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Enhancement in heat transfer due 
to hybrid nanoparticles in MHD 
flow of Brinkman‑type fluids using 
Caputo fractional derivatives
Nadeem Ahmad Sheikh 1*, Dennis Ling Chuan Ching 1, Ilyas Khan 2 & Hamzah bin Sakidin 1

The flow of fluid through porous media is of great importance in industry and other physical situations, 
Darcy’s law is one of the most useful laws to describe such situation, however, the flows through a 
dense swarm of particles or through a very high porous media cannot be elaborated by this law. To 
overcome this difficulty, Brinkman proposed a new idea of Brinkman-type fluid in highly porous media. 
In this study, the Brinkman-type fluid flow is analyzed with hybrid nanoparticles (a hybridized mixture 
of clay and alumina), suspended in water taken as a base fluid under the effect of an applied magnetic 
field. The fluid motion is taken inside a vertical channel with heated walls. Free convection is induced 
due to buoyancy. The momentum and energy equations are written in dimensionless form using the 
non-dimensional variables. The energy equation is modified to fractional differential equations using 
the generalized Fourier’s law and the Caputo fractional derivatives. The fractional model is solved 
using the Laplace and Fourier transformation. Variations in velocity and temperature are shown 
for various fractional parameter values, as well as charts for the classical model. For the volume 
fractions of nanoparticles, the temperature distribution increases, with maximum values of hybrid 
nanoparticles with the highest specified volume fractions. Moreover, due to hybrid nanoparticles, the 
rate of heat transfer is intensified.

List of symbols
µ	� Dynamic viscosity
u	� The fluid velocity in the x-direction
�	� The temperature
βC	� The coefficient of concentration
cp	� The specific heat capacity of fluids
D	� The mass diffusivity
ρ	� The fluid density
βr	� The material parameter of Casson fluid
β�	� The thermal expansion coefficient
g	� The acceleration due to gravity
k	� The thermal conductivity

To describe how fluid moves through a porous medium, Darcy’s law is one of the physical principles. It was 
named after Henri Darcy, a French researcher who invented a pipeline system in 1947 to supply water to a French 
village1. In 1949, another scholar added the name Brinkman to Darcy’s law as an expansion. They found a new 
fluid termed Darcy-Brinkman2 as a result of this concept, which was developed for transitional flow between 
boundaries. This model illustrates a fast enough flow through porous medium, with the driving force being 
kinetic potential, which is connected to fluid velocity, pressure, and gravitational potential. They are a mixture 
of Darcy’s law and the Stokes equations that broaden Darcy’s law to account for kinetic energy loss via viscous 
shear. The Brinkman equation2,3 may be used to represent the average fluid flow across an array of sparse, spheri-
cal particles. Furthermore, Brinkman’s equations explain transitions between two types of flows, fast and slow, 
where the one happens in channels susceptible to Stokes’ equations and the second occurs in a porous medium 
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according to Darcy’s law. A molecular dynamics-like simulation approach, called Stokesian dynamics capable 
of representing the movements and forces of hydrodynamically interacting particles in Stokes flow, is used to 
discover the basic solution or Green’s function for flow of Brinkman-type fluid by Durlofsky and Brady4. The 
asymptotic convergence of the flow of Brinkman type fluid in a static region was analyzed by Manaa et al.5. They 
have considered the three-dimensional Brinkman equation in their analysis. The exact solutions for the MHD 
flow of Brinkman-type fluid between two boundaries were obtained by Khan et al.6. They have generalized the 
flow model using the Caputo-Fabrizio fractional derivatives operator.

Heat transfer and fluid dynamics analyses rely heavily on the thermal properties of heat transfer fluids7. Due 
to the low thermal conductivity of water, ethylene glycol, and different oils, cooling capabilities using conven-
tional heat transfer fluids have been restricted8. About two decades ago, Choi9 invented the term "nanofluid" to 
characterise a problem solver for heat transfer enhancement. Nanofluids are fluids created by scattering solid 
nanoparticles in a base fluid using the techniques of nanotechnology10,11. Adding millimetre or micrometre 
sized particles to base fluids is one technique to enhance the heat transfer in fluids. When compared to typical 
heat transfer fluids, many investigations have demonstrated that nanofluid greatly improves heat transfer12–17. 
Hybrid nanofluids, instead, are a more recent type of nanofluid created by dispersing (a) two or more types of 
nanoparticles in a base fluid, and (b) hybrid (composite) nanoparticles. In one homogenous phase, a hybrid 
material combines the physical and chemical features of multiple other materials18. Nadeem et al.19 investigated 
the hybrid nanofluid make use of the bvp4c technique and the nanoparticles CaO and Al2O3 in the base fluid. 
The primary finding of the study was that hybrid nanofluid has a better heat transfer capacity than standard 
nanofluid. Subhani and Nadeem20 investigated the differences between hybrid and basic nanofluids, using the 
micropolar fluid model to arrive at a numerical solution. They discovered that basic nanofluids transmit heat at 
a slower rate than hybrid nanofluids. Huminic and Huminic21 analysed the entropy generation in the fluid flow 
with hybrid nanoparticles. According to their research, the impacts of entropy generation on the flow of fluids 
with hybrid nanoparticles have been discovered to be a significant alternative for basic heat transfer systems. The 
Caputo-Fabrizio fractional derivatives were utilised by Saqib et al.22 to generalize the flow of hybrid nanofluid 
in a channel. They used the Brinkman-type fluid model in their study and used Laplace transformation tech-
niques to solve the DEs. The flow of a Brinkman-type fluid with hybrid nanoparticles over a vertical plate was 
explored by Shafie et al.23. They generalised the flow model in this work23 by applying an unique notion called 
Atangana-Baleanu fractional derivatives. Ikram et al.24 employed the concept of constant proportional Caputo 
fractional derivatives to generalise MHD flow of Brinkman-type hybrid nanofluid between parallel plates. The 
model is solved via the Laplace transform approach, using silver and titanium oxide nanoparticles scattered in 
the base fluid. El-Gazar et al.25 used fractional derivatives to describe a solar collector with a hybrid nanofluid 
and discovered that fractional differential modelling offers more accurate results when compared to experimental 
data than integer ordered differential systems. Gul et al.26 analysed the flow of a hybrid nanofluid by applying 
the HAM technique to solve differential equations. Adding hybrid nanoparticles to a base fluid, according to the 
findings, boosts heat transfer rate. The forced convection flow of hybrid nanoparticle was analysed by Benkhedda 
et al.27. They have examined the impacts of the shapes of nanoparticles, the volume fractions of nanoparticles 
and the Reynold’s number on the heat transfer rate and skin friction. The deposition of thermophoretic particles 
in a flow of hybrid nanofluid past a revolving tabletop was studied quantitatively by Gowda et al.28. For the flow 
model, the RKF-45 method was utilised to discover solutions. Sathyamurthy et al.29 investigated experimentally 
the flow of hybrid nanofluid in a thermal (PV/T) system. They have concluded that the efficiency of the system 
is improved by 27.3% using hybrid nanoparticles. Gohar et al.30 examined the applications of hybrid nanoparti-
cles in concrete. The MWCNTs and aluminium oxide nanoparticles in the base fluid concrete were used in the 
investigation, and the phenomena was simulated using fractional derivatives and solved for exact solutions. On 
the importance and applications of the flow of fluids with hybrid nanoparticles, Eshgarf et al.31 have presented 
a detailed literature survey. The have concluded that ability to transfer heat is way better in hybrid nanofluid 
compared to conventional fluids.

Differential equations of fractional order are used to describe a broad variety of physical situations. Reimann-
Liouville derivatives32–36, Caputo derivatives37,38, Caputo Fabrizio derivatives39,40, and Atangana-Baleanu frac-
tional derivatives41–43 are examples of fractional order derivatives. Akgül et al.44 used three fractional differential 
definitions in their study to provide analytical and approximated solutions for financial/economic models centred 
on market equilibrium and option pricing. For the investigation of microbial survival and population growth 
modelling, Ozarslan45 employed non-integer order derivatives. Gdawiec, et al.46 updated Newton’s iterative 
approach by substituting fractional differential operators for derivatives. Arshad et al.47 looked at the dynamical 
model for HIV (CD4 + T), taking fractional derivatives into account. Alshabanat et al.48 used fractional deriva-
tives to analyse RC electric circuits and identified numerical solutions. Fractional derivatives have been employed 
by many researchers in the field of fluid dynamics to model flows. Song et al.49 used the fractional derivatives 
to modify the model for MHD flow of second grade fluid over an infinite plate. The flow is studied under the 
effects pf porous media and heat transfer. Using two different approaches of fractional derivatives, Borah et al.50 
generalized the MHD flow of second grade fluid with heat and mass transfer and have obtained numerical 
solutions. Shahrim et al.51 analytically solved the fractional model of Casson fluid, the flow was induced due to 
the accelerated plate. The time dependant bioconvective flow was analysed by Arafa et al.52 using the Atangana-
Baleanu fractional derivatives. They have used the numerical scheme to solve the equations. Moosavi et al.53 
studied the convective flow of fractional Maxwell fluid using a numerical scheme, the flow was considered over 
a backward-facing step.

Keeping in mind the above literature survey, this study focuses on the flow Brinkman-type fluid model 
with heat transfer and hybrid nanoparticles. The flow model after non-dimensionalization is generalized using 
the modified Fourier’s law and the fractional derivatives operator, namely, the Caputo fractional operator. The 
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generalized model is then solved using the integral transformations for exact solutions. The flow profile and the 
temperature distribution are drawn and shown in tables.

Mathematical formulation
We have considered the motion of Brinkman-type hybrid nanofluid ia a vertical channel. The flow is assumed 
to be in the direction of x -axis while the y-axis is taken perpendicular to the plates. With ambient temperature 
�1 , both the fluid and plates are at rest when t ≤ 0 . At t = 0+ , the plate at y = d begin to move in its own plane 
with velocity. At y = d , the plate temperature level raised to �1 + (�2 −�1)f (t) with time t. The momentum 
and energy equations for the flow of a Brinkman-type hybrid nanofluid with physical initial and boundary 
conditions as shown in Fig. 1 are as follows:

with the initial and boundary conditions:

 where

 where u denotes fluid velocity in the x-direction, � represents temperature, ρhnf  represents hybrid nanofluid 
density, µhnf  represents dynamic viscosity, βr shows Brinkman-type fluid material parameter, B0 is a uniform 
magnetic field54, β� indicates thermal expansion coefficient55, g is acceleration due to gravity, Cp denotes fluid 
specific heat capacity, and k is the thermal conductivity. The thermophysical properties of the nanoparticles and 
base fluid are taken from56,57.

The Buckingham Pi theorem was used to produce non-dimensional variables, which are listed as under.

(1)ρhnf
∂u(y, t)

∂t
+ ρhnf βru(y, t) = µhnf
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Figure 1.   Schematic diagram of the flow.
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Incorporating the above variables into Eqs. (1), (2), (3) and (4) we get:

Fractional model.  To develop a fractional model, the generalized Fourier’s law is considered:

 here C℘α
τ (.) is the Caputo derivatives operator, and is defined as:

 here ηα(t) = t−α

Ŵ(1−α)
 is the singular power-law kernel.

Furthermore,

L{.} represents the Laplace transform, ζ(.) is the Dirac’s delta function, and s represents the Laplace transform 
parameter.

Using the properties and Eq. (10), it is simple to demonstrate the following:

Using Eqs. (6), (7), (9) and (10) we arrived at:

Call to mind the time fractional integral operator to attain the equivalent form of Eq. (14)

This describes the inverse operator of C℘α
t (.) . Using the properties from Eq. (11) we have

Using the property, ℑ1−α
t Q̇

(

y, t
)

=
(

ηα ∗ Q̇
)

(t) = C℘α
t Q

(

y, t
)

, Eq. (14) can be written as:
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.
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Methodology and solution of the problem
The obtained factional model is solved using the integral transformation techniques, i.e. the Laplace transform 
and the finite Fourier sine transform58.

Solution of the energy equation.  The following mathematical setting is used

 and Eq. (18) takes the form

The initial and boundary conditions are given as under:

Combinedly use the Laplace and finite Fourier sine transforms yields the following result.

By taking the inverse integral transformations of Eq. (22) we get

As a result, the solution for energy equation is:

Solution of the momentum equation.  Apply the Laplace and Fourier transforms to Eq. (5) and using 
Eq. (8) we have:

 where

 where M =
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2
0d

2
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 is Brinkman-type fluid parameter,Gr = gd2β�
νf U

(�2 −�1) 

is the thermal Grashof number, and Pr =
(ρCp)f υf

kf
 is the Prandtl number.

Taking the inverse Laplace and finite Fourier sine transformations of Eq. (25) we have:

 here the unit step function is presented by H(.) and the Mittag–Leffler function is symbolized by Ea,b(.)59.
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ḟ
�

τ − q
�

Eα,α−1

�

−a14q
α
�

dq+ f (τ )







 sin (ξnπ)



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14117  | https://doi.org/10.1038/s41598-022-18110-1

www.nature.com/scientificreports/

Limiting case.  For φ1 = φ2 = βr = 0 , the obtained solution is reduced to the solution calculated by Shao 
et al.60 (for f2(t) = 0 ). This shows the validity of the present solutions. For details please see Eq. 52 in60.

Results and discussion
The flow of a hybrid nanofluid including clay and alumina as suspended nanoparticles is examined under the 
impact of a magnetic field. Model for convective flow of Brinkman-type fluid is generalized using a modified 
Fourier’s law and the Caputo fractional derivatives. The Laplace and Fourier transformation techniques are 
used to solve the generalized model for exact solutions. For each parameter, closed-form solutions are drawn.

In this study, the fractional parameter is a highly essential and noticeable parameter. As the fractional deriva-
tives are more generalize than the classical derivatives, therefore, fractional derivatives are used to describe the 
heat transfer. Some other applications are found in fractional-order neurons for parameter estimate, fractional 
viscoelasticity model, fractional single-phase-lag model of heat conduction, heat convection etc. To show the 
variation in the flow velocity and the temperature distributions for various values of α , Figs. 2 and 3 (also Tables 1, 
2) are plotted. The profiles for α = 0.1, 0.2, 0.3, ...1(α = 1 is the solution for the integer order model) have been 
drawn, and notable changes have been observed. The physical entities, velocity, and temperature are nonetheless 
influenced by α . This is a fascinating phenomenon that can’t be noticed in integer ordered derivatives solutions. 

Figure 2.   Variations in velocity profile for various values of fractional parameter, the profiles for 
α = 0.1, 0.2, 0.3, . . . , 1 ( α = 1 is the solution for the integer ordered model).

Table 1.   The influence of fractional parameter on the flow velocity.

ξ
v(ξ , τ)
α = 0.1

v(ξ , τ)
α = 0.2

v(ξ , τ)
α = 0.3

v(ξ , τ)
α = 0.4

v(ξ , τ)
α = 0.5

v(ξ , τ)
α = 0.6

v(ξ , τ)
α = 0.7

v(ξ , τ)
α = 0.8

v(ξ , τ)
α = 0.9

v(ξ , τ)
α = 1.0

0 0 0 0 0 0 0 0 0 0 0

0.05 0.19 0.181 0.171 0.16 0.149 0.136 0.122 0.108 0.095 0.083

0.1 0.378 0.36 0.341 0.32 0.297 0.272 0.245 0.217 0.19 0.166

0.15 0.563 0.537 0.509 0.478 0.444 0.407 0.367 0.326 0.286 0.251

0.2 0.745 0.71 0.673 0.633 0.59 0.541 0.49 0.436 0.384 0.337

0.25 0.92 0.878 0.833 0.785 0.732 0.674 0.611 0.546 0.483 0.425

0.3 1.088 1.039 0.988 0.933 0.872 0.805 0.733 0.657 0.583 0.516

0.35 1.246 1.192 1.135 1.074 1.006 0.932 0.852 0.768 0.686 0.609

0.4 1.392 1.334 1.273 1.207 1.135 1.055 0.969 0.879 0.789 0.704

0.45 1.525 1.464 1.4 1.331 1.255 1.172 1.082 0.987 0.892 0.802

0.5 1.641 1.579 1.513 1.442 1.365 1.28 1.188 1.092 0.994 0.9

0.55 1.738 1.675 1.609 1.539 1.462 1.378 1.286 1.19 1.093 0.997

0.6 1.811 1.75 1.686 1.617 1.543 1.461 1.373 1.279 1.184 1.09

0.65 1.857 1.799 1.738 1.673 1.603 1.526 1.443 1.355 1.265 1.175

0.7 1.871 1.818 1.762 1.703 1.638 1.568 1.492 1.413 1.331 1.248

0.75 1.85 1.803 1.753 1.701 1.644 1.582 1.516 1.446 1.375 1.302

0.8 1.788 1.748 1.707 1.662 1.615 1.564 1.508 1.451 1.391 1.331

0.85 1.681 1.65 1.617 1.583 1.546 1.506 1.464 1.419 1.373 1.327

0.9 1.524 1.502 1.48 1.457 1.431 1.404 1.375 1.345 1.314 1.282

0.95 1.306 1.295 1.284 1.272 1.259 1.245 1.23 1.215 1.199 1.183

1 1 1 1 1 1 1 1 1 1 1
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Experimenters can utilise these variations for curve fitting and actual results. This behaviour is sometimes 
referred to as a memory effect in the literature.

In this analysis, the buoyancy component is included in the momentum equation, which after nondimension-
alization provides a nondimensional parameter, the Grashof number ( Gr ). Physically, Gr is the ratio of buoyancy 
forces to viscous forces; thus, increasing Gr values increase buoyancy forces while weakening viscous forces, 
resulting in increased fluid velocity. Figure 4 and Table 3 show the differences in nanofluid velocity profiles for 
different values of Gr . The heating and cooling of the boundary are represented by the positive and negative 
values of Gr , respectively.

The Lorentz forces, which are flow opposite forces that control the velocity of electrically conducting fluids, 
are represented by Hartman’s number M . Figure 5 and Table 4 depict the effect of Hartman’s number on fluid 
velocity. The results show that when the value of M increases, the flow of the hybrid nanofluid decreases.

Volume fraction of the solid nanoparticles displays the proportion of the particles in the base fluid. In this 
analysis, φs1 and φs2 are taken as the volume fractions of clay nanoparticles and alumina Al2O3 correspondingly. 
The findings in Fig. 6 and Table 5 depict that the velocity is increasing with the rising values of φs1 and reducing 
with the rising values of φs2.

Table 2.   The effects of different values of fractional parameters on the temperature distribution.

ξ
θ(ξ , τ)
α = 0.1

θ(ξ , τ)
α = 0.2

θ(ξ , τ)
α = 0.3

θ(ξ , τ)
α = 0.4

θ(ξ , τ)
α = 0.5

θ(ξ , τ)
α = 0.6

θ(ξ , τ)
α = 0.7

θ(ξ , τ)
α = 0.8

θ(ξ , τ)
α = 0.9

θ(ξ , τ)
α = 1.0

0 0 0 0 0 0 0 0 0 0 0

0.05 1.609 × 10–3 1.093 × 10–3 6.419 × 10–4 3.035 × 10–3 1.032 × 10–4 2.077 × 10–5 1.738 × 10–6 2.986 × 10–8 − 1.791 × 10–9 − 3.949 × 10–9

0.1 3.363 × 10–3 2.306 × 10–3 1.374 × 10–3 6.667 × 10–4 2.372 × 10–4 5.193 × 10–5 5.129 × 10–6 1.256 × 10–7 − 3.427 × 10–9 − 7.948 × 10–9

0.15 5.419 × 10–3 3.769 × 10–3 2.3 × 10–3 1.16 × 10–3 4.408 × 10–4 1.084 × 10–4 1.318 × 10–5 4.759 × 10–7 − 3.76 × 10–9 − 1.205 × 10–8

0.2 7.961 × 10–3 5.642 × 10–3 3.547 × 10–4 1.876 × 10–3 7.707 × 10–4 2.155 × 10–4 3.256 × 10–5 1.709 × 10–6 5.045 × 10–9 − 1.63 × 10–8

0.25 0.011 8.123 × 10–3 5.282 × 10–3 2.946 × 10–3 1.315 × 10–3 4.192 × 10–4 7.82 × 10–4 5.839 × 10–6 7.063 × 10–8 − 2.075 × 10–8

0.3 0.015 0.011 7.737 × 10–3 4.559 × 10–3 2.212 × 10–3 8.015 × 10–4 1.828 × 10–4 1.899 × 10–5 4.555 × 10–7 − 2.493 × 10–8

0.35 0.021 0.016 0.011 6.994 × 10–3 3.681 × 10–3 1.508 × 10–3 4.157 × 10–4 5.882 × 10–5 2.467 × 10–6 − 2.141 × 10–8

0.4 0.029 0.022 0.016 0.011 6.067 × 10–3 2.791 × 10–3 9.191 × 10–4 1.732 × 10–4 1.198 × 10–5 7.903 × 10–8

0.45 0.039 0.031 0.023 0.016 9.901 × 10–3 5.081 × 10–3 1.975 × 10–3 4.849 × 10–4 5.272 × 10–5 1.138 × 10–6

0.5 0.052 0.043 0.033 0.024 0.016 9.091 × 10–3 4.119 × 10–3 1.289 × 10–3 2.108 × 10–4 9.955 × 10–6

0.55 0.07 0.059 0.048 0.036 0.026 0.016 8.335 × 10–3 3.248 × 10–3 7.655 × 10–4 7.021 × 10–5

0.6 0.095 0.082 0.068 0.054 0.04 0.028 0.016 7.755 × 10–3 2.522 × 10–3 4.098 × 10–4

0.65 0.127 0.112 0.096 0.08 0.063 0.047 0.031 0.018 7.537 × 10–3 1.988 × 10–3

0.7 0.171 0.154 0.136 0.117 0.098 0.077 0.057 0.037 0.02 8.043 × 10–3

0.75 0.23 0.212 0.192 0.171 0.149 0.126 0.101 0.075 0.05 0.027

0.8 0.309 0.29 0.27 0.248 0.225 0.2 0.173 0.143 0.111 0.077

0.85 0.415 0.396 0.377 0.356 0.334 0.31 0.285 0.256 0.223 0.185

0.9 0.556 0.541 0.525 0.508 0.49 0.471 0.451 0.43 0.405 0.377

0.95 0.746 0.737 0.727 0.718 0.709 0.699 0.687 0.676 0.667 0.659

1 1 1 1 1 1 1 1 1 1 1

Figure 3.   Variations in temperature profile for various values of fractional parameter, the profiles for 
α = 0.1, 0.2, 0.3, . . . , 1 ( α = 1  is the solution for the integer ordered model.
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The impact of φs1 and φs2 on the temperature profile is displayed in Fig. 7 and Table 6. The outcomes shows that 
for in the non-existence of clay nanoparticles (φs1 = 0.0, φs2 = 0.02) or Al2O3 (φs1 = 0.02, φs2 = 0.0) the heat 
transfer is lowest and for the greater values of the volume fractions of the nanoparticles (φs1 = 0.04, φs2 = 0.04) 
the heat transfer is highest. In common, the results portray that temperature is increasing with the growing 
values of both φs1 and φs2.

The changes in heat transfer rate (Nusselt Number, Nu) are shown in Table 7. As seen in Table 7, heat transfer 
is greatest at the highest selected vales for the volume fraction of both nanoparticles. This means that the heat-
carrying capacity of the hybrid nanofluid has risen. Table 7 shows that heat transfer increases with time.

Figure 4.   The effect of the Grashof number on the velocity profile of a hybrid nanofluid of the Brinkman type.

Table 3.   The effects of Grashof number on the velocity profile of the flow.

ξ
v(ξ , τ)
Gr = 5

v(ξ , τ)
Gr = 10

v(ξ , τ)
Gr = 15

v(ξ , τ)
Gr = 20

v(ξ , τ)
Gr = −5

v(ξ , τ)
Gr = −10

v(ξ , τ)
Gr = −15

v(ξ , τ)
Gr = −20

0 0 0 0 0 0 0 0 0

0.05 0.045 0.058 0.071 0.084 0.019 6.362 × 10–3 − 6.584 × 10–3 − 0.02

0.1 0.091 0.117 0.143 0.169 0.039 0.013 − 0.013 − 0.039

0.15 0.137 0.176 0.215 0.254 0.059 0.021 − 0.018 − 0.057

0.2 0.185 0.237 0.289 0.34 0.081 0.029 − 0.023 − 0.074

0.25 0.234 0.299 0.363 0.428 0.104 0.04 − 0.025 − 0.09

0.3 0.285 0.362 0.44 0.517 0.13 0.052 − 0.025 − 0.103

0.35 0.337 0.427 0.518 0.608 0.157 0.067 − 0.023 − 0.113

0.4 0.392 0.494 0.596 0.698 0.188 0.086 − 0.016 − 0.119

0.45 0.448 0.562 0.675 0.789 0.221 0.108 − 5.352 × 10–3 − 0.119

0.5 0.506 0.63 0.754 0.877 0.259 0.135 0.012 − 0.112

0.55 0.566 0.698 0.83 0.963 0.301 0.169 0.036 − 0.096

0.6 0.626 0.765 0.904 1.043 0.348 0.209 0.07 − 0.069

0.65 0.686 0.829 0.972 1.114 0.401 0.258 0.115 − 0.027

0.7 0.745 0.888 1.031 1.174 0.459 0.317 0.174 0.031

0.75 0.802 0.94 1.078 1.217 0.525 0.386 0.248 0.109

0.8 0.854 0.982 1.11 1.238 0.597 0.469 0.341 0.213

0.85 0.901 1.012 1.123 1.234 0.679 0.568 0.457 0.346

0.9 0.945 1.03 1.115 1.2 0.775 0.69 0.605 0.52

0.95 0.987 1.036 1.084 1.133 0.889 0.841 0.792 0.743

1 1 1 1 1 1 1 1 1
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Conclusion
The flow model Brinkman-type fluid with heat transfer and hybrid nanoparticles is the main topic of this work. 
Using the modified Fourier’s law and the fractional derivatives operator, more specifically the Caputo fractional 
operator, the flow model after non-dimensionalization is generalised. The integral transformations are then used 
to solve the extended model precisely. The following are the study’s main findings: The fractional model is more 
useful for physical processes because it permits curves to be fitted to exact solutions without changing physi-
cal parameters. The velocity increases as the Grashof number increases and decreases as the Hartman number 
increases, implying that the acquired results are genuine and accurate. Heat transfer is aided by the volume frac-
tions of nanoparticles, and the temperature is higher for hybrid nanoparticles with the highest volume fraction.

Figure 5.   The flow velocity of a Brinkman-type hybrid nanofluid is affected by the Hartman number.

Table 4.   For different values of Hartman’s number, the variations in velocity of hybrid nanofluids.

ξ
v(ξ , τ)
M = 0.0

v(ξ , τ)
M = 0.5

v(ξ , τ)
M = 1.0

v(ξ , τ)
M = 1.5

v(ξ , τ)
M = 2.0

v(ξ , τ)
M = 2.5

v(ξ , τ)
M = 3.0

v(ξ , τ)
M = 3.5M = 3.5

0 0 0 0 0 0 0 0 0

0.05 0.195 0.189 0.184 0.178 0.173 0.168 0.163 0.158

0.1 0.391 0.379 0.368 0.357 0.347 0.337 0.327 0.318

0.15 0.588 0.57 0.553 0.537 0.521 0.506 0.492 0.478

0.2 0.785 0.761 0.739 0.718 0.697 0.677 0.658 0.64

0.25 0.982 0.953 0.926 0.9 0.874 0.85 0.826 0.804

0.3 1.179 1.145 1.113 1.082 1.052 1.023 0.995 0.969

0.35 1.373 1.335 1.298 1.263 1.228 1.196 1.164 1.134

0.4 1.563 1.52 1.48 1.44 1.403 1.366 1.331 1.298

0.45 1.745 1.699 1.655 1.613 1.572 1.532 1.494 1.458

0.5 1.915 1.866 1.82 1.775 1.731 1.69 1.649 1.611

0.55 2.067 2.017 1.969 1.922 1.877 1.834 1.792 1.752

0.6 2.195 2.145 2.096 2.049 2.003 1.96 1.917 1.876

0.65 2.291 2.241 2.193 2.147 2.102 2.058 2.016 1.976

0.7 2.344 2.297 2.251 2.206 2.163 2.121 2.081 2.042

0.75 2.343 2.299 2.256 2.215 2.176 2.137 2.1 2.064

0.8 2.273 2.235 2.198 2.162 2.127 2.093 2.06 2.029

0.85 2.122 2.091 2.06 2.031 2.003 1.975 1.948 1.922

0.9 1.875 1.853 1.831 1.81 1.79 1.77 1.75 1.732

0.95 1.516 1.504 1.493 1.482 1.471 1.46 1.45 1.44

1 1 1 1 1 1 1 1 1
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Figure 6.   The effect of volume fractions of clay nanoparticles and alumina Al2O3on the flow profile.

Figure 7.   For varied values of volume fractions of hybrid nanoparticles (Clay nanoparticles and Alumina), the 
temperature profile changes.



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14117  | https://doi.org/10.1038/s41598-022-18110-1

www.nature.com/scientificreports/

Table 5.   The influence of various values of volume fractions of nanoparticles on the velocity profile.

ξ

v(ξ , τ)
φs1 = 0.00

φs2 = 0.02

v(ξ , τ)
φs1 = 0.00

φs2 = 0.04

v(ξ , τ)
φs1 = 0.02

φs2 = 0.00

v(ξ , τ)
φs1 = 0.02

φs2 = 0.02

v(ξ , τ)
φs1 = 0.02

φs2 = 0.04

v(ξ , τ)
φs1 = 0.04

φs2 = 0.00

v(ξ , τ)
φs1 = 0.04

φs2 = 0.02

v(ξ , τ)
φs1 = 0.04

φs2 = 0.04

0 0 0 0 0 0 0 0 0

0.05 0.112 0.109 0.135 0.132 0.129 0.156 0.153 0.149

0.1 0.223 0.218 0.27 0.264 0.258 0.312 0.305 0.297

0.15 0.334 0.326 0.404 0.395 0.386 0.466 0.456 0.445

0.2 0.444 0.433 0.537 0.525 0.513 0.619 0.605 0.59

0.25 0.553 0.54 0.668 0.653 0.638 0.768 0.751 0.733

0.3 0.66 0.645 0.796 0.778 0.76 0.915 0.894 0.873

0.35 0.764 0.747 0.921 0.9 0.879 1.056 1.033 1.008

0.4 0.866 0.846 1.04 1.017 0.993 1.191 1.164 1.136

0.45 0.963 0.941 1.153 1.128 1.102 1.317 1.288 1.257

0.5 1.054 1.031 1.258 1.23 1.202 1.432 1.401 1.367

0.55 1.137 1.113 1.351 1.322 1.292 1.534 1.5 1.464

0.6 1.21 1.185 1.43 1.4 1.369 1.618 1.582 1.545

0.65 1.27 1.244 1.492 1.461 1.429 1.68 1.644 1.605

0.7 1.314 1.288 1.532 1.501 1.469 1.716 1.679 1.641

0.75 1.339 1.314 1.546 1.516 1.485 1.72 1.684 1.646

0.8 1.34 1.317 1.53 1.501 1.471 1.687 1.652 1.617

0.85 1.315 1.294 1.477 1.451 1.425 1.61 1.579 1.548

0.9 1.26 1.243 1.382 1.362 1.341 1.481 1.457 1.433

0.95 1.163 1.154 1.232 1.22 1.209 1.287 1.274 1.26

1 1 1 1 1 1 1 1 1

Table 6.   Variations in temperature profile for various values of volume fraction of hybrid nanoparticles (Clay 
nanoparticles and Alumina).

ξ

θ(ξ , τ)
φs1 = 0.00

φs2 = 0.02

θ(ξ , τ)
φs1 = 0.00

φs2 = 0.04

θ(ξ , τ)
φs1 = 0.02

φs2 = 0.00

θ(ξ , τ)
φs1 = 0.02

φs2 = 0.02

θ(ξ , τ)
φs1 = 0.02

φs2 = 0.04

θ(ξ , τ)
φs1 = 0.04

φs2 = 0.00

θ(ξ , τ)
φs1 = 0.04

φs2 = 0.02

θ(ξ , τ)
φs1 = 0.04

φs2 = 0.04

0 0 0 0 0 0 0 0 0

0.05 0.131 0.124 0.171 0.162 0.154 0.203 0.193 0.184

0.1 0.262 0.248 0.342 0.324 0.308 0.406 0.386 0.368

0.15 0.394 0.373 0.515 0.487 0.463 0.61 0.58 0.553

0.2 0.528 0.5 0.688 0.652 0.62 0.815 0.775 0.74

0.25 0.663 0.629 0.861 0.817 0.778 1.019 0.971 0.926

0.3 0.8 0.76 1.035 0.983 0.937 1.222 1.166 1.113

0.35 0.937 0.891 1.207 1.149 1.096 1.423 1.359 1.299

0.4 1.073 1.023 1.376 1.312 1.253 1.619 1.548 1.481

0.45 1.207 1.152 1.54 1.47 1.406 1.807 1.729 1.657

0.5 1.335 1.277 1.695 1.62 1.552 1.983 1.9 1.822

0.55 1.455 1.395 1.836 1.758 1.686 2.141 2.053 1.971

0.6 1.562 1.5 1.957 1.878 1.804 2.274 2.184 2.099

0.65 1.651 1.588 2.052 1.972 1.898 2.373 2.283 2.196

0.7 1.714 1.653 2.111 2.033 1.959 2.429 2.339 2.254

0.75 1.743 1.685 2.124 2.049 1.979 2.428 2.342 2.26

0.8 1.728 1.675 2.078 2.01 1.945 2.355 2.277 2.201

0.85 1.66 1.614 1.96 1.901 1.845 2.197 2.129 2.063

0.9 1.529 1.493 1.757 1.712 1.669 1.937 1.884 1.833

0.95 1.323 1.302 1.453 1.427 1.402 1.554 1.524 1.494

1 1 1 1 1 1 1 1 1
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Data availability
The database used and analysed during the current study are available from the corresponding author on rea-
sonable request.
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φs2 = 0.02
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