different proteins making the decision hard to select the best epitope. 
To select ones with superiority, epitopes were illustrated in a plot of antigenicity score–conserved manner, and 
then epitopes were undergone illustrated two-dimensional comparison, which allows facile and confident selec-
tion of epitopes among a large volume of data. In this logical analysis, we tried to clarify the importance of the 
conserved property of epitopes along with the immunogenicity of the selected parts of SARS-CoV-2 proteins 
for the vaccine design (study design—sup. Diagram 1).

Herein, we provided a scientific and practical approach selecting epitopes with appropriate conserved and 
immunogenicity properties (whether in predicted epitopes or real ones from databases or peer reviews), with the 
hope that this protocol will aid in the development of methods to design vaccines against ever-changing viruses 
such as SARS-CoV-2, human immunodeficiency virus (HIV) and so on.
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Results
Background. Genetic mutations elsewhere in the SARS-CoV-2 genome resulted in sophisticated conditions 
both in the virus virulence and pathogenicity and also in the host’s immune system response by repeated infec-
tions with other variants that rechallenge adaptive immunity  response20,43. Perhaps, the most important issue 
in dealing with the coronavirus vaccine design is its genetic  variation44–46. Not only does it affects the vaccine 
design, but also it challenged the immune system response and  treatment46,47. This issue, typicality is not a new 
concern, as we have seen this challenge in other viruses (such as, Influenza virus, Herpes, Zika, other corona-
viridea members, and etc.)48–50. The most prominent example of these is HIV, where all these problems (in the 
immune system response against the virus, clinical presentation and management, and also vaccine design) are 
 perspicuous51,52. As previously predicted, this problem grew rapidly with the introduction of VOC (B1.1.7, 501Y.
V2, etc.), which prompted the WHO to quickly propose a system for naming new variants of the virus. We could 
be optimistic that by developing a strategy to deal with RNA virus mutations, the main burden against these 
viruses will be removed.

Finding mutations in SARS‑CoV‑2 variants. In order to detect mutations in the SARS-CoV-2 genome, 
3369 sequences, from Dec 2019 to July 2021 were extracted from the global initiative on sharing avian flu data 
(GISAID) database (Fig.  1). Then, the sequences were aligned to the reference genome (hCoV-19/Wuhan/
Hu-1/2019 (NC_045512.2)) using Nextalign. According to literature and the National Center for Biotechnology 
Information (NCBI), NC_045512.2 was considered as the reference  sequence5,53–55. After that, sequences that 
were incomplete or much shorter than the reference sequence [having more than 3000 (non-template nucleo-
tide) Ns and gaps (‘–’)] were excluded (Sup. Algorithm 1). The phylogenetic tree was constructed by using IQ-
TREE & TreeTime (phylogenic tree—S1)56. Afterward, using the augur ancestral module, sites of mutations in 
genomes and phylogenetic tree’s internal nodes were detected, as well as in the following translated into amino 
acids by the augur translate module. In the following, the number of mutations in each site was calculated with 
Python programming (Figs. 1 and 2). In this way, we could illustrate mutations in each region of the genome for 
each variant or total variation in each protein (Figs. 2 and S2).

In this study, we mainly focused on surface proteins that are mostly targeted by the immune system and vac-
cine design. In fact, events (alteration in the amino acid sequence of proteins) of the spike (S), membrane (M), 
nucleocapsid (N), and envelope (E) proteins have been magnified and illustrated (Fig. 2). As demonstrated in Sup. 
Table 3, about 30% of the amino acid positions of S, E, and M proteins and about half of the amino acid positions 
of N protein have been mutated or at least have one event. A brief look at the charts (Fig. 2) reveals some areas 
with a high number of events (red area) and some areas with fewer mutations (green area). For example, in the 
case of S protein, in about the first 220 amino acid sites, there is a high density of events besides the great number 
of mutations in several sites. In another hand, we can see areas with a low number of mutations that seem to 
be more conserving (green area). However, this type of categorization into green and red areas has been done 
upon qualitative decision, but it is clear enough to demonstrate the obvious difference in terms of conservity 

Figure 1.  Schematic illustration of 5 steps to find the site of mutations and number of mutations. As illustrated 
in panel (A) number of mutations in each site of the SARS-CoV-2 genome was identified through 5 steps for the 
next step (finding mutations in different sites of epitopes and IDRs and quantifying their conservity). In panel 
(B), the identification of mutations and sites with comparing with the reference sequence (3rd and 4th steps) is 
illustrated schematically. In this example we have chosen 5 new variant sequences and compared them with the 
reference sequence in order to find the site of mutations and number of events in SARS-CoV-2 genome.
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among sites of each protein. In the following, we tried to calculate this qualitative difference into quantitative 
form for better decision-making. Before addressing the next step, here we highlighted the concerns with these 
differences (green and red areas).

Figure 2.  Mutations (events) in SARS-CoV-2 surface proteins (S, N, M, and E proteins) based on changes 
in their amino acid sequences. All events have been recorded on SARS-CoV-2 proteins illustrated in the first 
diagram (panel a). We focused on 4 main surface protein changes (the red box, panel b). In panel c (dash lined 
blue box), S protein events are illustrated. Qualitatively, we can see some red areas that have a higher number 
of mutations in their sequences (or high density of mutations), in comparison with green areas with the lower 
number of mutations in their sequences. All these changes and this qualitative view (red and green areas) are 
also presented for N, M, and E proteins in panels d, e, and f respectively.
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Suppose the population A (Fig. 3), where a significant number of people have been vaccinated with the vac-
cine A. At the time of designing this vaccine, there has been little data available about SARS-CoV-2 mutations. 
In fact, the epitope selected from the reference sequence of SARS-CoV-2 for designing vaccine A is accidentally 
located in the red area of the S protein, although it has significant immunogenicity. In another case, consider 
population B, where a significant number of people have been vaccinated with vaccine B. The epitope selected 
from the reference sequence of SARS-CoV-2 for designing vaccine B is accidentally located in the green area of 
the S protein. In population C a majority of communities have been infected with the strain C of SARS-CoV-2 
previously.

This strain has an immunodominant region (IDR) in the red area of the S protein. In another hand, consider 
population D, where a majority of its community has been infected with the strain D of SARS-CoV-2, previ-
ously. Strain D also has one IDR in the green area of the S protein. In the dissemination and infection of all 4 
populations with a new strain of SARS-CoV-2, which shares lots of mutations in all areas mainly in red areas; the 
difference will be more noticeable. In this example, it is somewhat obvious that populations A and D are more 
affected by the new strain of the virus. These populations would have higher infected patients in hospitals and 
higher mortality rate. With this view of the epidemic and considering the ever-changing virus, it is possible to 
better analyze that population is more affected by the new strains. With this in mind, it is also possible to reduce 
the burden of the disease on the community at risk by properly planning vaccination with the appropriate vac-
cine against the new species spreading. As a large number of mutations are found in different regions of the virus 
surface proteins, selecting areas that are less mutated is difficult to target with vaccination. But if such an area 
can be detected to target with the vaccination, it can be hoped that the designed vaccine will work well against 
the variants so far. In addition, this vaccine will also be less likely to be targeted by new mutations in the virus.

In the following, we tried to target regions in the virus genome that have appropriate immunogenicity besides 
acceptable conservity.

Figure 3.  Different population with different exposure and vaccination. Panel (A) presents a mutational 
diagram of S protein with conserved and mutated sites and areas as demonstrated before. In panel (B) a 
schematic view of the S protein sequence with mutations and different regions with the qualitative view is 
illustrated. Different populations with varying types of immunization from various parts of the S protein 
sequence are presented. In panel (C), a rechallenge of all communities with a new variant is shown and the 
outcome of different sites of S protein that had been used for immunization is illustrated schematically. Blue 
dummies in the figure represent the not vaccinated population and the pale ones represent dead people in the 
community. Painted dummies in all colors except dark blue represent past infection or vaccination.
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Investigating mutations within IDRs of SARS‑CoV‑2. The immune response to SARS-CoV-2 has 
been investigated in past years. As of May 2021, 3330 SARS-CoV2 linear epitopes were available on IEDB as 
they have been reported in the peer-reviewed literature. About 2/3th of them (2203 epitopes) were from S, M, N, 
and E proteins. These epitopes are derived from the SARS-CoV-2 genome and they have been investigated in the 
laboratory if they could stimulate the immune response. In this study, we have focused on S, M, N, and E protein 
derived B cell, HTL, and CTL epitopes (Sup. file 1).

So, we have extracted B cell, HTL, and CTL epitopes from S, M, N, and E proteins from IEDB. Here is 
to note that this search result is restricted to epitopes with recognition by major histocompatibility complex 
(MHC) class I and class II molecules. Then, extracted epitopes were mapped back to a SARS-CoV-2 reference 
 sequence53 using the IEDB’s immunobrowser  tool57. This tool helps to identify the IDRs by considering their 
response frequency (RF) score or lower bound in the diagram (where the RF score was RF ≥ 0.3 considered as 
IDR) (Fig. 4). As all available records aligned along the reference sequence, the RF score was calculated by the 
positivity rate (positive response noted) divided by the total number of records (number of independent assays) 
(see the following equation)58.

Our result demonstrated several IDRs in each protein. S protein has about 12 IDRs in terms of B cell epitopes 
and 5 IDRs in terms of HTL epitopes (Sup. Figs. 2 and 3). The numbers of IDRs and events in IDRs of each 
protein are summarized in Sup. Table 2. By merging 1st section data and this section, variations in IDRs become 
more prominent. As there are considerable numbers of mutations in IDRs (Fig. 4), significant immune response 
alteration cannot be out of mind. Because these areas (IDRs) are most likely to be identified by the immune 
system and result in an appropriate immune response stimulation against the virus, IDRs are suitable targets 

RF = Positive response rate/Total number of records

Figure 4.  Example of IDRs of S protein for B cell response and events in their IDRs. In panel (A), two examples 
of IDRs (panel B,C) are magnified and events in their site (vertical bars) are shown. This is a schematic view of 
understanding how we calculated the number of mutations in IDRs. For example, in panel (B) we can see an 
IDR with a length of about 30 amino acids with many mutations at its site.
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for vaccine design. And also, mutations in such areas, as illustrated in Fig. 4 and Sup. Tables 1 and 2, could be a 
possible challenge for memory cell response.

This means even a person, who has previously been infected with the virus or has been vaccinated is still 
prone to be infected by new variants of SARS-CoV-2 like population C. This issue can explain to some members 
of VOCs that they are associated with a decrease in the efficacy of vaccines and monoclonal antibodies (such 
as omicron and delta variants) in the neutralization and treatment of patients suffering from COVID-1923,59–64.

Here IDRs are plotted, to make a quantitative comparison among all IDRs in terms of several mutated sites 
and events. As a number of events and mutated sites are not comparable due to the different lengths of IDRs, we 
normalized these parameters by dividing them using the length of each IDR (Fig. 5).

As illustrated in Fig. 5, IDRs are compared in plots in terms of their conservity. There are several B cell IDRs 
(Fig. 5, Left graph) in S, M, and N proteins that have appropriate conservity (red box). In T cell IDRs (Fig. 5, 
Right graph) there are 6 IDRs seem to be conserved. This means that these selected IDRs in the plot contain 
epitopes with higher conservity. Thereupon, selecting epitopes from these areas in the SARS-CoV-2 genome for 
further vaccine design seems to be more effective against variants discovered thus far. These IDRs sequences and 
locations are available in the supplement (Sup. file 1).

As mentioned, each IDR includes several epitopes. According to significant mutations in IDRs, we wondered 
if past reported epitopes were affected by mutations in new variants of SARS-CoV-2. In the next section, we try 

Figure 5.  IDR plot. NE number of events, L_IDR length of IDR, NCS number of conserve sites. In panel (A) 
T cell IDRs are plotted with their number of events, their length and the number of conserve sites. As the 
number of conserved sites increases and the number of events decreases (Right Lower Quadrant), the IDR is 
more conserved in variants. Several T cell IDRs are selected as the most conserved IDRs (magnified in panel 
(C)). In panel (B) B cell IDRs are plotted with the same parameters. Several B cell IDRs are selected as the most 
conserved B cell IDRs (magnified in panel (D)). Here is to note that one dot in the plot can represent several 
IDRs that have the same normalized conserve sites and events.
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to understand how different mutations in the SARS-CoV-2 genome affected IEDB suggested epitopes in past 
laboratory research and also predicted ones.

Significant mutations in SARS‑CoV‑2 IEDB epitopes. As mentioned before, we mapped all mutations 
from known variants to SARS-CoV-2 M, N, E, and S protein sequences (Fig. 4). Also, we have extracted B cell, 
HTL, and CTL epitopes of these proteins from IEDB. Then epitopes were aligned to their reference sequence, in 
order to map the mutational diagram (MD) of each protein. So, we could find out where each epitope is located 
in its protein sequence and how this located part has undergone alterations by mutations (Sup. Fig. 4 and Fig. 6).

A list of IEDB epitopes and their identity code is available in the supplement (Sup. file 2). As demonstrated, 
almost all investigated IEDB epitopes of proteins have undergone mutational changes (Fig. 6 and Sup. file 3). But 
the other point of view, which attracts attention, is the difference in the number of mutations in different epitopes. 
In Fig. 6, there are epitopes with a high number of mutations (Fig. 6a red arrows head) besides, epitopes with a 
low number of mutations (Fig. 6b blue arrows head) or even absolutely conserved ones (Fig. 6c blue arrows head).

The results show that almost all epitopes that have been studied in the laboratory over the past years have 
changed in the same period. As these epitopes were evaluated and utilized for vaccine design, a reduction in the 
effectiveness of vaccines is very likely. As well, it could be an important alarm for the international community 
and clarify the necessity of research on new variants for vaccine design development. It may also be a better 
option to consider faster and more efficient approaches in vaccine design, such as mRNA vaccines.

Since most epitopes are mutated in the case of SARS-CoV-2, it makes sense to choose epitopes with minimal 
changes (fewer mutations) and maximum stability (higher conservity). While considering epitopes conservity, 
maintaining immunogenicity properties also should be noted. Given that, choosing the best epitope should 
be considered several factors that make the choice more difficult. This makes the issue more complicated than 
previous approaches (where just immunologic properties were important). Hence, we kept our research on new 
variants with a focus on how to choose the best epitope for further investigations and application in vaccine 
design and development.

Plotting events against immunologic properties of IEDB epitopes. We choose RF representative 
IEDB epitopes immunologic property as X-axis value. Besides, all mutations (without considering the site of 
mutation) in each epitope have been selected as events of the Y-axis. In this way Epitope Event—RF Plot (EVRP) 

Figure 6.  Mutational diagram (MD); Illustration of IEDB epitopes and their mutations. In this figure number 
of mutations is illustrated in vertical bars and epitopes ID is under each bar in horizontal axis. Panel (a–c) 
magnifies 3 different parts of MD. For example, in panel (a) there are epitopes from M protein (orange bars) that 
have a small number of mutations (sky blue arrows head) besides, epitopes from N protein (green bars) with 
the high number of mutations (pink arrows head). Purple arrows head point to sites with a moderate amount of 
mutations.
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depicts past events to each epitope beside their immunologic property (Sup. Fig. 5). This means epitopes events 
can be studied retrospectively in the case of variants and mutations.

As can be seen in (Sup. Fig. 5), all epitopes are arranged according to the two factors in the EVRP. For vaccine 
design, epitopes are desirable that have good immunogenicity along with a low number of mutations. So, the 
lower right quadrant of this chart simply shows the best epitopes. It is also possible to easily compare two or more 
separate epitopes in this chart in terms of both factors. EVRP also shows that a large number of epitopes detected 
and tested in the laboratory are either weakly immunogenic (especially in the case of T-cell epitopes) or have 
been affected by dozens of mutations. Only a handful of them is suitable for further research in vaccine design.

In past, we had to consider thresholds for each parameter and just omit data under threshold value and then 
address the remaining data for evaluation with another parameter. But in the case of EVRP two parameters were 
illustrated simultaneously for each epitope, which facilitates comparison between epitopes. This feature allows us 
to choose the best among a large number of epitopes from different proteins by considering two characteristics.

Also, in the past approach, it was difficult to compare a large number of epitopes. Herein, comparing several 
epitopes is easy. Although EVRP is a better tool for comparison, it cannot generate an accurate valuation for 
each epitope based on the site of the mutation and the number of the mutations.

For instance, consider a and b epitopes with lengths of 10 amino acids (Sup. Fig. 6). Epitope a gained 10 muta-
tions in 2 sites and b epitope gain 10 mutations in 5 sites. EVRP just illustrates them in the same position in the 
diagram, although epitope b’s conservity is lesser than epitope a. As non-conserved sites increase in epitopes, the 
probability to gain further mutations rises. Thereupon, it is necessary to properly weigh each of the parameters 
to make epitopes comparable.

In the past sample (epitopes a and b) we compared epitopes of equal length, but in reality, we face epitopes 
with different lengths from different proteins. These issues make analogy difficult. So, we utilized another method 
for epitope evaluation to differentiate these cases.

TOPSIS is a multi-criteria decision-making approach, suitable in situations where several factors influence the 
decision. This technique was developed in the late twentieth century by Ching-Lai Hwang and  Yoon65. In addi-
tion, TOPSIS is a concept that the chosen alternative (parameters) should have the shortest geometric distance 
from the positive ideal solution (PIS) and the longest geometric distance from the negative ideal solution (NIS).

Here, we used TOPSIS to quantify and Shannon entropy to weight events of epitopes logically considering 
two parameters: the sites of mutations and, the number of mutations in each site.

So, we kept RF on X-axis but we changed the Y-axis value to the TOPSIS score of mutations for epitopes. 
Epitope RF–TOPSIS Plot (ERTP) is designed to solve previous problems and facilitate comparison among 
epitopes while considering several factors (Fig. 7). By rearranging the epitopes based on the factors weighed 
down with TOPSIS, it is possible to make a more accurate comparison between them. The ERTP diagram clearly 
shows how the epitopes examined so far have been affected by mutations at different points in their sequence.

It should be noted that the lower the TOPSIS score, the more conservative the epitope is. Epitopes are worth 
more research in the laboratory or clinic, which are in a more appropriate area in the chart than others. We are 
currently facing a pandemic of a constantly evolving virus; we must use the best of the available vaccines based 
on the strain spreading in each region. Vaccines made from the inactivated pathogen should be screened for 
IDRs in the same system as introduced, and other vaccines targeting a specific epitope should be evaluated by 
the same system. As mentioned, mutations are inevitable in IDRs and epitopes in the case of SARS-CoV-2. But 
to counter the new variants and especially VOC, we can administrate immunogenic regions that have been less 
mutated so far for vaccine design.

So far, we have discussed the epitopes that have been discovered and tested in the laboratory. Herein, we 
wonder if this system could be effective to evaluate the new predicted epitopes by immunoinformatic data-
bases. Predicting and evaluating epitopes with ERTP can facilitate designing new vaccines against the spreading 
variants. This not only helps to produce more effective vaccines but can also greatly reduce the cost of vaccine 
production and save time.

At this point we decided to run the ERTP method on SARS-CoV-2 predicted epitopes as well. To find epitopes 
those, despite high immunogenicity, are less mutated between different variants (conserve among variants so far).

Prediction and assessment of SARS‑CoV‑2 epitopes. CTL epitopes. By using the NetCTL v1.2 
server a total of 700 CTL epitopes were predicted for 12 MHC class I supertypes for M, N, E, and S proteins. 
Then their immunogenicity was assessed by IEDB class I immunogenicity tool and 400 of them had been pre-
dicted to be immunogens. Out of these 400 epitopes, 233 non-toxic (by ToxinPred server) and non-allergenic 
(by AllerTOP 2.0 server) ones were predicted and selected for further evaluation. In the end, 114 immunogenic, 
non-toxic, and non-allergenic epitopes were analyzed by the Vaxijen  server66,67 in the case of antigenicity and 
their scores were recorded for plotting as the X-axis value (Sup. file 4).

HTL epitopes. 94 probable HTL epitopes were predicted for S, M, N, and E proteins by IEDB MHC class II 
allele binding prediction tool (percentile rank ≤ 0.25)68,69. In the case of HTL predicted epitopes, 64 epitopes were 
non-allergenic and nontoxic by AllerTOP 2.070 and  ToxinPred71,72 server, respectively. As induction of inter-
feron (IFN)-γ, interleukin (IL)-4, and IL-10 secretion by these epitopes play a pivotal role in regulating immune 
response, HTL predicted epitopes were analyzed for these properties. Using the IFN  epitope73,  IL4pred74, and 
 IL10pred75 servers, 5 epitopes were left for the next step. Thereby, epitopes were analyzed by the VaxiJen server 
for antigenicity, and their scores were recorded for further analysis (Sup. file 5).

Linear B Lymphocytes (LBL) epitopes. With the aid of iBCE-EL  server76, 53 LBL epitopes were predicted for 
S, M, N, and E proteins. 42 of them had the appropriate length of more than 6 amino acids. Out of the 42, 20 
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Figure 7.  ERTP illustrates IEDB B cell and T cell epitopes immunologic property (by RF) along with conservity 
by TOPSIS scoring. In Panel (A) a logical comparison between IEDB epitopes has made through TOPSIS 
score (vertical axis) and Response Frequency (horizental axis). It helps to understand difference between IEDB 
epitopes with the same number of events but a distinct number of mutated sites. Panel (B) scales up vertical axis 
(TOPSIS score) for better illustration of position of different dots in the diagram. Right lower quadrant presents 
epitopes with higher immunologic properties besides higher conservity (the red boxes). In panel (C) red boxes 
are magnified and ID of each epitope (dot) is noted. It should be note that some dots represent for several 
epitopes with the same RF and TOPSIS scoring.
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of these epitopes had been predicted to be non-toxic (by ToxinPred server) and non-allergenic (by AllerTOP 
2.0 server). Like other predicted epitopes, VaxiJen scores of antigenicity were calculated for 15 predicted LBL 
epitopes (Sup. file 6).

All predicted epitopes mapped back to their protein reference sequence. In order to find muta-
tions of predicted epitopes, we mapped the location of these epitopes on their reference protein sequence. As, we 
have sites of mutations in proteins in “Sect. 3” section, mutations in each epitope could be identified by merging 
these data (Sup. Fig. S7). In this way, the number of mutations and sites of mutations in each predicted epitope 
was understood. As demonstrated in (Sup. Fig. S7), even the predicted epitopes have significant mutations. There 
is a range from 0 up to more than 200 events in some cases. As discussed before, we need to select the best ones 
in terms of conservity and immunogenicity for further investigation. Therefore, we continued this study with the 
next step and plotting the predicted data.

Plotting the predicted epitopes with TOPSIS scoring. The Vaxijen antigenicity score of each epitope 
was considered as an immunological factor for the value of the Y-axis of the plot. Then, we calculated the TOPSIS 
scores of predicted epitopes in terms of sites and number of mutations due to Shannon entropy. In the follow-
ing, the X-axis value stands for their TOPSIS score (Fig. 8 and Sup. file 7). This is clearly demonstrated in Anti-
genicity Score-TOPSIS Plot (ASTP) is the lower TOPSIS score in predicted epitopes in comparison with IEDB 
epitopes in ERTP. This may indicate that there are more appropriate options in the predicted epitopes that need 
further consideration. Also, proper dispersion of predicted epitopes with this method makes it easy to select the 
best ones based on their location in the plot. According to the plot, in the case of HTL predicted epitopes there 
is almost no suitable option. Either, LBL predicted epitopes offer limited options. In contrast, CTL-predicted 
epitopes have many appropriate choices. The closer we get to the lower right corner of the plot, the better the 
options.

As illustrated in Fig. 8, there are more suitable options in terms of CTL epitopes than HTL and LBL ones. In 
the case of HTL and LBL, there are just three epitopes with desirable properties. According to this method, the 
best epitopes in terms of mutation are shown in Fig. 8. Selected epitopes (Fig. 8 and Sup. Table 4) are the best 
epitopes ever discovered and predicted due to their immunogenicity and SARS-CoV-2 mutations.

Discussion
Lots of mutations have been identified in the SARS-CoV-2 genome, which resulted in new variants. Potentially 
developing mutations can result in structural changes in key proteins involved in the pathogenesis and spread 
of the virus, a point that has also been shown in  studies18,20,47. This means regardless of various approaches to 
vaccine design; the vaccine target needs to be selected precisely with two major points; acceptable antigenicity 
and appropriate conservity.

In this study, at first, we detected mutations in the SARS-CoV-2 genome by considering 3369 sequences, 
extracted from the GISIAD. For this purpose, first, all the available sequences were compared with the reference 
sequence and then the phylogenetic tree was drawn. In this way, the number of mutations and the site of them, 
in the variants and sequences were examined. Our approach is similar to CoVariants and Nextstrain sites to 
depict diversities and mutations in the genome of different viruses.

So far, several methods have been explored to find different mutations and variants. Hassan et al. and 
Almubaid et al. considered a method similar to what we did in finding mutations but using different software 
and  modules77,78. However, other studies such as Kames et al. and another article by Hassan et al. have used other 
methods, by the capabilities of NCBI site and blasting tools or using MATLAB software to achieve this  goal79,80. 
It was important to our study, to find the number of mutations besides the sites of mutations for further scoring 
and analysis. This issue needed further programming with Python to improve modules function and find custom 
results that are similar to Schrors et al.  study81.

Then investigated IDRs of SARS-CoV-2 S, M, N, and E proteins have been considered for mutations. To find 
IDRs, IEDB immunebrowser tool was administrated with a threshold of 0.3. This approach is similar to Grifoni 
et al. Mukherjee et al. and S Zhuang et al.  studies82,83.

We found that most of IDRs have mutated, just 8 of them have acceptable conservity till now. The high rate 
of mutations in IDRs is in accordance with several past studies but with different  methods84–87. Schrors et al. 
investigated large-scale mutations in S protein and considered the variants according to diversities in this  area81. 
In another study by Zhuang et al. also, the IDRs mutations located in S protein were investigated for  mutations83. 
A large number of mutations in both last articles is acceptable according to our  result81,83. Until now, IDRs have 
not been extensively and comprehensively examined for mutations in SARS-CoV-2. In this study for the first 
time, all of these areas were examined with a comprehensive scientific approach. Furthermore, IDRs were plot-
ted with normalized factors to compare these areas, which had not been addressed before. This plot simplifies 
the selection of the best IDRs to target.

Furthermore, we presented evidence of significant mutations in B cell linear epitopes and HTL and CTL 
epitopes from S, M, N, and E proteins of SARS-CoV-2, which are discussed in peer reviews extracted from 
IEDB. Mutations in epitopes have also been presented in other  studies88,89. In previous studies, only one or 
several epitopes were examined for mutations, but in this study, with a comprehensive view, all IEDB epitopes 
were examined for this purpose.

Finding mutation itself is not enough to find the best epitopes. Thereupon in a step beyond, we scored their 
events with the TOPSIS method to quantify their conserved manner. In the setting of this algorithm and plot-
ting with their immunogenicity properties the best epitopes were selected for further analysis in the laboratory. 
In Mullick et al. study, they investigated S protein mutations hotspot through Shannon entropy and K-means 
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 clustering90. Their approach in terms of scoring is different from ours, but their efforts to find a suitable way to 
score areas with high mutations as hotspots are admirable.

As our results showed, almost all epitopes have changed through mutations, which challenge the immune 
response against SARS-CoV-2 over time. This could also explain the generation of new and more dangerous vari-
ants or VOCs. In Garrett et al. study, S protein was investigated through variants with the Phage-DMS approach 
in the laboratory. They have shown that antibody neutralization has also changed as a result of IDRs  mutation91. 
This confirms our hypotheses in this article in terms of the huge number of mutations in IDRs and epitopes that 
challenge the immune system and the importance of finding conserve epitopes to target.

There are several different scoring methods. Here we needed to weigh each factor (number of mutations and 
sites of mutations) in terms of conservity unequally with Shannon entropy. In this case, TOPSIS was preferred 
as the best choice for further scoring.

Figure 8.  ASTP of epitopes from two perspectives. In Panel (A) predicted epitopes goes through a logical 
comparison due to TOPSIS score (vertical axis) and antigenicity (horizontal axis). This helps to differentiate 
between predicted epitopes with the same number of events but a distinct number of mutated sites. Again, right 
lower quadrant presents epitopes with higher immunologic properties besides higher conservity. Panel (B) 
scales up vertical axis (TOPSIS score) for better illustration of position of different dots (CTL, HTL, and LBL) in 
ASTP. The red and black boxes in CTL panel and EP7-EP10 of HTL and LBL epitopes are the most conserved 
ones with higher antigenicity. In panel (C) CTL epitopes boxes are magnified and ID of each epitope (dot) is 
noted. Sequence of each epitope is available in Sup. Table 4.
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Also, we have tested this approach (TOPSIS scoring and plotting) in predicted epitopes. To predict the 
epitopes there are different databases and approaches. In this article, we have predicted epitopes with a platform 
designed in Ahammad et al.  study92. After prediction of epitopes, we ran Shannon entropy and TOPSIS scoring 
and plotting through antigenicity and conservity, successfully for identification of best epitopes with two fac-
tors. In addition, having a quantitative view in terms of conservity and antigenicity with efficient illustration and 
plotting can help to simplify rational decision-making in a variety of epitopes.

The next and final section was to select the best epitopes. Illustration of epitopes scores (by plotting) helps 
to understand their different properties on a large scale. Besides, having a quantitative measurement in terms of 
conservity can help to make rational decisions. This plot provides a roadmap understanding antigens and epitopes 
alteration in variants. Also, this could help to select epitopes by considering different criteria. This method is an 
open-source multi-criteria platform for deciding on the best epitopes.

Our findings indicated the rapid and significant changes in IDRs and epitopes. This highlights the importance 
of a system for the efficient development of vaccines against new strains and variants. As this platform retrospec-
tively finds previous changes and mutations in epitopes and IDRs, it could help to understand the development 
of recent emerging variants.

The limitation of our study. There are two main categories of epitopes: linear epitopes and conforma-
tional or 3 d epitopes. T cells recognize linear epitopes and B cells can recognize conformational epitopes and 
linear  ones93–95. As we aimed to understand changes in the sequence of proteins, we focused on linear epitopes 
of IEDB and predicted ones. Of course, mutations can make conformational changes in epitopes and antigens 
tertiary structure and affects B cells’ recognition of epitopes. This issue (considering conformational changes in 
epitopes with mutations) is important to be addressed by further research.

In this study, we faced with the limitation of computing power, so instead of using all the genomes found in the 
world, we tried to use those that have the most differences and located in different components of the phylogeny 
tree. Although this problem has been solved with a scientific and algorithmic approach (Sup. Algorithm 1), it 
should be taken into consideration by other researchers.

Our platform is not able to predict future variations and it is based on past mutations that happened in 
the SARS-CoV-2 genome. It will help to understand mutations retrospectively and select appropriate epitopes 
against recent emerging variants. This platform needs recent new variants’ sequences data to be up to date for 
further analysis.

As we aimed to find a method for the selection of epitopes with different properties, we didn’t focus on vac-
cine design. In the end, we just mention several epitopes as a potential potential candidate for vaccine design. Of 
course, these epitopes need further investigation like; vaccine constructs design, molecular docking, prediction 
of population coverage, and laboratory studies.

Conclusion
As we face a pandemic caused by an ever-changing virus; providing a scientific and practical approach to select 
epitopes with appropriate conservity and immunogenicity seems to be crucial.

Also, we found some predicted epitopes are more conserved and immunogen as a potential candidate for vac-
cine design (Sup. Table 4). According to our findings (Sup. Table 4 and Fig. 8), LSPRWYFYY and DLSPRWYFY 
predicted CTL epitopes from N protein, and VVFLHVTYV, GVVFLHVTY, VRFPNITNL, and PYRVVVLSF 
predicted CTL epitopes from S protein are highly conserved and immunogen and suitable for vaccine design. 
Using an AAY linker between CTL epitopes, we can design a multiple-epitope vaccine. Also, WPQIAQFAP-
SASAFF and QIAQFAPSASAFFGM predicted HTL epitopes from N protein and AGLPYGANK predicted LBL 
epitopes from N protein can be added to CTL epitopes through linkers (like GPGPG). There are other choices 
for vaccine design between predicted epitopes and IEDB epitopes that can be added to this vaccine. Here we 
selected the 7 best epitopes for vaccine construct design.

At the end, we introduce a scientific method, with the hope that this protocol will aid in the development of 
vaccine design against SARS-CoV-2, particularly the VOC.

Methods
Detecting site and number of mutations in variants. In order to detect mutations made over the 
past year in the SARS-CoV-2 genome, the following procedure was done (Fig. 1). First, SARS-CoV-2 complete 
genome sequences have been collected from the global initiative on sharing avian flu data (GISAID) database 
(http:// www. gisaid. org). Then, the collected sequences were aligned with the reference genome (hCoV-19/
Wuhan/Hu-1/2019) by Multiple Alignment using Fast Fourier Transform [MAFFT; a multiple sequence align-
ment program (cbrc.jp)]. In the following, sequences with more than 3000 not read bases (Ns) and gaps (‘–’), 
wrong dates before 2019, and sequences shorter than 1000 base pairs (bp) were excluded from the analysis.

Herein, using IQ-TREE56 [Cibiv/IQ-TREE: Efficient phylogenomic software by maximum likelihood (github.
com)] phylogenetic tree was constructed for all remaining sequences. In the next step phylogenetic tree needed 
to reroot and resolve polytomies. Therefore, TreeTime [neherlab/treetime: Maximum likelihood inference of 
time stamped phylogenies and ancestral reconstruction (github.com)] infers the tree’s internal nodes dates and 
prone sequences.

Afterward, using the augur Ancestral module [augur/ancestral.py at master next strain/augur (github.com)], 
mutations in genomes, and the phylogenetic tree’s internal nodes were inferred in their sequence.

In order to translate sequences and their mutations into Amino Acids, we used the augur translate module 
[augur/translate.py at master nextstrain/augur (github.com)]. Employing predefined Amino acids mutations 

http://www.gisaid.org
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(mutations in protein sequence) as input, we calculated the diversity of each SARS-CoV-2 genome region by 
Python programming (version 3.8).

Exploring mutations within IDRs of SARS‑CoV‑2. B cell, HTL, and CTL epitopes from S, M, N, and 
E proteins were extracted from IEDB. Then search result was restricted to epitopes with recognition by human 
leukocyte antigen (HLA) that is the human version of MHC molecules, In the following, extracted epitopes were 
mapped back to a SARS-CoV-2 reference  sequence53 using the IEDB’s immunobrowser  tool57. As all available 
records aligned along the reference sequence, the RF score was calculated by the positivity rate (positive response 
noted) divided by the total number of records (number of independent assays) (see the following equation) 58.

In this way, IDRs were identified by considering their RF score or lower bound in the diagram (where the RF 
score was RF ≥ 0.3 considered as IDR) (Fig. 4, Sup. Figs. 2.1 and 2.2).

Discovering mutations in SARS‑CoV‑2 IEDB epitopes. Extracted B cell, HTL, and CTL epitopes of 
M, N, E, and S proteins from IEDB were aligned to their reference sequence, in order to map the mutational 
diagram of each protein. As we have the number of events and mutations in each site of the reference sequence 
in step 2, we could find out where each epitope is located in its protein sequence and how this located part has 
undergone alterations by mutations.

Plotting events against immunologic properties of IEDB epitopes. We chose RF of IEDB epitopes 
as the X-axis value. Besides, all mutations (without considering the site of mutation) in each epitope have been 
selected as events of epitopes for the Y-axis. In this way EVRP clearly depicts past events to each epitope besides 
their immunologic property.

Epitope prediction. CTL epitope prediction. NetCTL v1.2 server is a powerful free source for predicting 
CTL  epitopes71. This server integrates the prediction score of MHC class I binding peptides and; proteasomal 
C terminal cleavage with transporter associated with antigen processing (TAP) transport efficiency score; to 
deliver an integrated score for CTL epitope prediction from a sequence. In this study, 9-mer CTL epitopes were 
predicted by using the NetCTL v1.2 server for 12 MHC class I supertypes (A1, A2, A3, A24, A26, B7, B8, B27, 
B39, B44, B58, and B62)72. Epitopes that reached above 0.75 scores as threshold was selected for the next  step92. 
There is no reference and definite value for thresholds. Thereupon, we followed other articles used similar meth-
ods to find the value of threshold (> 0.75)92,96,97.

To predict the immunogenicity of the CTL epitopes, the Class I immunogenicity tool of the IEDB Analysis 
Resource was  administrated40. Epitopes with a positive value for immunogenicity were selected for the next steps 
(A percentile rank score ≤ 2).

Here is to note that there is no reference value for the percentile rank. According to similar studies and our 
study design, percentile rank ≤ 0.25 was considered for this  study92,98.

HTL epitope prediction. To predict 15-mer HTL epitopes and their MHC class II alleles, a consensus algorithm 
of the IEDB MHC class II binding tool was  administrated41,99,100. Epitopes with percentile rank ≤ 0.25 were con-
sidered for the next steps. It is important to note that there is no reference value for the percentile rank. Accord-
ing to similar studies and our study design, percentile rank ≤ 0.25 was considered for this  study92,98.

Prediction of linear B cell epitopes. For the prediction of Linear B cell epitopes iBCE-EL server was  used76,101. 
Epitopes with positive values were selected for further analysis.

Allergenicity prediction. Allergenicity of epitopes was assessed using AllerTOP 2.0  server70. The non-allergic 
epitopes were subjected to the next steps for further analysis.

Toxicity prediction. The toxicity of selected epitopes was evaluated using the ToxinPred  server102,103. The non-
toxic epitopes were subjected to the next steps for further analysis.

TOPSIS scoring method and Shannon entropy. TOPSIS is one of the best multiple decision-making 
methods. In this method, ’i’ is the number of alternatives that can be evaluated by the number of attributes ‘j’. In 
the decision matrix, (epitopes) were considered as alternatives (the total number of mutations), and (the number 
of sites of mutations) in each epitope was considered as attributes. Attributes were weighted by Shannon entropy. 
Then, the decision matrix was normalized. The normalized decision matrix (N) was multiplied by a diagonal 
matrix of attributes weights (Wj × j). The positive ideal solution (Vj+) and negative ideal solution (Vj−) were 
determined by a weighted normalized decision matrix (V). The difference between each attribute of epitopes 
from positive and negative ideal solutions (Vj, Vj−) was calculated. The relative closeness of each epitope to the 
ideal solution was determined. By sorting epitopes into rating order, the epitopes with fewer scores were detected 
as more conserve ones. It should be mentioned that the epitope, which gets a score of zero in the TOPSIS 
method, may not be absolutely conserved. The score of zero stands for more conserved epitopes than the other 
evaluated epitopes. TOPSIS matrix equation and Shannon entropy equation are noted in the supplementary file 
equation part.

RF = Positive response rate/Total number of records
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Predicted epitopes events and plotting with TOPSIS. We mapped the location of predicted epitopes 
on their reference protein sequence, in order to find mutations of predicted epitopes. As we have sites of muta-
tions in proteins in past sections, mutations in each predicted epitope could be identified by merging these data.

The Vaxijen antigenicity score of each epitope was considered as the value of the Y-axis of the plot. Then, we 
calculated the TOPSIS scores of predicted epitopes in terms of sites and number of mutations. In the following, 
the Y-axis value stands for their TOPSIS score for plotting. The same has been done for IEDB epitopes.

Ethics approval. No human or animal models were utilized in this investigation. All experiments were 
performed according to the guidelines of the Medical Ethics Committee of the Jahrom University of Medical 
Sciences (IR.JUMS.REC.1399.090).

Data availability
Our data and codes are available through corresponding author if asked.

Received: 10 April 2022; Accepted: 5 August 2022

References
 1. Organization, W. H. in daily 1 (WHO, 2021).
 2. Organization, W. H. Origin of SARS-CoV-2 (World Health Organization, 2020).
 3. Hasanzadeh, A. et al. Nanotechnology against COVID-19: Immunization, diagnostic and therapeutic studies. J. Control Release 

336, 354–374. https:// doi. org/ 10. 1016/j. jconr el. 2021. 06. 036 (2021).
 4. Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).
 5. Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 

450–452 (2020).
 6. Ingraham, N. E. et al. Immunomodulation in COVID-19. Lancet Respir. Med. 8, 544–546 (2020).
 7. Zheng, H. et al. Virulence and pathogenesis of SARS-CoV-2 infection in rhesus macaques: A nonhuman primate model of 

COVID-19 progression. PLoS Pathog. 16, e1008949 (2020).
 8. Hu, Y. et al. Prevalence and severity of corona virus disease 2019 (COVID-19): A systematic review and meta-analysis. J. Clin. 

Virol. 127, 104371 (2020).
 9. Su, L. et al. The different clinical characteristics of corona virus disease cases between children and their families in China—The 

character of children with COVID-19. Emerg. Microbes Infect. 9, 707–713 (2020).
 10. Yang, L. & Tu, L. Implications of gastrointestinal manifestations of COVID-19. Lancet Gastroenterol. Hepatol. 5, 629–630 (2020).
 11. Asadi-Pooya, A. A. & Simani, L. Central nervous system manifestations of COVID-19: A systematic review. J. Neurol. Sci. 413, 

116832 (2020).
 12. COVID-19 Vaccine Tracker and Landscape. https:// www. who. int/ publi catio ns/m/ item/ draft- lands cape- of- covid- 19- candi date- 

vacci nes.
 13. Li, Z. et al. Active case finding with case management: The key to tackling the COVID-19 pandemic. Lancet 396, 63–70 (2020).
 14. Di Domenico, L., Pullano, G., Sabbatini, C. E., Boëlle, P.-Y. & Colizza, V. Modelling safe protocols for reopening schools during 

the COVID-19 pandemic in France. Nat. Commun. 12, 1–10 (2021).
 15. De Giorgi, V. et al. Naturally acquired SARS-CoV-2 immunity persists for up to 11 months following infection. J. Infect. Dis. 

224, 1294–1304. https:// doi. org/ 10. 1093/ infdis/ jiab2 95 (2021).
 16. Dodd, R. H. et al. Concerns and motivations about COVID-19 vaccination. Lancet Infect. Dis. 21, 161 (2021).
 17. Carl Zimmer, J. C. a. S.-L. W. (New York Times, 2021).
 18. Allen, H. et al. Household transmission of COVID-19 cases associated with SARS-CoV-2 delta variant (B. 1.617. 2): National 

case-control study. Lancet Reg. Health-Eur. 12, 102 (2021).
 19. Garcia-Beltran, W. F. et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 

184, 2372–2383 (2021).
 20. Zhou, B. et al. SARS-CoV-2 spike D614G change enhances replication and transmission. Nature 592, 122–127 (2021).
 21. Prevention, C. F. D. C. A. SARS-CoV-2 Variant Classifications and Definitions—CDC. https:// www. cdc. gov/ coron avirus/ 2019- 

ncov/ varia nts/ varia nt- class ifica tions. html (2022).
 22. CDC. (The United States Centers for Disease Control and Prevention (CDC), 2021).
 23. Wang, P. et al. Increased resistance of SARS-CoV-2 variant P. 1 to antibody neutralization. Cell Host Microbe 29, 747–751 (2021).
 24. Yadav, P. D. et al. Neutralization of Beta and Delta variant with sera of COVID-19 recovered cases and vaccinees of inactivated 

COVID-19 vaccine BBV152/Covaxin. J. Travel Med. 28, taab104 (2021).
 25. Hodcroft, E. B. et al. Spread of a SARS-CoV-2 variant through Europe in the summer of 2020. Nature 595, 707–712 (2021).
 26. Singh, R., Bhardwaj, V. K., Sharma, J., Kumar, D. & Purohit, R. Identification of potential plant bioactive as SARS-CoV-2 Spike 

protein and human ACE2 fusion inhibitors. Comput. Biol. Med. 136, 104631 (2021).
 27. Singh, R., Bhardwaj, V. K., Sharma, J., Purohit, R. & Kumar, S. In-silico evaluation of bioactive compounds from tea as potential 

SARS-CoV-2 nonstructural protein 16 inhibitors. J. Tradit. Complement. Med. 12, 35–43 (2022).
 28. Bhardwaj, V. K. et al. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. J. Biomol. 

Struct. Dyn. 39, 3449–3458 (2021).
 29. Yang, Z., Bogdan, P. & Nazarian, S. An in silico deep learning approach to multi-epitope vaccine design: A SARS-CoV-2 case 

study. Sci. Rep. 11, 1–21 (2021).
 30. Rahman, M. S. et al. Epitope-based chimeric peptide vaccine design against S, M and E proteins of SARS-CoV-2, the etiologic 

agent of COVID-19 pandemic: An in silico approach. PeerJ 8, e9572 (2020).
 31. Ostaszewski, M. et al. COVID-19 disease map, building a computational repository of SARS-CoV-2 virus-host interaction 

mechanisms. Sci. Data 7, 1–4 (2020).
 32. Moreno-Eutimio, M. A., Lopez-Macias, C. & Pastelin-Palacios, R. Bioinformatic analysis and identification of single-stranded 

RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes. Microbes Infect. 22, 226–229 
(2020).

 33. Singh, R., Bhardwaj, V. K., Das, P. & Purohit, R. A computational approach for rational discovery of inhibitors for non-structural 
protein 1 of SARS-CoV-2. Comput. Biol. Med. 135, 104555 (2021).

 34. Sharma, J. et al. An in-silico evaluation of different bioactive molecules of tea for their inhibition potency against non structural 
protein-15 of SARS-CoV-2. Food Chem. 346, 128933 (2021).

 35. Singh, R., Bhardwaj, V. K. & Purohit, R. Potential of turmeric-derived compounds against RNA-dependent RNA polymerase of 
SARS-CoV-2: An in-silico approach. Comput. Biol. Med. 139, 104965 (2021).

https://doi.org/10.1016/j.jconrel.2021.06.036
https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
https://doi.org/10.1093/infdis/jiab295
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html


16

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14017  | https://doi.org/10.1038/s41598-022-18152-5

www.nature.com/scientificreports/

 36. Bhardwaj, V. K. et al. Bioactive molecules of Tea as potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2. 
Front. Med. https:// doi. org/ 10. 3389/ fmed. 2021. 684020 (2021).

 37. Tahir ul Qamar, M. et al. Designing of a next generation multiepitope based vaccine (MEV) against SARS-COV-2: Immunoin-
formatics and in silico approaches. PLoS ONE 15, e0244176 (2020).

 38. Abraham Peele, K., Srihansa, T., Krupanidhi, S., Ayyagari, V. S. & Venkateswarulu, T. Design of multi-epitope vaccine candidate 
against SARS-CoV-2: A in-silico study. J. Biomol. Struct. Dyn. 39, 3793–3801 (2021).

 39. Ferrarini, M. G. et al. Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis. 
Commun. Biol. 4, 1–15 (2021).

 40. Calis, J. J. et al. Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Comput. Biol. 9, e1003266. 
https:// doi. org/ 10. 1371/ journ al. pcbi. 10032 66 (2013).

 41. Wang, P. et al. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinform. 11, 1–12 (2010).
 42. Sidney, J. et al. Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional 

scanning combinatorial peptide libraries. Immunome Res. 4, 1–14 (2008).
 43. Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B. 1.1. 7 in England. Science 372, eabg3055 

(2021).
 44. Li, Q. et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 182, 1284–1294 (2020).
 45. Wang, P. et al. Antibody resistance of SARS-CoV-2 variants B. 1.351 and B. 1.1. 7. Nature 593, 130–135 (2021).
 46. Weissman, D. et al. D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe 29, 23–31 

(2021).
 47. Jangra, S. et al. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2, e283–e284 (2021).
 48. Domingo, E. & Holland, J. RNA virus mutations and fitness for survival. Ann. Rev. Microbiol. 51, 151–178 (1997).
 49. Xia, H. et al. An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nat. Commun. 9, 1–13 

(2018).
 50. Callaway, E. Making sense of coronavirus mutations. Nature 585, 174–177 (2020).
 51. Bekker, L.-G. et al. The complex challenges of HIV vaccine development require renewed and expanded global commitment. 

Lancet 395, 384–388 (2020).
 52. Burton, D. R. et al. HIV vaccine design and the neutralizing antibody problem. Nat. Immunol. 5, 233–236 (2004).
 53. Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020).
 54. Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181, 1036–1045 (2020).
 55. Gao, Y. et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368, 779–782 (2020).
 56. Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. 

Syst. Biol. 65, 997–1008. https:// doi. org/ 10. 1093/ sysbio/ syw037 (2016).
 57. Dhanda, S. K. et al. Development of a novel clustering tool for linear peptide sequences. Immunology 155, 331–345 (2018).
 58. Dhanda, S. K. et al. Development of a strategy and computational application to select candidate protein analogues with reduced 

HLA binding and immunogenicity. Immunology 153, 118–132 (2018).
 59. Ai, J. et al. Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by 

vaccines after boost. Emerg. Microbes Infect. 11, 337–343 (2022).
 60. Davis, C. et al. Reduced neutralisation of the Delta (B. 1.617. 2) SARS-CoV-2 variant of concern following vaccination. PLoS 

Pathog. 17, 22 (2021).
 61. Dejnirattisai, W. et al. Reduced neutralisation of SARS-CoV-2 omicron B. 1.1. 529 variant by post-immunisation serum. Lancet 

399, 234–236 (2022).
 62. Wilhelm, A. et al. Reduced neutralization of SARS-CoV-2 Omicron variant by vaccine sera and monoclonal antibodies. MedRxiv 

https:// doi. org/ 10. 1101/ 2021. 12. 07. 21267 432 (2021).
 63. VanBlargan, L. A. et al. An infectious SARS-CoV-2 B. 1.1. 529 Omicron virus escapes neutralization by several therapeutic 

monoclonal antibodies. BioRxiv https:// doi. org/ 10. 1101/ 2021. 12. 15. 472828 (2021).
 64. VanBlargan, L. A. et al. An infectious SARS-CoV-2 B. 1.1. 529 Omicron virus escapes neutralization by therapeutic monoclonal 

antibodies. Nat. Med. 28, 490–495 (2022).
 65. Hwang, C.-L., Lai, Y.-J. & Liu, T.-Y. A new approach for multiple objective decision making. Comput. Oper. Res. 20, 889–899. 

https:// doi. org/ 10. 1016/ 0305- 0548(93) 90109-V (1993).
 66. Doytchinova, I. A. & Flower, D. R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. 

BMC Bioinform. 8, 4. https:// doi. org/ 10. 1186/ 1471- 2105-8-4 (2007).
 67. Doytchinova, I. A. & Flower, D. R. Identifying candidate subunit vaccines using an alignment-independent method based on 

principal amino acid properties. Vaccine 25, 856–866 (2007).
 68. Paul, S. et al. Development and validation of a broad scheme for prediction of HLA class II restricted T cell epitopes. J. Immunol. 

Methods 422, 28–34 (2015).
 69. Paul, S., Sidney, J., Sette, A. & Peters, B. TepiTool: A pipeline for computational prediction of T cell epitope candidates. Curr. 

Protoc. Immunol. 114, 18–19 (2016).
 70. Dimitrov, I., Bangov, I., Flower, D. R. & Doytchinova, I. AllerTOP v. 2—A server for in silico prediction of allergens. J. Mol. 

Model. 20, 1–6 (2014).
 71. Larsen, M. V. et al. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinform. 8, 424. 

https:// doi. org/ 10. 1186/ 1471- 2105-8- 424 (2007).
 72. Larsen, M. V. et al. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinform. 8, 1–12 

(2007).
 73. IFNepitope. https:// webs. iiitd. edu. in/ ragha va/ ifnep itope/ index. php.
 74. IL4pred. https:// webs. iiitd. edu. in/ ragha va/ il4pr ed/ design. php.
 75. IL-10Pred. https:// webs. iiitd. edu. in/ ragha va/ il10p red/ index. html.
 76. Manavalan, B., Govindaraj, R. G., Shin, T. H., Kim, M. O. & Lee, G. iBCE-EL: A new ensemble learning framework for improved 

linear B-cell epitope prediction. Front. Immunol. https:// doi. org/ 10. 3389/ fimmu. 2018. 01695 (2018).
 77. Almubaid, Z. & Al-Mubaid, H. Analysis and comparison of genetic variants and mutations of the novel coronavirus SARS-CoV-2. 

Gene Rep. 23, 101064 (2021).
 78. Hassan, S. S., Choudhury, P. P., Basu, P. & Jana, S. S. Molecular conservation and differential mutation on ORF3a gene in Indian 

SARS-CoV2 genomes. Genomics 112, 3226–3237 (2020).
 79. Hassan, S. S. et al. Emergence of unique SARS-CoV-2 ORF10 variants and their impact on protein structure and function. Int. 

J. Biol. Macromol. 194, 128–143 (2022).
 80. Kames, J. et al. Sequence analysis of SARS-CoV-2 genome reveals features important for vaccine design. Sci. Rep. 10, 1–11 (2020).
 81. Schrörs, B. et al. Large-scale analysis of SARS-CoV-2 spike-glycoprotein mutants demonstrates the need for continuous screen-

ing of virus isolates. PLoS ONE 16, e0249254 (2021).
 82. Dai, Y. et al. Immunodominant regions prediction of nucleocapsid protein for SARS-CoV-2 early diagnosis: A bioinformatics 

and immunoinformatics study. Pathog. Glob. Health 114, 463–470 (2020).
 83. Zhuang, S. et al. Bioinformatic prediction of immunodominant regions in spike protein for early diagnosis of the severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2). PeerJ 9, e11232 (2021).

https://doi.org/10.3389/fmed.2021.684020
https://doi.org/10.1371/journal.pcbi.1003266
https://doi.org/10.1093/sysbio/syw037
https://doi.org/10.1101/2021.12.07.21267432
https://doi.org/10.1101/2021.12.15.472828
https://doi.org/10.1016/0305-0548(93)90109-V
https://doi.org/10.1186/1471-2105-8-4
https://doi.org/10.1186/1471-2105-8-424
https://webs.iiitd.edu.in/raghava/ifnepitope/index.php
https://webs.iiitd.edu.in/raghava/il4pred/design.php
https://webs.iiitd.edu.in/raghava/il10pred/index.html
https://doi.org/10.3389/fimmu.2018.01695


17

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14017  | https://doi.org/10.1038/s41598-022-18152-5

www.nature.com/scientificreports/

 84. Maitra, A. et al. Mutations in SARS-CoV-2 viral RNA identified in Eastern India: Possible implications for the ongoing outbreak 
in India and impact on viral structure and host susceptibility. J. Biosci. 45, 1–18 (2020).

 85. Mohammadi, M., Shayestehpour, M. & Mirzaei, H. The impact of spike mutated variants of SARS-CoV2 [Alpha, Beta, Gamma, 
Delta, and Lambda] on the efficacy of subunit recombinant vaccines. Braz. J. Infect. Dis. 25, 101606 (2021).

 86. Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021).
 87. Greaney, A. J. et al. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition 

by polyclonal human plasma antibodies. Cell Host Microbe 29, 463–476 (2021).
 88. Issa, E., Merhi, G., Panossian, B., Salloum, T. & Tokajian, S. SARS-CoV-2 and ORF3a: Non-synonymous mutations and poly-

proline regions. bioRxiv https:// doi. org/ 10. 1101/ 2020. 03. 27. 012013 (2020).
 89. Mohammadi, E. et al. Novel and emerging mutations of SARS-CoV-2: Biomedical implications. Biomed. Pharmacother. 139, 

111599 (2021).
 90. Mullick, B., Magar, R., Jhunjhunwala, A. & Farimani, A. B. Understanding mutation hotspots for the sars-cov-2 spike protein 

using shannon entropy and k-means clustering. Comput. Biol. Med. 138, 104915 (2021).
 91. Garrett, M. E. et al. High-resolution profiling of pathways of escape for SARS-CoV-2 spike-binding antibodies. Cell 184, 2927–

2938 (2021).
 92. Ahammad, I. & Lira, S. S. Designing a novel mRNA vaccine against SARS-CoV-2: An immunoinformatics approach. Int. J. Biol. 

Macromol. 162, 820–837 (2020).
 93. Cyster, J. G., Shotton, D. M. & Williams, A. F. The dimensions of the T lymphocyte glycoprotein leukosialin and identification 

of linear protein epitopes that can be modified by glycosylation. EMBO J. 10, 893–902 (1991).
 94. Jespersen, M. C., Peters, B., Nielsen, M. & Marcatili, P. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using 

conformational epitopes. Nucleic Acids Res. 45, W24–W29 (2017).
 95. Steers, N. J. et al. Designing the epitope flanking regions for optimal generation of CTL epitopes. Vaccine 32, 3509–3516 (2014).
 96. Dong, R., Chu, Z., Yu, F. & Zha, Y. Contriving multi-epitope subunit of vaccine for COVID-19: Immunoinformatics approaches. 

Front. Immunol. 11, 1784 (2020).
 97. Kalita, P., Padhi, A. K., Zhang, K. Y. & Tripathi, T. Design of a peptide-based subunit vaccine against novel coronavirus SARS-

CoV-2. Microb. Pathog. 145, 104236 (2020).
 98. Grifoni, A. et al. A sequence homology and bioinformatic approach can predict candidate targets for immune responses to 

SARS-CoV-2. Cell Host Microbe 27, 671–680 (2020).
 99. Wang, P. et al. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinform. 11, 568. https:// doi. org/ 10. 

1186/ 1471- 2105- 11- 568 (2010).
 100. Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of 

MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids 
Res. 48, W449–W454. https:// doi. org/ 10. 1093/ nar/ gkaa3 79 (2020).

 101. Manavalan, B., Govindaraj, R. G., Shin, T. H., Kim, M. O. & Lee, G. iBCE-EL: A new ensemble learning framework for improved 
linear B-cell epitope prediction. Front. Immunol. 9, 1695 (2018).

 102. Gupta, S. et al. Peptide toxicity prediction. Methods Mol. Biol. (Clifton, N.J.) 1268, 143–157. https:// doi. org/ 10. 1007/ 978-1- 4939- 
2285-7_7 (2015).

 103. Gupta, S. et al. In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 8, e73957 (2013).

Author contributions
M.A.Bz. and M.I. gathered the data and analyzed the data. M.A.Bz. and M.A.M.J. wrote the main manuscript 
text and M.A.Bz. prepared and designed figuers, M.A,Bz, M.I. and M.A.M.J. had designed this study. M.P. and 
K.B. revised the article and checked its technical issues. M.I coded Python for this study. Finally M.A.M.J and 
M.A.Bz proofed this aricle.

Funding
Mirza Ali Mofazzal Jahromi was financially supported by Jahrom University of Medical Sciences, Grant 99000127.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 18152-5.

Correspondence and requests for materials should be addressed to M.A.M.J. or M.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1101/2020.03.27.012013
https://doi.org/10.1186/1471-2105-11-568
https://doi.org/10.1186/1471-2105-11-568
https://doi.org/10.1093/nar/gkaa379
https://doi.org/10.1007/978-1-4939-2285-7_7
https://doi.org/10.1007/978-1-4939-2285-7_7
https://doi.org/10.1038/s41598-022-18152-5
https://doi.org/10.1038/s41598-022-18152-5
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Considering epitopes conservity in targeting SARS-CoV-2 mutations in variants: a novel immunoinformatics approach to vaccine design
	Results
	Background. 
	Finding mutations in SARS-CoV-2 variants. 
	Investigating mutations within IDRs of SARS-CoV-2. 
	Significant mutations in SARS-CoV-2 IEDB epitopes. 
	Plotting events against immunologic properties of IEDB epitopes. 
	Prediction and assessment of SARS-CoV-2 epitopes. 
	CTL epitopes. 
	HTL epitopes. 
	Linear B Lymphocytes (LBL) epitopes. 

	All predicted epitopes mapped back to their protein reference sequence. 
	Plotting the predicted epitopes with TOPSIS scoring. 

	Discussion
	The limitation of our study. 

	Conclusion
	Methods
	Detecting site and number of mutations in variants. 
	Exploring mutations within IDRs of SARS-CoV-2. 
	Discovering mutations in SARS-CoV-2 IEDB epitopes. 
	Plotting events against immunologic properties of IEDB epitopes. 
	Epitope prediction. 
	CTL epitope prediction. 
	HTL epitope prediction. 
	Prediction of linear B cell epitopes. 
	Allergenicity prediction. 
	Toxicity prediction. 

	TOPSIS scoring method and Shannon entropy. 
	Predicted epitopes events and plotting with TOPSIS. 
	Ethics approval. 

	References


