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Application of two‑component 
neural network 
for exchange‑correlation functional 
interpolation
Alexander Ryabov1,2*, Iskander Akhatov1 & Petr Zhilyaev1

Density functional theory (DFT) is one of the primary approaches to solving the many‑body 
Schrodinger equation. The essential part of the DFT theory is the exchange‑correlation (XC) 
functional, which can not be obtained in analytical form. Accordingly, the accuracy improvement 
of the DFT is mainly based on the development of XC functional approximations. Commonly, they 
are built upon analytic solutions in low‑ and high‑density limits and result from quantum Monte 
Carlo or post‑Hartree‑Fock numerical calculations. However, there is no universal functional form to 
incorporate these data into XC functional. Instead, various parameterizations use heuristic rules to 
build a specific XC functional. The neural network (NN) approach to interpolate the data from higher 
precision theories can give a unified path to parametrize an XC functional. Moreover, data from 
many existing quantum chemical databases could provide the XC functional with improved accuracy. 
We develop NN XC functional, which gives exchange potential and energy density without direct 
derivatives of exchange‑correlation energy density. Proposed NN architecture consists of two parts 
NN‑E and NN‑V, which could be trained in separate ways, adding new flexibility to XC functional. 
We also show that the developed NN XC functional converges in the self‑consistent cycle and gives 
reasonable energies when applied to atoms, molecules, and crystals.

Since its emergence, density functional theory (DFT)1,2 serves as one of the primary methods of solving the 
many-body Schrodinger equation. The main theoretical bottleneck in DFT theory is the unknown form of the 
exchange-correlation (XC) functional. Therefore, the progress in developing more accurate XC functionals reveals 
more possibilities for using DFT in cases where high accuracy of quantum-mechanical calculations is required. 
Information for constructing XC functionals is taken from numerical calculations using quantum Monte Carlo 
or post-Hartree-Fock3,4. The influential Monte Carlo (MC) simulations of the uniform electron gas (UEG) by 
Ceperley and  Adler3 led to the creation a number of practical local density approximations (LDAs)5–7. The next 
big success in reaching better accuracy was achieved by the generalized gradient approximation (GGA), which 
takes into consideration local gradients of electron  density8–10. This improvement sufficiently increased the 
capability of DFT to characterize systems with inhomogeneous electron densities. Calculations made by post-
Hartree-Fock methods were also used to improve the quality of the XC functionals for molecular  systems4,11. The 
search for advanced XC functional is ongoing, and, still a very active direction of  research12–15.

Regardless of the evident triumph of the LDA and GGA, their development is a highly complex procedure 
that involves many heuristics stages. The XC functional’s form is generally specified by physical insights (the 
local nature of the interaction, perturbation approach, analytical solutions in limiting cases, etc.), and a set of 
adjustable  parameters7,10. Such inflexible functional form makes it difficult to include more numerical results from 
modern quantum  MC16,17 and post-Hartree-Fock  calculations18, which could lead to increased XC functional 
accuracy. Therefore it may be fruitful to use an adaptive XC functional form that, on the one hand, facilitates the 
incorporation of numerical calculations and, on the other hand, enable to include the physical insights into it.

One perspective candidate for the flexible XC functional form is the neural network (NN), which provides a 
universal approach to approximate any functional  relationship19. Analytical information could be also included in 
the NN as a synthetically generated part of the dataset. NN was first utilized as a functional form for XC potential 
by Tozer et al.20. After that, several studies have been addressed the possibility of using NN to approximate XC 
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functionals  form21–26. Work by Nagai et al.22 is especially worthy of note. They presented the first working NN 
XC functional, which gives better accuracy than traditional ones.

Despite significant advances in the development of XC functionals based on NNs, a wide range of issues 
remain. Namely, how to relate the exchange-correlation energy density ( εxc ) and the exchange-correlation poten-
tial (XC potential, Vxc )? In the analytical description, such connection is provided by a standard differentiation, 
which is sometimes tedious but straightforward. But when new features are included in the NN, for example, the 
logarithm of density (standard feature scaling procedure) or local Hartree-Fock exchange energy  densities27, it is 
not clear how to incorporate them into the connection between XC potential and corresponding energy density. 
It is also essential to find a way to include physical insight into XC functionals, such as asymptotic analytical solu-
tions and conservation laws. Another issue is an optimal NN architecture and feature selection for presenting XC 
functional. So far, no detailed comparison has been made of various NN architectures on the same training data.

In this study we focus on constructing NN XC functional that output both εxc and Vxc . The developed NN 
consists of two parts: one part is used to evaluate εxc (NN-E), and another approximates Vxc (NN-V). They con-
nected in such a way that the output of NN-E is one of the input features for NN-V (see Fig. 1). Proposed archi-
tecture is also “economical”, since one back-propagation step does not need to traverse the entire mesh, and it is 
calculated only at one point. In other practical  approaches22,27, for one step of the neural network, it is necessary 
to calculate the total exchange-correlation energy of the system, which significantly increases memory consump-
tion and therefore leads to limitations for training and evaluation of neural networks with a large number of 
parameters. Direct differentiation of features to obtain the exchange-correlation functional from the density of 
the exchange-correlation energy can be quite a complex and confusing problem. In particular, if the features are 
semi-local or global, obtaining the final analytic expression is non-trivial. An example is the exchange energy 
density as a feature in the  work27. Local coordinate transformations only complicate the task.

The training dataset was obtained from the DFT calculation of crystalline silicon, benzene, and ammonia with 
PBE XC  functional10,28. After XC NN training, we implemented it into Octopus DFT  code29–31 and conducted 
self-consistent cycle calculations of train/test systems and atoms and molecules from IP13/03  dataset32. The 
mean relative error of total and XC energies on training samples is on the order of 0.001% . The same errors on 
crystals and molecules that were not used to train XC NN increased by the order magnitude but were still small, 
around 0.01% . Such a small relative error indicates that the proposed architecture could be successfully used for 
XC functional form representation. The key feature of the proposed NN architecture is that the weights of NN-V 
are pre-trained on εxc → Vxc mapping and fixed during learning on new training data. It allows being sure that 
the output of NN-E is indeed the εxc , because the relation between εxc and Vxc is preserved.

It is also should be noted that the boundary conditions are included by using extra datasets. They are syn-
thetically generated to fulfill given boundary conditions. In present case it was εxc → 0 given that electron 
density (n) is vanishing, and εxc → εLDAxc  given that gradient modulus squared of electron density ( σ ) is also 
approaching zero.

Figure 1.  Topology of the XC neural network. It consists of two parts: NN-E predicts εxc and NN-V predicts 
vxc . Each part of the neural network consists of 4 layers each of 100 neurons. For both parts information on local 
density and its derivatives is needed.
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This paper is outlined as follows: In “Methods” section, we describe the data generation process, NN topology, 
features and hyperparameters used. In the “Results” section, we first show the results of NN training, features 
distributions, and evaluated metrics; in the following, we demonstrate NN XC’s application in DFT calculations 
on atoms and molecules that were not presented in the training dataset. In “Conclusion” section, we summarize 
our results and suggest following research steps that could be done with the developed NN XC pipeline, with a 
particular emphasis on integrating data from high-level methods such as quantum MC and post-HF calculation.

Methods
The proposed neural network architecture consists of two parts: the NN-E and the NN-V. The NN-E serves to 
obtain the exchange-correlation energy density ( εxc ), and the NN-V allows calculating of the exchange-corre-
lation potential ( Vxc ) from the corresponding energy using the output of NN-E as one of the neurons. Only the 
spin unpolarized case is considered. Generalization to the spin-polarized case is trivial and can be implemented 
by increasing the number of input neurons corresponding to the spin components appropriately.

The NN-E input parameters are electron density n and the square of the electron density gradient 
σ = �∇n,∇n� . We use base-10 logarithmic transformation for preprocessing input features of NN-E. The input 
features for the NN-V are εxc , n, σ , γ = �∇σ ,∇n� and Laplacian of the electron density �n . All NN-V features 
except εxc are standardized, i.e. converted to zero mean and unit variance (see Fig. 1). The choice of features for 
NN-V is due to the functional connection between εxc and Vxc in generalized gradient approximation (GGA), 
which contains the electron density, its gradients in various combinations and the Laplacian. In a real space grid 
the connection between potential and XC energy density looks as  following33:

where g(r) ≡ |∇n(r)| and �g ≡ ∇n(r) . In a broad sense, the choice of features is arbitrary and the only criterion 
for its success is the increase in the accuracy of NN.

At the first stage of training, only the NN-V is trained. In this case, the energy that is supplied to the input to 
the NN-V is obtained using the  libXC34 package. The first stage aims to teach mapping between the εxc and the 
corresponding potential, and the εxc known in advance is used. In this case the following loss function is applied:

At the second stage, the NN-V weights are frozen, and only NN-E part is trained, but loss depends on the 
output of NN-V ( Vxc ). The second stage aims to train the neural network to map electron density, σ and Vxc . 
Simultaneously, the frozen NN-V provides the correct connection between εxc and Vxc . At this stage we addition-
ally include boundary condition in the loss function:

The first boundary condition is based on the fact that εxc tends to zero at zero density with any input σ . The 
second boundary condition follows from the fact that with zero σ and any density εxc leads to the corresponding 
energy of the local density approximation.

To obtain the training data, we carry out DFT  calculations1,2 of silicon, benzene, and ammonia. We perform 
the calculations in real space using the Octopus  code29–31. The XC functionals used include the exchange and 
correlation parts from  PBE10,28. For all atomic species pseudo-potentials SG15 are  used35. The total number of the 
calculations is 10 for each chemical substance. Atomic configurations in these calculations are differed by applied 
strain ±5% . Grid spacing in the range from zero to 10 is used. This corresponds to 64× 64× 64 mesh for silicon 
and benzene, and 65× 65× 65 mesh for ammonia. The mesh size for ammonia is a little bit larger due to techni-
cal issues related to non-periodic boundary conditions. For avoiding gradient inconsistency in the boundaries 
we use cropping. We remove data points lying at a distance of 4 (due to numerical scheme of differentiation) or 
less from the boundaries of the parallelepiped. Finally, the dataset size was approximately 5.2 million samples.

The Pytorch  framework36 is utilized for training the neural network. We use the Adam algorithm for train-
ing with a learning rate descending from 0.001 by 25 percent every 20 epoch, and mean square error (MSE) 
loss. The batch size selected for training is 5000. The neural architecture used for the NN-E is a fully connected 
network with two input neurons, one linear output neuron, and four exponential linear units (ELU)37 hidden 
layers with 100 neurons. NN-V has the same architecture except that the number of input neurons increased 
to 5. To implement boundary conditions (3) we also included two additional batches in each training step. The 
first one consists of zero electron density and non-zero gradients with corresponding zero εxc . The second one 
contains non-zero electron density and zero gradients with corresponding εLDAxc  . Thus, on the one hand, we 
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have included the boundary conditions directly in the loss function; on the other hand, we have reinforced the 
boundary conditions directly with data.

Results
Training of neural network. The training of NN was performed on benzene, silicon and ammonia. For 
each substance ten calculation was performed. In each calculation the system was stretched or compressed in 
range of ±5% of lattice constant to obtain electron densities in a wider range.

Training curves for NN-V and NN-E are presented in Fig. 2. The loss reaches a plateau after 300k batches for 
NN-V and 200k batches for NN-E correspondingly. Each batch consisted of 32 sample. The final loss achieved 
values of about 10−6 Ha2 × a60 in both cases.

The distributions of input features for training dataset are presented in Fig. 3. Individual distributions of 
substances included in the training dataset are normalized to the total number of elements corresponding to 
the given substance. In additional to features used distribution by the Wigner–Seitz radius rs = (3/(4πn))1/3 
and the reduced density gradient s = |∇n|/2kFn = |∇n|/(2 3

√
3π2/3n4/3) are presented. All distribution is not 

uniform due to real systems used in training procedure. The distributions localized around the values that are 
typical for the systems under consideration. Analysis of such distributions is important to determine the limits 

Figure 2.  Training curves of XC neural network. The left one corresponds to NN-V training, where log(Loss) 
is the logarithm of loss (2). The right one corresponds to NN-E training where log(Loss) is the logarithm of loss 
with boundary conditions (3). Outliers on the training curves are related with adjustable learning rate used for 
optimization algorithm.

Figure 3.  Distributions of input features. Each curve is normalized to to the total number of elements in 
the corresponding dataset.The distributions localized around the values that are typical for the systems used 
in training dataset: ammonia, benzene, crystalline silicon. One can see that crystalline silicon has relatively 
small electron density gradients and no region of low electron density due to its periodic structure. If a neural 
network is given an input value significantly out of bounds of the distribution data, it potentially could output an 
inappropriate value.
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of NN XC functional applicability, i.e. to detect cases where NN XC functional will certainly fail due to absence 
of such data in the training dataset. This is especially important for case of heavy atoms in which core electron 
density could have large derivatives.

We use absolute mean square error and (MSE) and mean average error (MAE) as metrics to evaluate learn-
ing outcomes:

where xn is the true value of target variable, x̂n is the predicted value of target variable, N is the total number of 
targets. The resulting MSE and MAE on training dataset are presented in the Table 1. Minimum MAE(εxc) and 
MSE(εxc) are obtained on benzene, maximums are achieved on silicon. MSE error on boundary conditions is on 
the order of 10−10 , which is considerably less than the total MSE error on the train dataset.

You can see in Fig. 3 that the distributions of silicon are significantly different from the overall distributions 
of the training dataset. One can see that crystalline silicon has relatively small electron density gradients and no 
region of low electron density due to its periodic structure. Therefore we attribute the maximum error of εxc in 
silicon to the fact that its characteristic values of electron density and its derivatives effectively have a smaller 
fraction in the training dataset compared to benzene and ammonia.

We also separately analyzed the spatial distribution of the error using benzene as an example. Figure 4 shows 
the distribution of the relative local error |(x̂ − x)/x| × 100% in the benzene plane for both εxc and Vxc . The 
spatial distribution of the error clearly shows that it has the highest values in the region of the nuclei and at the 
boundary. Again, we associate the high local error in these places with a few examples of this type of data in its 
training set. If there were more extreme examples with high and low density in the training dataset, then the 
errors in the nuclei region and at the border should have dropped.

Testing of neural network. We incorporate the developed NN XC functional into Octopus code and per-
form self-consistent cycle calculations. All calculations are converged, and relative total and XC energies errors 
are calculated. As a reference, we take PBE functional that was used for the training of NN. Results are presented 
in the Table 2. One can see that the highest error is achieved for atomic and molecular oxygen.
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Table 1.  MSE and MAE results for εxc and Vxc on a training dataset. The units of MSE are Ha2 × a
6
0 , the units 

of MAE are Ha × a
3
0.

MSE ( εxc) MAE ( εxc) MSE ( Vxc) MAE ( Vxc)

Benzene 4× 10−7 2× 10−4 1× 10−6 6× 10−4

Silicon 2× 10−5 1× 10−3 1× 10−6 4× 10−4

Ammonia 2× 10−6 4× 10−4 3× 10−6 1× 10−3

Figure 4.  Spacial distribution of relative error for benzene: (a) spacial distribution of relative error for εxc , (b) 
spacial distribution of relative error for Vxc . The relative local errors have highest values in the region of the 
nuclei and at the boundary.
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The reasons for the error on oxygen were analyzed. It turned out that the main reason for such a discrepancy 
on some substances, including oxygen, is the intermediate densities that occurred in the process of a self-consist-
ent cycle that the neural network did not see during the training process. The problem is that such densities can be 
arbitrarily large. The distributions of maximum electron densities in some cases are presented in Fig. 5 together 
with the training distribution. Analytical exchange-correlation functional contains asymptotics at infinity, which 
makes it possible to process such cases correctly. However, only boundary conditions at zero were used during 
our training cycle, but asymptotics at infinity were not used. This critical fact describes obtained discrepancy and 
gives hope for the further development and improvement of neural network exchange-correlation functionals 
by including such  asymptotics38,39.

To show the performance of developed NN XC on a chemically meaningful quantity we included results for 
 Alkisomer1111 dataset (see Table 3), for which we made PBE vs NN XC comparison of isomerization energies. 
Our model demonstrates results comparable to PBE, mean absolute error (MAE) for PBE is 1.6 kcal/mol and 
MAE for NN XC is 1.7 kcal/mol, which is a quite promising result. As it turned out as a result of the analysis, large 
errors on octane isomers even for PBE are explained by the fact that the corresponding geometries published in 
the  article11 are not completely relaxed.

To verify the importance of nonequilibrium densities for convergence of the SCF cycle we expanded the train-
ing dataset to include higher densities typical for intermediate densities of oxygen atom (O), which are obtained 
in self-consistent cycles (see Fig. 5). We stopped SCF iteration at 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 iterations 
and added 10 corresponding SCF results to the training set. We used spacing 0.273 a0 and 64× 64× 64 mesh. 
The resulting neural network performed quite better for O 2 , the relative error of total energy drops from 0.646 to 
0.023% and the relative error of XC energy drops from 2.5 to 0.17%. Thus, we also have shown that the inclusion 

Table 2.  Results of testing NN XC functional on a subset of IP13/03 dataset. Etotal and Exc denote total energy 
and exchange-correlation energy correspondingly obtained after convergence.

Substance Error ( Etotal ), % Error(Exc ), %

C 0.052 0.287

S 0.015 0.102

SH 0.021 0.007

Cl 0.010 0.035

OH 0.554 1.036

Cl2 0.001 0.035

O 1.556 4.029

P 0.008 0.071

O2 0.646 2.482

PH 0.014 0.050

PH2 0.011 0.023

S2 0.023 0.040

Si 0.003 0.253

Figure 5.  Comparison of distribution for non self-consistent electron density of atomic oxygen (a), molecular 
oxygen (b), hydrogen sulfide and self-consistent electron density from training ( a0 denotes the Bohr 
radius). One can see that atomic and molecular oxygen have a significant fraction of samples out of the train 
distribution. The step of the self-consistent cycle with maximum electron density was chosen for all substances. 
This example emphasizes the importance of including a wide range of electron density and derivatives in the 
training dataset because extreme values could occur during the self-consistent cycle.
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of additional data, such as nonequilibrium densities (intermediate densities in the SCF cycle), makes it possible 
to increase the accuracy of the XC functional.

Enhancement factor Fxc(rs , s) = εxc/ε
LDA
x  obtained from NN-E prediction was also analyzed, where s is a 

reduced density gradient s = |∇n|/2kFn =
(

1
n

)4/3
|∇n|

2
3
√
3π2/3

 . It compared with corresponding Fxc obtained from pre-
diction of analytical exchange-correlation functional (PBE) by libxc (see Fig. 6). There is a high similarity between 
the enhancement factors at densities that closely match the most frequent densities in the training set ( rs = 2). 
We observe slightly less similarity at rs = 10 . This can be explained by the decreased number of elements with 
such a density in the training set. A significant discrepancy is observed in the limiting cases of high and low 
densities. In the case of high density (small rs ), this is explained by the absence of asymptotic at infinity. Despite 

Table 3.  Results of testing NN XC functional on Alkisomer11 dataset. IE denotes isomerization energy.

Isomerization reaction IE (PBE) IE (NN) Abs error, kcal/mol

Butane → isobutane − 0.996 − 1.090 0.094

Pentane → isopentane − 0.788 − 0.491 0.297

Pentane → neopentane − 2.315 − 1.843 0.472

Hexane → isohexane − 2.563 − 2.071 0.492

Hexane → neohexane − 2.516 − 1.924 0.592

Hexane → diisopropyl − 1.626 − 0.896 0.730

Hexane → 3methylpentane − 2.062 − 1.409 0.653

Heptane → isoheptane − 3.218 − 2.916 0.302

Heptane → neoheptane − 2.807 − 2.746 0.061

Octane → hexamethylethane 5.224 6.326 1.102

Octane → isooctane 0.725 1.292 0.567

Figure 6.  Enhancement factor Fxc at fixed values of rs : 0, 2, 10, 1000. s is a reduced density gradient. There 
is a good agreement between the enhancement factors at rs = 2 densities, which is close to the most frequent 
densities in the training set. Also one can see that NN XC functional is bad in guessing asymptotic in low ( rs = 
1000) and high ( rs = 0) limits of electron density.
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the presence of asymptotic at zero densities in the process of training a neural network, the obtained result shows 
that this asymptotic may not be enough for obtaining a good enhancement factor.

Even though our model correctly reproduces the energies, the true exchange-correlation functional must 
satisfy many important physical constraints. Therefore, it is very crucial to discuss how such constraints can be 
added to the model and learning process in our future work. Firstly, it is important to mention that constraints 
use total exchange or correlation energies, so correct implementation of constraints can be effectively introduced 
only while training the model on total energies (much better, reaction energies). For example, an important 
property of such a functional is the density scaling property. In the  article40, it was shown that this property can 
be effectively taken into account using contrastive representation learning. Concerning our model, this means 
that the densities and all values obtained from it should be fed into NN-E and NN-V not in a “pure” form, but 
transformed using an encoder trained in an unsupervised way. As stated in the article mentioned above the NT-
xent loss is a good choice. This loss causes the projected representations of unscaled and scaled densities of the 
same molecule to get close and the representations of different molecules to be far from each other. With another 
module predicting scaling factors this approach can help to incorporate uniform density scaling constraint. In 
the case of our work, we did not actively investigate the imposition of any constraints, this is the topic of ongo-
ing research, but we checked that the presented functional does not lose accuracy when the SH molecule was 
rotated (see Table  4). As a result of additional calculations, it turned out that our model demonstrates excellent 
rotational equivariance with a total energy difference significantly smaller than 1 kcal/mol.

XC energy density and the XC potential are related with a functional derivative (see for example Eq. 1) There-
fore, we compared the exchange-correlation potential predicted by the NN-V and the corresponding potential 
calculated using the functional derivative. Indirectly, the fact that the analytical relationship between εxc and Vxc 
is preserved can be shown by the fact that the errors both on energy and on potential are quite small at the same 
time (see Table 1). If the neural network did not correctly reproduce this connection, then, accordingly, the error 
on the potential would be quite large. We aslo demonstrated these results clearly on the hydrogen molecule and 
built distributions of εxc and Vxc along the line connecting the hydrogen atoms (see Fig. 7).

Figure 7.  Slices of εxc and Vxc along the line connecting the atoms of a hydrogen molecule. Blue lines represent 
values predicted by our NN, red lines—values obtained by Octopus (where Vxc is correct functional derivative).

Table 4.  Comparing NN and PBE energies of rotated SH molecule. All energies in Hartree.

Rotation (deg.) Total energy (PBE) Total energy (NN) XC energy (PBE) XC energy (NN)

0 − 10.69546 − 10.69320 − 2.48893 − 2.48901

11.25 − 10.69546 − 10.69321 − 2.48891 − 2.48911

22.5 − 10.69542 − 10.69314 − 2.48890 − 2.48892

45 − 10.69544 − 10.69314 − 2.48892 − 2.48905

90 − 10.69546 − 10.69321 − 2.48893 − 2.48901
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Conclusions
The second NN (such as NN-V) that directly predicts the XC potential is avoided in recent  publications26,41, 
by imposing automatic differentiation of the NN. Automatic differentiation is a remarkable property of neural 
networks, which is actively used for developing neural network exchange-correlation potentials. However, it has 
some disadvantages: if the neural network is deep enough then automatic differentiation makes much noise, 
especially if we talk about higher-order derivatives (most of the implementations in literature use DFT codes 
based on atomic orbitals, where only first-order derivatives are needed); for simple features, it is pretty straight-
forward to write an analytical form of the relationship between the potential and the XC energy. However, if we 
take complex and non-standard features (semi-local,global ones), it can be practically impossible to connect 
the potential and the exchange-correlation energy. This is where the advantage of the second neural network 
becomes important—it provides an alternative path for an approximation that does not involve taking partial 
derivatives. This allows using more complex features in the machine learning pipeline.

Low error on the validation dataset indicates that the developed approach to the architecture of the XC 
functional interpolates well the existing XC functionals and has the high generalizing ability. Furthermore, in 
the framework of the proposed architecture, one can train NN-E and NN-V separately, making it flexible to use. 
The basic strategy to create working functional in the framework of the proposed architecture would be initially 
to train the NN-V part on a specific type of existing XC functional such as LDA, GGA, or meta-GGA, using 
various types of input features. Then the NN-E part of the neural network is trained on the data obtained by 
accurate post-Hartree–Fock or quantum Monte Carlo methods.

In this work, we did not take into account that the resulting functional may violate the rules of critical physical 
 conditions41,42. However, all these conditions can be introduced by modifying the training loop or loss function 
and, therefore, can be explicitly taken into account. This is a matter for further research.

The main advantage of the NN approach in comparison with other interpolation techniques for XC function-
als is its flexibility to incorporate exchange-correlation data from different sources, such as post-Hartree–Fock 
and quantum Monte Carlo. It is possible that application of the NN to interpolate high-level XC quantum data 
could eliminate many heuristics used in the traditional construction of XC functionals.

Data availability
Optimized NN weights and code to use it in calculations are available at https:// github. com/ Alexa nderF reeman/ 
octop us- nn-2.
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