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Translating CO
2
 variability 

in a plant growth system into plant 
dynamics
Tae In Ahn, Je Hyeong Jung, Hyoung Seok Kim & Ju Young Lee*

Plant growth occurs owing to the continuous interactions between environmental and genetic factors, 
and the analysis of plant growth provides crucial information on plant responses. Recent agronomic 
and analytical methodologies for plant growth require various channels for capturing broader and 
more dynamic plant traits. In this study, we provide a method of non-invasive growth analyses 
by translating CO

2
 variability around a plant. We hypothesized that the cumulative coefficient of 

variation (CCV) of plant-driven ambient CO
2
 variation in a plant growth system could yield a numerical 

indicator that is connected to the plant growth dynamics. Using the system outside-plant growth 
system-plant coupled dynamic model, we found that the CCV could translate dynamic plant growth 
under environmental and biophysical constraints. Furthermore, we experimentally demonstrated 
the application of CCV by using non-airtight growth chamber systems. Our findings may enrich 
plant growth information channels and assist growers or researchers to analyze plant growth 
comprehensively.

Measuring and estimating plant growth is routinely employed in agricultural systems and plant research, and 
non-invasive and high-throughput sensing technologies increase the experimental capacity for capturing plant 
 traits1. Such advances in sensor information have yielded novel data and knowledge for developing innovative 
hypotheses for plant  biologists2. Thus, enriching channels for capturing plant growth information is an ongoing 
challenge in advancing plant research and agronomic  technologies1,3.

In this study, we contribute to non-invasive growth analyses by translating CO2 variability around a plant. 
Observing and interpreting atmospheric CO2 variability has attracted considerable attention in environmental 
and ecological  context4. Some studies observed seasonal variations of CO2 at a regional forest scale and inter-
preted environmental  trends5 and ecological vegetation  variations6. Moreover, recent studies reveal the utility of 
CO2 variations as data containing rich information, including interactions between plants and the environment. 
Furthermore, important traits were observed from the magnitude or amplitude of CO2 flux associated with 
seasonal variations, and the necessity for better characterization and precise measurements was  highlighted4.

Plant growth systems such as greenhouses and growth chambers contribute to increasing crop productivity 
and experimental  capacities7,8. Contrary to the open field, protected cropping conditions such as greenhouses, 
indoor farms, and growth chambers may limit the impact of mass flow and turbulence on the air exchange 
between the air around a plant and the atmosphere. Thus, the system may be more favorable in capturing the 
impacts of plant on the surrounding air, and ambient CO2 concentration is one of the representative environ-
mental factors in plant growth  systems9. However, most of the data generated is still used for monitoring the 
normal cultivation environment.

CO2 variation data may provide information regarding the contributors of CO2 variability. Plants undergo 
continuous cycles of photosynthesis and respiration throughout their life, during which CO2 is consumed and 
emitted via structural growth and maintenance  pathways10. Once a plant is introduced into an environment, 
it begins to oscillate the atmospheric CO2

11,12. We regarded daily CO2 fluctuations as two opposing phases, 
namely, down- and up-states. The down-state primarily represented the CO2 assimilation rate of a plant, while 
the up-state was dominated by the CO2 efflux during developmental processes, such as growth, maintenance, 
and respiration of a plant in C3 and C4 plants. Environmental factors affect physiological processes and plants 
actively modulate their photosynthetic ability and respiration capacity,  accordingly13. Contrary to instantaneous 
photosynthetic rate variables, surrounding CO2 variation is a state variable, which partially mirrors the internal 
state of the plant. As a result, traces of interactions between the environment and plant traits might be captured 
in the time-series changes of air around a plant.
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Therefore, a proper translation of CO2 fluctuations in a plant growth system could provide an opportunity 
to exploit routine environmental monitoring data as a simultaneous capturing channel for plant traits during 
experiments and cultivation. As an initial approach to understanding ambient CO2 variability, we limited the 
system boundary to the air in the plant growth system. Furthermore, we only considered a protected plant 
growth system with diffusive gas exchange between the growth system and the outside environment. We coupled 
a dynamic model for plant growth (nitrate control in lettuce model, NICOLET model) with the CO2 diffusion 
process between plant growth system and atmosphere and the daily solar radiation model. We applied a random 
walk to the total cloud cover to allow the simulation analysis to encompass the various levels of cloud fractions 
(clear, cloudy, overcast, and full range weather) and its subsequent stochastic results on air temperature, carbon 
flux, and plant growth. We theoretically investigated CO2 flux between the atmosphere, plant growth system, and 
the plant and characterized CO2 variability. Although, CO2 fluctuation does not display the intrinsic activity of a 
plant, the down- and up-state of the diurnal CO2 variations are associated with instant plant activity, and gradual 
changes in their amplitude may implicate the time-variant physiological capacity of a plant. In this context, the 
characteristics of these diurnal CO2 behaviors can be obtained by normalizing their variability. Therefore, we 
hypothesized that the cumulative coefficient of variation (CCV) of the time-series changes of ambient CO2 
variation in a plant growth system could yield numerically stable and normalized outputs. Our findings show 
that the CCV progress curve could translate CO2 variability into plant-environment responsive plant growth 
information. We experimentally demonstrated CCV applications using non-airtight multiple growth chamber 
systems and the resulting implications, as an analytic approach, for determining interactions between plant traits 
and the environment are discussed.

Methods
Coupling solar irradiance, temperature, system outside CO

2
 , and CO

2
 in the plant growth 

system air using the NICOLET model. The plant growth model was originally developed to simulate 
dynamic photosynthetic and respiratory carbon flux (growth and maintenance) across vacuoles and plant struc-
tures, together with nitrate control in lettuce (NICOLET)14. The solar radiation pattern was generated by the 
total cloud cover variable based on solar elevation  changes15. A solar irradiation model depicting daily incoming 
solar radiation at the ground level was used to introduce the diurnal irradiance pattern as an input variable to 
the NICOLET model. In the solar irradiance model, the incoming solar radiation was modulated by the cloud 
cover parameter (Supplementary equation (1)). To impose stochastic characteristics on the NICOLET model, 
and the random walk was applied to the total cloud cover, allowing the simulation analysis to experience various 
levels of cloud cover. Owing to the close association between air temperature and solar  irradiance16, an empirical 
coefficient for correlating the temperature to the daily radiation behaviors for air temperature and solar irradi-
ance was estimated from our weather station data (Supplementary Fig. S1b). However, solely solar radiation is 
not responsible for air temperature variations, and therefore, the random walk was introduced to the regression 
slope within the observed variation between the solar irradiance and air temperature (Supplementary Fig. S1c). 
This was used to generate a stochastic diurnal temperature cycle with reduced dependency on solar irradiance. 
The random walk applied stochastic daily solar irradiance and temperature patterns coupled to photosynthetic 
flux modulation (Supplementary equation (12)) and respiratory flux modulation (Supplementary equations (14) 
and (15)) in the NICOLET model.

The photosynthetic carbon influx and respiratory carbon efflux provided the conjunction point for the system 
outside-plant growth system-plant continuum mediated by CO2 . Therefore, CO2 exchange between system 
outside, plant growth system, and the plant was coupled (Fig. 1a; Supplementary equation (4)). As an initial 
step for the CO2 variability utilization, we performed simulation and demonstration experiments in a limited 
environment. We assumed diffusion as the dominating gas exchange mechanism between the system outside 
and plant growth system. Thus, non-airtight growth chamber systems without forced ventilation were used in 
the demonstration experiment. Fick’s Law for molecular diffusion was applied to CO2 exchange within the con-
tinuum of system outside-plant growth system-plant. To introduce an identical gas exchangeability between our 
growth chamber systems and air of the system outside to the simulated ambient air of the plant growth system, the 
length parameter of the diffusion equation was exploited as a conceptual empirical coefficient by calibrating it to 

Figure 1.  Overall workflow and potential application of CO2 variability translation (a) coupled model for CO2 
fluxes between the system outside-plant growth system-plant continuum and stochastic climatic inputs. (b) 
Simulation analysis procedure to translate CO2 variability in the plant growth system air into a progress curve 
displaying environment-plant dynamic interaction and biophysical constraints by cumulative coefficient of 
variation (CCV) conversion. (c) Experimental conditions to demonstrate CCV behaviors under non-airtight 
growth chamber systems.
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display the best fitted CO2 concentration decay curve to the measured CO2 decay curve in the growth chamber 
used in this experiment (Supplementary Fig. S2). To determine the CO2 concentration of the system outside 
in the simulation analysis, we referred to the atmospheric CO2 concentrations in 2019 (409.8 µmol mol−117).

Simulation analysis. Climatic regimes with various combinations of solar irradiance and temperature, 
within the allocated cloud cover range, were classified as follows: clear, cloudy, overcast, and full range weather 
(Fig. 1b). Three distinct cloud cover (N) ranges were selected: (1) clear ( N ≤ 0.1 ), (2) cloudy ( 0.8 < N < 0.9 ), 
and (3) overcast ( N ≥ 0.9 ). Cloud cover behavior in the full range class was modulated by another arbitrary 
variable that was fluctuating between 0 and 1 using random walk behaviors. Therefore, the full-range cloud 
cover switched between the weather conditions within the three climatic regimes depending on the level of 
the arbitrary random walk variable. Thus, we exposed the simulated plant to various heterogeneous climatic 
combinations, and also, manipulated the physiological parameter in the NICOLET model, which modulates the 
efficiency of photosynthetic carbon flux of a plant ( ε ; Table S1), to illustrate combined results of physiological 
and environmental responses.

Growth chamber experiments. Environmentally controlled growth chamber systems (FarmsCube-20, 
Korea Digital, Republic of Korea) were used for the demonstration experiments (Fig. 1c). The chambers were 
equipped with red, blue, and white LED lights, and in the center of the LED panel, a built-in digital camera 
was installed for a daily photo capture of the plant canopy development. Two leafy vegetables, namely, pakchoi 
(Brassica rapa cv. ‘Green stem’; Asia Seed Co., Republic of Korea) and lettuce (Lactuca sativa ‘Danong Yeoreum-
jeokchukmyeon’; Danong Co., Republic of Korea) were used for the experiments. Nutrient solution was supplied 
using aeroponics technique, and the solution was supplied into the cultivation container using an irrigation 
pump (40 × 40 × 10 cm) at a 77 mL min−1 flow rate per aeroponic nozzle (five nozzles per chamber). The stock 
nutrient solutions were prepared based on modified Hoagland nutrient  solution18. Furthermore, the electri-
cal conductivity of nutrient solutions for lettuce and pakchoi chamber experiments were adjusted to 1.2 and 
1.9 mS cm−1 , respectively. Each plant was transplanted into the chamber 14 days after sowing. Two levels of 
environmental treatments were applied to the pakchoi and lettuce plants. Two irrigation frequencies, (1) 60 s of 
irrigation every two hours (low irrigation frequency, W1) and (2) 60 s of irrigation every 20 min (high irrigation 
frequency, W2) were applied for the pakchoi growth chambers, whereas , two temperature variations, (1) 14–21 
◦ C (low-temperature range, L1) and (2) 21–25 ◦ C (high-temperature range, L2) were applied for lettuce growth 
chambers. The temperature range of the pakchoi was adjusted to 19–26 ◦ C, and the irrigation frequency for the 
lettuce chambers was 120 s of irrigation every hour. Each growth chamber accommodated five plants, and twelve 
chambers were used for the demonstration experiment (three chambers for each treatment). The plants were 
grown for 38 days in the demonstration experiments.

Projected leaf area (PLA) and cumulative coefficient of variation (CCV) of CO
2
. Photographs 

that captured daily images in the growth chambers were used for the estimation of the image-based PLA assess-
ment (Fig. 1c). The cameras took daily photos of the canopy of the growing plants at a pre-programmed time, 
and the ImageJ software (National Institutes of Health) was used to estimate PLA from the images. The planting 
plates of each growth chamber had identical widths, and therefore, were used as a measure for the scale sets. 
Subsequently, all image file types were changed into 8-bit images, and by threshold adjustment, the image was 
checked against the PLA (cm2 ) from the background images (Supplementary Fig. S3). The coefficient of varia-
tion is defined as the ratio of the standard deviation to the  mean19:

where PCV is the coefficient of variation, s is the standard deviation, and x̄ is the mean. The cumulative coef-
ficient of variation was calculated by sequentially increasing the samples to calculate the standard deviation 
and the mean. In this experiment, CCV calculations were conducted on a time series CO2 dataset. Therefore, 
the baseline at the sequential increase in the sample numbers corresponded to the initial CO2 data sample, and 
subsequent data samples were cumulatively introduced for CCV calculation. Moreover, PLA was estimated on a 
daily basis to experimentally determine whether the CCV conversions yield results were associated with actual 
plant growth progression.

Plant material collection and use permission. Permissions were not required for plant material as it 
was purchased from certified dealer of local area.

Ethics approval and consent to participate. The study has been conducted without violating any ethi-
cal codes of conduct.

Results
Generation of weather variation. To determine various life history pathways consisting of heterogene-
ous climatic combinations of the simulated plant and CO2 of the surrounding air, a random walk process was 
applied to the cloud cover and the regression slope between solar irradiance and temperature. The three distinct 
cloud covers (clear, cloudy, and overcast) displayed stochastic behavior within the respective assigned weather 
levels (Fig. 2a). In contrast, full range cloud cover showed stochastic shifting between the three weather condi-
tions. The 30-day solar irradiance distribution projected on the time of day (24 h) illustrates the distinct solar 

(1)PCV =
s

x̄
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irradiance pattern between each weather condition during the simulation period (Fig. 2b). Global solar energy 
is largely, but not solely, responsible for air temperature  variations16. The random walk process in the regression 
slope, within the observed variation between the solar irradiance and air temperature in this study, generated a 
diurnal temperature cycle with reduced dependency on solar irradiance (Supplementary Fig. S2 and Fig. S2b) 
, while the random walk process in the cloud cover yielded three separate (clear, cloudy, and overcast) and one 
flexible (full range) stochastic climatic regime on the coupled model.

Coupled simulation of cloud cover with structural carbon accumulation and CO
2
 variabil-

ity. The life history patterns of a plant in the coupled model were consistent with the original study for the 
NICOLET  model14 and known trends of a lettuce  plant20. The structural carbon accumulation patterns of all 
simulated plants under the distinct climatic regimes, generated by cloud cover manipulation, illustrated initial 
exponential growth (Fig. 3a). Thereafter, the structural carbon accumulation trends under all three cloud cover 
ranges shifted to linear growth phases, as derived from canopy closure. Among the three cloud cover ranges, the 
clear cloud cover condition showed the highest carbon accumulation, followed by cloudy and overcast cloud 
covers.

CO2 fluctuations in the plant growth system clearly illustrated diurnal patterns resulting from photosynthetic 
influx and respiratory efflux (Fig. 3b). CO2 in the plant growth system started to oscillate from CO2 concentration 
of the growing system outside (409.8 µmol mol−117). All three climatic conditions exhibited distinctive changes 
in their amplitudes. A gradual but clear decrease in the daily lowest limits in the down-states of CO2 fluctuations 
was observed under the overcast cloud cover regime, which eventually leveled off after approximately 15 days. 
The other two cloud cover regimes displayed qualitatively identical results; however, they reached the plateau 
phase more rapidly. The daily maximum limits in the up-states of all cloud cover ranges also increased from the 
CO2 level of the growing system outside.

Filtering the simulated CO2 data using the minimum and maximum functions, highlighted the explicit trends 
of the down- and up-states (Fig. 3c). The daily maximum and minimum CO2 values revealed hyperbolic satura-
tion and decay curves, respectively. In addition, considerable differences were identified between the cloud cover 
ranges. Notably, the trends highlighted by the data refinement showed sharper details for the different climatic 
effects on CO2 variability. The daily maximum CO2 concentrations increased over time and were saturated at 
approximately 450 µmol mol−1 ; however, the number of days to reach the maximum plateau differed according 
to the climatic regime. Clear cloud cover accounted for the most rapid increase in daily maximum CO2 , followed 
by cloudy and overcast conditions. All daily minimum and maximum CO2 concentrations reached saturation 
after approximately 20 days. The daily minimum CO2 decreased in the following order according to the cloud 
cover conditions: clear > cloudy > overcast, and the most rapid decline was achieved in the clear climatic regime. 
The coupled model was able to simulate distinctive trails produced by dynamic carbon fluxes between the plant, 
air in the plant growth system, and the system outside. These characteristics suggest a basis for a non-invasive 
connection between plant dynamics and the environment using CO2 variability characterized using CCV.

Characterization of CO
2
 variability using the CCV. The raw dataset of the CO2 variations contains 

diurnal numerical fluctuations (Fig. 3b). Data filtration by daily maximum and minimum values significantly 
reduces numerical instabilities from the raw dataset, but remains dependent on the unit scale and provides 
unprocessed information diverged into two respective branches from the down- and up-states. This time-var-
ying periodicity can be further characterized by CCV conversion, as CCV examines the variation in the time-

Figure 2.  Climatic regimes for the coupled simulation analysis (a) representation of the random walk progress 
for four cloud cover classes and (b) superposition of generated curves for the solar irradiance and the air 
temperature patterns accounting for respective cloud cover classes during all simulation periods.
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series dataset from a baseline time point. The coefficient of variation normalizes the variation in a dataset, and 
therefore, the CCV conversion might suggest a comprehensive normalization of these respective traits.

We converted simulated CO2 data into the CCV and found a clear distinction between the different climatic 
regimes (Fig. 3d). In addition, the CCV on the time series displayed notable pathways accounting for plant 
developmental progress resulting from climatic differentiation. Under the clear climatic conditions, the CCV 
exhibited a sharp increase and rapid entry into the stationary phase. A simulated CCV under the cloudy condi-
tions indicated a similar but slightly lowered pattern. In contrast, the overcast condition left a long tail in the 
pathway to the final simulation day without displaying a specific stationary phase. These results concord with 
the life history events and characteristics captured by the structural carbon growth curve and daily maximum 
and minimum value filtration.

Thereafter, we compared the final structural carbon accumulation with the final CCV on the last day of simu-
lation under the full range climatic regime (Fig. 3e). Full range cloud cover manipulation allowed the coupled 
model to experience various climatic combinations during plant growth. This generated all the climatic condi-
tions across overcast, cloudy, and clear ranges (Fig. 2), and therefore, contrary to the limited climatic variation, 
the coupled model under the full range cloud cover was able to generate more outputs. The simulation under the 
full range cloud cover condition generated varying final structural carbon ranging from 1.2 to 1.8 mol (C) m −2 
(ground). The CCV also showed a wide distribution between 0.42 and 0.61. These results indicate that the CCV 
accounts for structural carbon accumulation even under varying combinations of solar irradiance and day- and 
night-time temperatures. The CCV conversion highlights how those traits underneath the ordinary carbon 
fluctuations in the plant growth system air could be exploited as indicators of plant dynamics.

Retrieving physiological and species-specific information from the CCV of CO
2
 variability. The 

CCV of diurnal CO2 variability was responsive to structural carbon accumulation. In addition, it is noteworthy 
that the CCV curve consisted of discriminating phases (Fig. 3d). This implies that it is not only characterized 
by responsiveness, but also by physiological parameters. Therefore, for further characterization, we primarily 
explored the consequences of the linear variation of cloud cover on the CCV curve geometry.

Increasing the cloud cover parameter identified the relationship between the CCV and cloud cover as a func-
tion of time (Fig. 4a). As shown in Fig. 3d, the CCV curves displayed an initial burst phase or a lag phase and 
then approached a plateau. The cloud cover parameter varied the slopes of the initial phase and the respective 
levels of the plateau. However, with a decrease in cloud cover, (reaching favorable conditions) the initial slope 

Figure 3.  Simulation results of the coupled model Results for structural carbon accumulation in the coupled 
model simulation (a) and corresponding CO2 oscillations in the plant growth system air (b). Data filtration 
of the CO2 oscillations by daily maximum and minimum functions exhibiting gradual deviation of the CO2 
variations from the atmospheric CO2 concentration (c), CCV progress curves from the three climatic regimes 
generated sigmoidal curves accounting for each climatic regime (d), and the correlation analysis showed a high 
positive correlation between CCV and structural carbon at day 30 of the full range climatic regime (e).
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and level of the CCV saturation point approached a limit. Overall, the CCV curves manifested Hill equation 
sigmoidal  behaviors21. The cross-section of the CCV in Fig. 4a on the last day of the simulation along the cloud 
cover demonstrated another hyperbolic relationship as a function of cloud cover depicting the maximum reach-
able CCV by a plant species (Fig. 4b). In addition, an identical or nearly identical match in the CCV evolution 
patterns with canopy structure development (by canopy closure function) was produced concurrently (Fig. 4c, 
d). This implies that the maximum CCV observed as a function of time (Fig. 4a) or cloud cover (environmental 
conditions) (Fig. 4b, e) is limited by the biophysical constraints of a plant.

Additionally, we analyzed the consequences of physiological parameter manipulation on the CCV progress 
curve as a function of cloud cover. We selected one of the physiological parameters in this coupled model, ε , 
which modulates the efficiency of photosynthetic carbon flux (Supplementary equation (12)) and may repre-
sent the intrinsic photosynthetic capacity of a plant  species22. Three parameters were applied in this analysis ( ε 
= 0.03, 0.02, and 0.01). The manipulation of ε yielded changes in the shape of the CCV curves as a function of 
cloud cover (Fig. 4e). Each level of the maximum reachable CCV on the last day of simulation, dropped in the 
following order: ε 0.03 > 0.02 > 0.01.

Therefore, it is theoretically predicted that the CCV of CO2 may generate a curve for plant-environment 
interactions over time. The CCV progress as a function of time displays sigmoidal behavior, and therefore, each 
CCV progress curve sequentially represents the exponential, linear, and asymptotic phases over time. Here, their 
respective asymptotic phases indicate a time point among the life history of a plant species, which is governed 
by biophysical constraints (Figs. 3d, 4a, c). Furthermore, when the applied environmental conditions satisfy the 
maximum growth capacity at every time point, the CCV is able to asymptotically reach the maximum limit after 
a certain time point (Fig. 4b, e). This suggests that CCV may provide information about the potential maximum 
growth capacity derived from the biophysical limit of an arbitrary plant species. We emphasize that the CCV 
displays responsiveness to environmental interaction; however, it may also exhibit traits that are numerically 
stable and convergent to plant-specific biophysical limits.

Experimental demonstration of the CCV application on CO
2
 variability. We experimentally dem-

onstrated the translation of plant-environment dynamic interactions by the CCV conversion of CO2 variability. 
Non-airtight growth chamber systems manipulated environmental conditions while simultaneously collecting 
CO2 variations, projected leaf area (PLA), and CCV under natural ventilation conditions (ventilation rate: 0.61 
h −1 ) (Supplementary Fig. S1). In addition, the final shoot fresh masses were compared. The results of our study 
reveal a close association between the simulated and measured CCV behaviors (Fig. 5).

We manipulated the water environment of pakchoi and the temperature environment of lettuce growing 
chambers. Differences in water supply regimes affected the progress of leaf development and led to a clear and 
significant variations of PLA progression in high (W2) and low (W1) irrigation frequency treatments (Fig. 5a). 
As determined by the PLA of W2, pakchoi under the W2 treatment exhibited a superior growth performance 
during the growing period, which generated gradually amplifying evolution patterns in CO2 oscillation (Fig. 5b). 
The CO2 changes in the W1 treatment also displayed a similar progression; however, the superposed CO2 

Figure 4.  Environment responsive and biophysical characteristics of the CCV curves (a) respective 
CCV progress curves generated by manually increasing the cloud cover value from 0 to 1 and (b) cross-
sectional graph for CCV versus cloud cover increase at day 30, which shows an asymptotic rise by favorable 
environmental conditions. Canopy closure progress curve (c), cross-sectional graph for the canopy closure 
versus cloud cover increase at day 30, which is exhibiting an asymptotic rise by favorable environmental 
conditions (d), and distinction between cross-sectional curves for CCV versus cloud cover increases at day 30 
according to the parameter manipulating photosynthetic efficiency ( ε ) (e).
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oscillations of the W1 and W2 treatments showed apparent differences in their amplitude variations. The normal-
ized distribution from CO2 variation in the W1 treatment was centered at approximately 475 µmol mol−1 with 
a slightly narrower distribution than that of the W2 treatment (Fig. 5b), whereas the normalized distribution of 
W2 treatment was centered approximately at 457 µmol mol−1 , a 4% decrease from the W1 treatment.

From these datasets, we found that varying the water environment affected the growth performance of pakchoi 
and subsequently yielded distinctive diurnal patterns in CO2 oscillations. The CCV conversion of CO2 changes 
integrated these respective traits as a progress curve over time, and the progress of the CCV curve by the W2 
treatment was significantly different from that of the W1 treatment, as was the case with the PLA development 
(Fig. 5c). Furthermore, the CCV curve from the pakchoi treatments indicated an initial lag phase, a linear phase 
after short exponential ascending, and a final transition into an asymptotic phase (only in W2 treatment). The 
average CCV from all W2 chambers remained, and satisfied the components of a typical sigmoidal pattern 
(R2 = 0.99). Throughout all treatments (including L1 and L2), only the W2 treatment, which was abundantly 
irrigated, exhibited discernible asymptotic behavior in the CCV progression. This progress pattern in the CCV 
curve concords with the sigmoidal behavior of the CCV curves under cloudy and overcast conditions observed 
in the simulation analysis (Fig. 4a). The relative slope of the five-day interval CCV outlined the curve transitions 

Figure 5.  Results of the demonstration experiment Projected leaf area (PLA) progress curves for each 
treatment (left panels) and representative PLA images segmentation (right panels) for respective growing 
days (a). The data on the final day were statistically compared (t-test). NS: not significant (P > 0.05); n = 3 per 
treatment. Plant-driven CO2 oscillations according to the treatment (b). CCV progress curves and relative 
slopes (upper panels) of the CCV curves (bottom panels) (c). The thin solid lines in the CCV curves indicate the 
mean of the measured CO2 data from three replicate chambers, shaded areas illustrate the standard deviations 
of the corresponding mean, and bold solid lines illustrate the sigmoidal fits to the mean curves (R2 = 0.988 
(W1), 0.998 (W2), 0.998 (L1), and 0.999 (L2)). Comparisons of shoot fresh masses of treatment means (t-test) 
(d). NS: not significant (P > 0.05); n = 15 per treatment. Normalized progress curves of the CCV and PLA (e). 
Normalization function: xnor = (x − xmin)/(xmax − xmin) , where x is xnor the normalized value and x is the 
CCV or PLA. xmin is the minimum value x of CCV or PLA, xmax is the maximum value of CCV or PLA at the 
same time point. Here, x corresponds to the lettuce chamber sample. Chambers exhibiting the median level 
CCV among all lettuce chambers were selected as the sample for x.
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observed in the W2 treatment (Fig. 5c). In addition, shoot fresh masses measured at the end of the demonstration 
experiment confirmed predominant growth in W2 chambers by a significant difference and shoot fresh mass of 
W1 decreased by 84% compared to that in W2 (Fig. 5d).

The prevailing growth in W2 and also poor growth against unfavorable environments by low irrigation fre-
quency were well depicted by the CCV progress curve (Fig. 5c). For W2, the CCV curve did not plateau during 
the demonstration experiment. The relative slope of the W2 CCV curve displayed a gradually increasing trend 
until the end of the experiment (Fig. 5c), suggesting that there could be more room to enhance growth capacity 
before reaching the full canopy closure, as was simulated in the overcast conditions (Fig. 4).

The datasets acquired from the lettuce growth chambers exhibited nearly identical behaviors to those observed 
in the pakchoi datasets; however, the different temperature environments in the lettuce chambers did not sig-
nificantly affect the PLA evolution and the consequent final shoot fresh masses (Fig. 5a, d). The diurnal CO2 
patterns of the L2 chambers were indiscernible from L1 patterns and exhibited a similar distribution (Fig. 5b). 
Furthermore, the relative slope of the CCV exhibited nearly identical behaviors (Fig. 5c). Consequently, the CCV 
curves acquired from the lettuce chambers were not significantly different from each other (Fig. 5c). Notably, 
the responsiveness of the CCV curve from a chamber indicates a CCV level comparable to the median value 
among all the CCVs from the lettuce chambers. The superposed progress of the normalized CCV and PLA curves 
fluctuated with elapsed time in an almost synchronized fashion (Fig. 5e). The normalization process allocates all 
ranges of samples into a normalized scale distribution between 0 and 1, which means that for the insignificant 
sample-to-sample variation, the different signs of progress between the growth capacity of each lettuce chamber 
were captured by subtle relative differences between the chamber CCVs.

In this demonstration experiment, we did not acquire the theoretically predicted maximum CCV curve 
pattern using our current environmental treatment. The theoretically predicted maximum CCV curve pattern 
of a plant species in our simulation displayed a minimized lag phase and progressed close to hyperbolic behav-
ior (Fig. 4a). However, all the CCV curves in this experiment exhibited a near-perfect fit to a sigmoidal curve 
( R2

> 0.98 ) (Fig. 5c), as predicted by the CCV behaviors in the simulation analysis. Furthermore, an extrapola-
tion of the estimated sigmoidal CCV curves of lettuce predicts their asymptote to a higher level (0.171 (L1) and 
0.187 (L2)) than that of the CCV of pakchoi (0.149 (W1) and 0.153 (W2)) (Supplementary Fig. S4).

Discussion
Carbon-mediated continuum. Our focus on the association of diurnal CO2 variations with the physi-
ological capacity of a plant was built on a carbon-mediated continuum of system outside-plant growth system-
plant. Some deviations of gaseous fluxes between the atmosphere and plant growth system allow the air sur-
rounding the plant to be differentiated from the atmospheric  air23. Previous studies on ambient CO2 variability 
have shown regional variations in CO2 concentrations. From these data, the authors were able to gain informa-
tion such as a signal for ecological  changes6, anthropogenic  activities24, and climatic  impacts25. We implemented 
the situation attainable from flux deviation in the carbon mediated atmospheric continuum where diffusion 
dominates the gas exchange mechanism between the system outside and the plant growth system. We exploited 
the length parameter of the diffusion equation to simulate an identical ventilation rate with the non-airtight 
growth chamber conditions (Supplementary Fig.  S2). Therefore, within the CO2 continuum of our coupled 
simulation, plant growth system air yielded distinct CO2 oscillations from system outside air with gradual evolu-
tion trends corresponding to the applied climatic regime (Fig. 3b, c).

Dynamic responses and biophysical constraints of CCV. Altogether, the simulation analysis led us to 
theoretically predict three crucial characteristics of the CCV curves, which were (1) the CCV curves respond to 
the variations in plant growth dynamics due to changes in the ascending slopes of the progress curves (Fig. 3e), 
(2) the asymptotic rise in the CCV progress curves indicates the maximum reachable biophysical capacity of a 
plant tailored to the imposed environments (Fig. 3d), and (3) the asymptotic rise in the CCV acquired by impos-
ing favorable climatic conditions predicts the maximum CCV progress curves of a plant species achievable 
by manipulating the environmental factors (Fig. 4a, b). As predicted in the CCV simulation, we observed the 
CCV curves displaying an asymptotic phase in the abundantly irrigated treatment of pakchoi (W2). The canopy 
closure function in the NICOLET model depicts the phenomenon that the light interception capacity for whole 
plant photosynthesis is limited by the canopy structure of a  plant14,26. A frequently applied indicator address-
ing the canopy closure concept is the leaf area index (LAI)27. LAI is an important biophysical variable, which is 
defined as the projected area of leaves per unit ground area. In theory, two distinct species-specific biophysical 
constraints can be diverged between the LAI and net primary production (NPP)  relationship28. One is the ceiling 
LAI type plants exhibiting leveled off behavior in respiration capacity advances beyond a certain LAI. Accord-
ingly, canopy net photosynthesis or NPP also exhibits only a leveled off phase beyond a certain LAI without 
 decline29. The other is optimum LAI type plants that display canopy net photosynthesis or NPP decline beyond a 
certain LAI because of the proportional increase of respiration to the LAI  increases29. The canopy closure func-
tion applied to the NICOLET model supports the ceiling type LAI through its concurrent impact on canopy 
photosynthesis and respiration (Supplementary equations (10), (11), and (13)). We show that the asymptotic 
behaviors of the CCV progress curves translate plant internal factors, such as the canopy closure effect and plant 
growth dynamics. These findings strongly suggest that the CCV progress curve is linked to the inherent LAI 
characteristics of a plant species to environmental interactions. Although the NICOLET model did not include 
a canopy closure function for the optimum LAI type plants, we expect that further extension of the model and 
corresponding experiment would address the progress patterns in the CCV curves. All of the CCV curves from 
the experiment showed the best fit with the sigmoidal curves (R2 = 0.99) (Fig. 5c). In addition, an extrapolation 
of the sigmoidal model predicted a distinction in the asymptote between the pakchoi and lettuce plants (Supple-
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mentary Fig. S4). The lettuce and pakchoi that we used have structurally distinctive three-dimensional canopy 
shapes and individual leaves. The combinatory effects of the environmental and biophysical interactions are 
challenging to study, and some studies have raised concerns regarding the contrasting results derived from the 
combination of individual leaf photosynthesis and canopy  structure30,31. This study did not progress the cultiva-
tion period until the actual asymptote. However, we note the potential of the predicted asymptote as another 
species-specific discriminator.

Here, we demonstrated how the CCV conversion of plant-driven ambient CO2 oscillations could be exploited 
for plant growth dynamics within the life-history scale. CCV curve illustrates the time series interaction between 
the environment and the biophysical constraints of a plant species. In the current study, we did not experimentally 
observe the asymptotic approaches for the maximum CCV curve reachable by the most favorable environmental 
conditions. However, there may be possibilities for finding convergent trends of a maximum CCV progress curve 
as a spatiotemporally ideal baseline for the growth of a plant species by further experimental trials to seek optimal 
environmental combinations. Furthermore, the demonstration experiment of the temperature treatment for the 
lettuce did not result in significant differences in the CCV curve, PLA, and final shoot fresh mass. We applied two 
different temperature ranges (L1: 14-21; L2: 21–25) to the lettuce chambers; however, under indoor cultivation 
conditions, these correspond to optimal or sub-optimal environmental conditions for the lettuce  growth32, and 
thus may not have acted as a sufficient constraint to draw a significant difference.

As an initial approach to exploit ambient CO2 variability, a limited experimental condition was applied, and 
we observed CCV patterns generation associating plant traits under this condition. Thus, under the extended 
condition where intermittent mass flow and air turbulence are actively involved in the gas exchange process 
between the atmosphere and a plant growth system may limit CCV translation. Additionally, we analyzed the 
impact of plant internal parameters based on the NICOLET model in this study. Thus, there may be partial 
limitations for mechanistically matching parametric behaviors of the model to the CCV behaviors which derived 
from the overall variations inside the plant. However, further refinement of units, scaling relationships, stand-
ardization, signal processing, and analysis relating the variation inside the plant may help develop robustness 
and applicability of the translation processes.

Recent plant growth systems accumulate various environmental data, and CO2 is one such representative 
environmental factor that is collected by these systems. However, most plant growth systems routinely generate 
CO2 sensing data for monitoring purposes. Consequently, our findings provide an entry point to utilize CO2 
sensing data monitored in growth systems, which may assist in enhancing the ability to interpret crop growth 
performance or cultivation experiment results.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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