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Temperature lapse rate estimation 
and snowmelt runoff simulation 
in a high‑altitude basin
Keke Zhao, Dingzhi Peng*, Yu Gu, Xiaoyu Luo, Bo Pang & Zhongfan Zhu

As a key parameter of hydrological process modeling, the near‑surface air temperature lapse rate 
reflects the vertical changes in air temperature characteristics in alpine basins but often lacks the 
support of sufficient ground observation data. This study estimated the lapse rate of the Lhasa River 
Basin (LRB) from the monthly air temperature dataset (2001–2015), which was derived based on good 
relationships between the observed air temperature at eight gauged stations and the corresponding 
gridded land surface temperature of MODIS. The estimated annual average air temperature lapse 
rate was approximately 0.62 °C/100 m. The monthly lapse rate in different years varied seasonally in 
the range of 0.45–0.8 °C/100 m; the maximum was in May, and the relatively low value occurred from 
September to January. The snow cover in the zones with relatively low altitudes showed seasonal 
variation, which was consistent with the air temperature variation. Permanent snow cover appeared in 
the area above 5000 m and expanded with increasing elevation.

The air temperature in the alpine basin changes rapidly with elevation, which could lead to most land surface 
processes presenting significant changes with elevation gradients. For example, vegetation showed sharp transi-
tions, and the land surface rapidly changed from vegetation or soil to snow or  ice1,2. The air temperature lapse 
rate is a quantitative indicator used to describe the declining trend of temperature with increasing elevation in 
alpine basins. The value range of 0.55–0.65 °C/100 m has been widely used for the lapse  rate3; however, the lapse 
rate changes with seasonal variation and dry and humidity  conditions4. Due to the sparse and low-elevation 
meteorological (MET) stations in mountain regions, the air temperature record from MET stations measured 
at 2 m above the ground always unable to meet the research needs of lapse rate in mountain regions. With the 
development of satellite technology, a large amount of high-resolution thermal infrared (TIR) data was used 
to produce atmosphere, land, and ocean products, the land surface temperature (LSTemp) is one of the land 
products which retrieved from the TIR  data5. The LSTemp measured by satellites are the land skin temperature 
including the uppermost parts of e.g. trees, buildings. The strong relationship between the air temperature 
and the LSTemp was often used as a common pattern to calibrate air  temperature6–9. From the view of satellite 
remote sensing, the land surface is the top layer of the interface between the lower boundary of the atmosphere 
and the solid earth. In the thermal infrared region, this top layer is a few millimeters thick. The TIR signature 
received by satellite sensors is determined by surface temperature, surface emissivity/reflectivity, atmospheric 
emission, absorption and scattering actions upon thermal radiation from the surface, and the solar radiation in 
 daytime10,11. In recent decades, many methods have been developed to derive  LSTemp5,12 from the combination 
thermal infrared (TIR) signal of sensors, including the mono-window  algorithm13, the split window  algorithm10, 
the day/night LST  algorithm11, the single channel  algorithm14 and so on. The Landsat ETM+, MODIS, ASTER 
and AVHRR, etc., could provide some high-resolution LSTemp  products15.

The surface temperature has a main influence on the hydrological cycle, particularly in the mountain cryo-
sphere, where the water supply is dominated by melting snow or  ice16–19. For glacier and snow melting runoff 
modeling, the lapse rate is the key parameter, which would have a direct impact on the simulated accuracy of 
hydrological processes in ungauged  basins20–22. The permanent snow and ice cover were likely to be strongly 
reduced or even eliminated with rising air  temperatures23. Long-term snow cover across the Tibetan Plateau was 
investigated, and a significant decreasing trend in the duration of snow cover was found to be consistent with 
climate  change24. By analyzing remote sensing snow cover products of the Tibetan Plateau, the snow-covered 
area shows a mean decrease over the entire plateau but presents completely different trends in low and high eleva-
tion  ranges25. The length of the snow-free season increased at lower-elevation sites, as opposed to decreasing at 
higher elevations in eastern  Tibet19. The Lhasa River (Fig. 1a) Basin (LRB), a subbasin in the Tibetan Plateau, is 
a typical alpine region with large vertical differences over relatively short horizontal distances (3481–7112 m). 
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More researches have focused on simulating hydrological  progress26,27, and the research field of the changing 
process of air temperature and snow cover with increasing elevation in the LRB has been less studied. Sparse 
and inhomogeneous gauge-based records bring great uncertainty for studying the spatiotemporal distribution 
and changing rules of the air temperature and bring much uncertainty to simulate the hydrological progress.

The purpose of this study is to address two topics. First, we estimated the air temperature lapse rate and 
analyzed the distribution features of air temperature in the LRB based on a reconstructed air temperature prod-
uct obtained from the global MODIS LSTemp product and collected gauge-based air temperature. Second, the 
spatial–temporal snow cover patterns across the LRB are quantified by using remote sensing data. Furthermore, 
the rationality and accuracy of the air temperature reconstructions are verified by the variation features of snow 
cover and a snowmelt runoff model (SRM)28 simulated with the main variables of air temperature, precipitation, 
snow cover and temperature lapse rate.

Results and discussion
Relationship between air temperature and LSTemp. The MOD11C3 LST product (https:// doi. org/ 
10. 5067/ MODIS/ MOD11 C3. 061) is derived by reprojection, composite, average and aggregate of two MODIS 
LST products at 0.05◦ grids. These two component products are retrieved from the data in MODIS TIR bands by 
using the day/night LST algorithm and the generalized split-window, respectively.

The large area above 4700 m of the LRB (approximately 70% area) lacks the air temperature record of the 
ground station, there are three meteorological stations within the basin and five stations around the basin 
(Table 1 and Fig. 1a). Figure 2 show good linear relationship of air temperature with the corresponding gridded 
LSTemp. The time series of these two kinds of temperature all change with season, highest in summer (around 

Figure 1.  The elevation zones and stations in the LRB. The basin was divided into seven elevation zones at 
500 m intervals (Details in Table 1). Based on the 30 m DEM, the elevation-area curve of the LRB was plotted in 
(b), and the mean elevation of each elevation zone is marked on the curve. Eight MET stations were also marked 
on the curve according to their elevation. In (a) was generated with ArcGIS 10.6 (https:// www. esri. com/ en- us/ 
home).

Table 1.  Detail information of the elevation zones and MET stations in the LRB.

No Station (Abbreviation) Elevation/m Elevation zone Elevation range/m Area ratio/%

1 Zedang (ZD) 3552

Zone 1 3481–4000 5.94
2 Lhasa (LS) 3649

3 Mozhugongka (MZGK) 3804

4 Nimu (NM) 3809

5 Dangxiong (DX) 4200
Zone 2 4000–4500 14.46

6 Jiali (JL) 4489

7 Naqu (NQ) 4507
Zone 3 4500–5000 32.37

8 Bange (BG) 4700

– – – Zone 4 5000–5500 41.12

– – – Zone 5 5500–6000 5.74

– – – Zone 6 6000–6500 0.35

– – – Zone 7 6500–7112 0.02

https://doi.org/10.5067/MODIS/MOD11C3.061
https://doi.org/10.5067/MODIS/MOD11C3.061
https://www.esri.com/en-us/home
https://www.esri.com/en-us/home
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June to August, warm season) and lowest in winter (around November to February of the next year, cold season). 
LSTemp is generally higher than air temperature in the whole year of 2001–2015 (Fig. 2). The difference value 
plots of Fig. 3 show that a small amount of the negative values appears in June to September for ZD, DX and JL, 
and the rest are all positive. Overall, the difference values of ZD, DX and JL were relatively low, and the largest 
values were all less than 20 °C. For LS, MZGK, NM, NQ and BG, the smallest difference values were all above 
0 °C, and the largest values were all above 20 °C. Combined with the linear equation between air temperature 
(y) and LSTemp (x), all linear coefficients except JL are less than 1 (approximately 0.7 and 0.8), and all intercept 
values are negative. Taking full advantage of limited records of MET stations appears to confirm that the LSTemp 
of MOD11C3 is higher than the corresponding air temperature, and the difference between the two is obviously 
increased in the cold season than in the warm season.

Relevant research reveals that the relationship between LSTemp and observed air temperature at 2 m above 
the ground is characterized with respect to land cover and  elevation7. With increasing solar radiation and air 
temperature, the specific heat capacity of snow and the freezing point are reached, after which the snow begins to 
melt rapidly. Snow surfaces have the highest albedos in nature and the surface albedo is very sensitive to changes 
in snow cover  area29. The snow albedo effect directly impacts the shortwave radiation absorbed at the surface 
and subsequently alters turbulent fluxes, resulting in changes in surface air temperatures via diabatic heating/
cooling29,30, therefore, there is no doubt that the feedback of snow on air temperature in land-surface-atmosphere 
interaction system changes with the variation of snow cover area in different  seasons31. That is also an explanation 
for why the difference between the air temperature and the LSTemp varies with season.

Estimation of gridded air temperature. Based on the analysis of a good linear relationship between 
station air temperature and gridded LSTemp, an inverse distance weighted (IDW) method was used to interpo-
late local linear equation parameters (coefficient, intercept and residual) globally. Then, the three interpolation 
datasets of coefficient, intercept and residual were combined with MOD11C3 as the input data to calculate the 
air temperature in the 0.05◦ grid. We display the spatial distribution comparison of monthly average tempera-
ture (2001–2015) of LSTemp and air temperature in a raster map (Fig. 4). It is clear that the numerical regional 
characteristics of the two maps are all consistent with the spatial distribution of elevation zones in Fig. 1a; the 
monthly average range of MOD11C3 and air temperature are from 4 to 27 °C and from − 11 to 13 °C, respec-
tively, and MOD11C3 is significantly higher than the estimated air temperature at the same row and column 
position. Further statistical results show that the monthly average temperatures of the two maps for the whole 
basin are 11.8 °C and 2.2 °C.

Figure 2.  Comparison of air temperature of eight MET stations with corresponding gridded LSTemp of 
MOD11C3 from 2001 to 2015. Taking air temperature as y and LSTemp as x, the linear equation for each 
combination was fitted and marked as text in the subgraph.
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Analysis of temperature lapse rate. The temperature lapse rate is the gradient value of the trend line 
between temperature and elevation. The trend line of observed air temperature is fitted by the monthly average 
temperature and the elevations of eight MET stations. For two gridded datasets, the construction of trend lines 
was based on the zonal average temperature and zonal average elevation of 7 elevation zones (Fig. 1a). The results 
in Fig. 5a show that temperature decreases with elevation in a good linear relationship because all fitting degrees 
 (R2) are extremely close to 1, but there are numerical differences for the three temperature lapse rates obtained 
from different data sources. The observed air temperature decreases by 0.93 °C with elevation increases of 100 m 
in the elevation range of 3552–4700 m. For the estimated gridded air temperature and the LSTemp distributed 
in the whole basin, the global lapse rates are 0.62 °C/100 m and 0.85 °C/100 m, respectively. That is, not only is 
the LSTemp higher than the near-surface temperature, but the lapse rate of the land surface is also larger than 
that of the near-surface. We may conclude that the gap between LSTemp and near-surface temperature reduces 
gradually with increasing elevation. The observed air temperature lapse rate of 0.93 °C/100 m lacks representa-

Figure 3.  Boxplots of the D-value between LSTemp and air temperature. All eight diagrams had the same X- 
and y-axis scales and each boxplot were marked with 15 different values of 2001–2015.

Figure 4.  Distribution maps of monthly average temperature between 2001 and 2015 with 0.05° resolution.
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tion because it is calculated from the local scattered point temperature records, and there are five MET stations 
we used that are located outside the basin. However, the high  R2 (0.97) of the trend line reflects that a good fitting 
relationship can still be obtained between elevation and air temperature when other factors are ignored. It also 
reflects from the side that elevation is a key factor for temperature changes.

Based on the dataset of estimated air temperature, the global temperature lapse rates of all months from 
2001 to 2015 are calculated and compared with the format of the boxplot (Fig. 5b). The lapse rate values are 
distributed in the range of 0.45–0.8 °C/100 m, and the median and mean for different month boxplots vary to 
some degree. Overall, the maximum appears around May, and the relatively low values are concentrated from 
September to January. Combined with the features of seasonal temperature change, it is concluded that the rise 
in air temperature is accompanied by a rise in the lapse rate and vice versa.

Variations in snow cover. Regardless of time or space, temperature is the decisive factor for the distribu-
tion of snow cover. In view of the linear relationship between temperature and elevation, here, high-precision 
DEM data with a 30-m resolution are used to analyze the snow cover. Figure 6 shows the difference in snow cover 
days in the whole basin. Below the elevation of 5000 m (zones 1, 2 and 3), the snow cover days ratio concentrates 
in the range of 0–5%, and with increasing elevation, the days ratio can reach 10–35%. Further with elevations 
above 5000 m up to 7112 m (zones 4, 5, 6 and 7), the ratio also gradually increases to 99%. Statistics show that the 
ratio in the range of 0–5% accounts for 41% of the LRB, followed by the range of 10–30%, 5–10% and 30–50%, 

Figure 5.  Relationship between elevation and different temperature datasets and variation of air temperature 
lapse rate in different months. In (b), the boxplot of each month is composed of 15 temperature lapse rates from 
2001 to 2015, which were obtained by constructing the trend line between the zonal average temperature and 
zonal average elevation of 7 elevation zones.

Figure 6.  Snow cover days ratio (%). The daily MODIS cloud-free snow cover product over the Tibetan Plateau 
(2002–2015) with 0.005°  resolution32 was used to analyze the distribution characteristics of snow cover. The left 
figure showed the ratio of the proportion of days covered by snow to the total days from 2003 to 2014. To obtain 
intuitive changes in snow cover days with elevation, the gridded result is divided into two maps according to 
the boundary elevation of 5000 m. The right scatter point is about the snow cover days ratio and elevation of all 
grids at a 0.005° resolution. The left figure was generated with ArcGIS 10.6 (https:// www. esri. com/ en- us/ home).

https://www.esri.com/en-us/home
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accounting for 33%, 14% and 10% of the total area, respectively. The remaining 2% of the area (snow cover days 
ratio > 50%) contains a part of elevation zones 4, 5 and 6 and the whole area of zone 7, where more than half of 
the time there is snow coverage.

It is obviously shown in Fig. 7 that the higher the elevation zone, the larger the snow cover rate. For elevation 
zones 1 and 2, there are no large ups and downs for the decline curves, and the values of the whole year are almost 
0; new snow in the cold season melts in a short time. The high oscillation frequency of the daily decline curves 
presents the sensitivity of snow cover to temperature change. In the elevation area above 4500 m, a large propor-
tion of snow melted from June to September, and the snow cover increased from October to May. Similar to the 
largest zone of elevation 4, the snow cover rate could reach approximately 90% in the cold season and then drop 
to almost 0% but never equal 0% in the warm season for each year. Combined with the observation that a snow 
cover days ratio above 50% begins to appear in elevation zone 4, it is reasonable to conclude that permanent snow 
cover begins to appear in this zone, and as the elevation continues to rise, the area of permanent snow gradually 
expands in elevation zones 5, 6, and 7. As shown in Fig. 5a, the zonal average monthly air temperature starts to 
less than 0 °C from zone 4 and reaches a lower value with a linear decline trend of 0.62 °C/100 m, which can well 
explain the existence and expansion of permanent snow and the high snow cover rate for the zones above 5000 m.

Simulation of snowmelt runoff. Although SRM is a simple conceptual and degree-day model, it is widely 
used to simulate the snowmelt runoff in numerous mountain basins of the  world33. And the simulation periods 
of SRM can be a week, a snowmelt season, a year, or a sequence of years. According to the Formula (7), the SRM 
was constructed in LRB based on seven elevation zones that were delineated in intervals of approximately 500 m 
(Fig. 1a), and calculated with three main input variables: (1) the daily air temperature of average hypsometric 
elevation in each zone, which was extrapolated by the daily reference record of the LS MET station and the 
monthly lapse rate in Fig. 5b, (2) the decline curves of snow cover in seven zones, (3) and the daily average pre-
cipitation of each zone, which was extracted from the GPM IMERG Final Run product (download the product 
via: https:// gpm. nasa. gov/ data/ direc tory). The daily observed streamflow of the LS hydrological station (Fig. 1a) 
was used as the reference streamflow, and the Nash–Sutcliffe efficiency (NSE) was adopted as the evaluation 
index of the SRM. The simulation results in Fig. 8 show that the input data we produced can well simulate the 
process of streamflow in both the calibration years of 2009 (NSE = 0.9) and 2010 (NSE = 0.83), and the validation 
years of 2011, 2012 and 2013 (NSE are 0.87, 0.85 and 0.79, respectively).

However, it is obvious in Fig. 8 that there is a large gap between the observed sharp peaks that occurred in 
approximately August 2010, 2011 and 2013 and the corresponding relatively low simulated streamflow, although 
the NSE values are high for 2010 and 2011. In such cases, SRM designers  explain33 that sharp peaks are typical for 
heavy rainfall runoff, which is often concentrated in a short time interval, as opposed to the relatively regular daily 
fluctuations for snowmelt runoff. Adjustment of the rainfall threshold and parameter of recession coefficients 
x and y for sharp runoff peaks from occasional heavy rainfalls are necessary, but the final results of 2010, 2011 
and 2013 reveal that the effort for raising the simulated streamflow peaks is weak. Actually, frequent occurred 
rain-on-snow events in high-elevation areas was proved to be responsible for flood  generation34,35, and 21% and 
70% of the peak flows were associated with rain-on-snow event in parts of  Bavaria36 and  Austria37, respectively. 
The SRM without considering the runoff contribution of rain-on-snow events may underestimate the peak flow.

Figure 7.  Decline curves of elevation zones. Taking each elevation zone as a unit, the decline curves are made 
of the daily ratio that snow cover area accounts for the elevation zone area. In (a) shows an example of the snow 
cover area ratio variation on a daily scale between January 1, 2007, and December 31, 2008. By ignoring the ratio 
of the last day of the intercalary month between January 1, 2003, and December 31, 2014, the average decline 
curve is computed based on the decline curves of 12 different years for each elevation zone, as shown in (b).

https://gpm.nasa.gov/data/directory
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Conclusion
In alpine basins with large elevation differences, the average air temperature decreases with a linear trend from 
low altitude to high altitude. This study reconstructed the high space resolution air temperature by analyzing 
the relationship between gauge-based air temperature and MODIS LSTemp and estimated the monthly air tem-
perature lapse rate of the LRB. Combined with the variation in snow cover in time and space, which is directly 
affected by air temperature changes, the precision of the air temperature reconstructions was verified. In view 
of the calculation of SRM heavily relying on the inputs and parameters of air temperature, the depletion curves 
of snow cover and the lapse rate, the well simulation results of the SRM model further confirm the pattern we 
concluded, and detailed achievements are as follows:

1. MODIS LSTemp is basically larger than gauge-based air temperature, and the difference presents significant 
seasonal variations. The smallest occurs in summer (around July to Sep), and the largest occurs in spring and 
autumn (around Apr and Oct). The good correlation relationship of the two temperatures provides a basis 
for reconstructing air temperature.

2. The annual average air temperature lapse rate is 0.62 ◦C/100m , which is less than the LSTemp of 
0.85 ◦C/100m . The air temperature lapse rate varies in the range of 0.45–0.8 ◦C/100m for different months. 
The largest lapse rate occurred in approximately May, and the relatively low values were concentrated from 
September to January.

3. Spatiotemporal variations in snow coverage measured by remote sensing are related to the reconstructed 
air temperature. The annual average air temperature starts to less than 0◦C in the area above an elevation of 
approximately 5000 m and continues to decrease with increasing elevation. Permanent snow coverage also 
appears and expands with subzero air temperatures. For the area below 5000 m, snow cover displays seasonal 
variation with the features of accumulation in the cold season and almost all melting in the warm season.

4. The daily air temperature of each elevation zone calculated by our estimated monthly lapse rate and the 
decline curves of each zone used as the main input variables can simulate well-fitted streamflow by using 
the SRM model.

Methods
Construction of air temperature. To explore the relationship between gauge-based air temperature and 
corresponding gridded MODIS LSTemp, the statistical regression method was the first choice to describe the 
possible relation. Assuming that the MODIS LSTemp is y′, the observed air temperature is y. The structure of the 
linear regression model is as follows:

where β1 is the linear regression coefficient; β0 is the intercept; εα is the residual error; and α refers to the mete-
orological station.

The inverse distance weight (IDW) interpolation  method38,39 is adopted to calculate global parameters. An 
important assumption of IDW is that the surface stations have great effects on local interpolation points, and the 
degree of influence on interpolation points decreases with increasing distance. The value of an interpolation point 
would be affected by the nearest N surface stations, and there is an inverse proportional relationship between 
the degree of influence and distance; surface stations close to the interpolation point have a large weight. The 
mathematical expression of the inverse distance weight method is as follows:

(1)yα = β1y
′
α + β0 + εα

(2)Ẑ0 =

n
∑

i=0

(Zi ,Qi)

Figure 8.  Results of SRM. In the calibration (2009–2010), parameters including the degree day factor 
( α = 0.13 cm ◦C−1 day−1 ), critical temperature (0 °C), runoff coefficient for snow ( CS = 0.3 ) and runoff 
coefficient of rain ( CR = 0.5 ) were determined, and NSE reached 0.9 and 0.83, respectively. These four 
parameters were used in the validation (2011–2013), and NSE were 0.87, 0.85 and 0.79, respectively.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13638  | https://doi.org/10.1038/s41598-022-18047-5

www.nature.com/scientificreports/

 where Ẑ0 is the estimated value at the point of interpolation (x0, y0); Zi is the value at the point of observation 
(xi, yi); Qi is the weight coefficient between interpolation point (x0, y0) and observation point (xi, yi); f

(

dj
)

 is 
the weight function of distance dj ; when b = 1, the method is inverse distance reciprocal interpolation; when 
b = 2, the method is inverse distance reciprocal square interpolation; and n is the number of observation points 
involved in the calculation.

As a global interpolation algorithm, all discrete observation points participate in the estimation of each value 
of the interpolation point. It combines the advantages of the natural neighborhood method of the Thiessen 
polygon and the multiple regression gradient method, considers the distance factor, allocates the weight for the 
discrete observation points according to the distance, and when anisotropy occurs, the weight of the direction is 
also considered. With increasing distance between the observation point and the interpolation point, the weight 
shows a decreasing trend of power function. However, the traditional IDW method is particularly sensitive to 
the selection of the weight function. There are subtle differences in the weight function, which will cause large 
fluctuations in the generated results, and it is easily affected by the observation point dataset. When some data 
at observation points are significantly higher or lower than the average level, there will be an isolated distribution 
mode and a large deviation in local interpolation.

Snow cover rate and snow cover days ratio. When the temperature is lower than the critical tem-
perature (TCRIT ) , the precipitation event will be treated as new snow, and the snow cover depth and area can be 
expected to increase; this is the so-called snow accumulation period. In contrast, when the temperature is higher 
than TCRIT , snowpack starts to melt, and melting accelerates with increasing temperature, which is the so-called 
snowmelt period. In high alpine basins, changing characteristics of snow cover area and days can reflect the 
temperature variation. This paper adopted the depletion curves of the snow coverage and snow cover days ratio 
to present the seasonal variations and vertical distribution of snow cover. Based on the 0.005° × 0.005° resolution 
product of MODIS daily cloud-free snow cover, the depletion curves of the snow coverage in seven elevation 
zones of the LRB are composed and drawn by the daily snow cover rate:

Counting days covered with snow of each grid in 2002–2015, the formula for the ratio of days covered by 
snow is as follows:

Snowmelt runoff model. The  SRM28 is designed for mountain regions with large elevation difference to 
compute the streamflow, which is composed of snowmelt and rainfall of different elevation zones. The degree-
day method in SRM is reliable for computing total snowmelt depths for periods of a week to the entire snowmelt 
season. Daily average air temperature, daily average precipitation and daily snow cover rate of each elevation zone 
are basic input variables, the degree-day factor 

(

α, cm ◦C−1 day−1
)

 , the temperature lapse rate (γ , ◦C/100 m) , 
the critical temperature (TCRIT ,

◦ C) , the runoff coefficient to snowmelt (CS) , the runoff coefficient to rain (CR) , 
the recession coefficient x and y are the necessary parameters. Here, the key parameter degree-day factor α indi-
cates the snowmelt depth caused by 1 °C increasing in one day (1 degree-day)28. In the defined LRB with seven 
elevation zones, construction of SRM is shown as formula (7). The simulated streamflow on day n+ 1 is formed 
from the contribution of snowmelt, precipitation and the discharge on day n , and the contribution proportion 
is determined from the recession coefficient kn+1 which is adjusted with constant x and y in the calibration 
(Formula (8)).

(3)Qi =
f
(

dj
)

∑n
j=1 f

(

dj
)

(4)f
(

dj
)

=
1

dbj

(5)snow cover rate =
snow cover area

total area of elevation zone
× 100%

(6)snow cover days ratio =
Days of snow cover

total number of days
× 100%
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where T is the number of degree-days 
(

◦C day
)

 which determined from the difference value between air tem-
perature and an adopted reference temperature (melting point of snow); �T is the adjustment value by the 
temperature lapse rate 

(

◦C day
)

 ; S1 , S2,…, S7 are the snow cover rate of each elevation zone (% ) , respectively; 
P1 , P2,…, P7 are the average precipitation of each elevation zone (cm) , respectively; A1 , A2,…, A7 are the area of 
each elevation zone (km2) , respectively.

Snow as the fundamental source of solid water, its area shows the linear relationship with the amount of melt-
water supply for mountain regions. The larger the snow cover area, the more snow meltwater in the simulation 
of SRM. In the melting period, the snowmelt depth of each zone (calculated by the degree-day factor α and the 
zonal degree-days Tn +�Tn ) (cm/day) is transformed to snowmelt volume (cm  km2/day) by multiply the snow 
cover area, and further transformed to standard unit of streamflow (m3/s) by multiply the 10,000/86,400. In the 
accumulation period, air temperature together with TCRIT determine whether the precipitation immediately 
contributes to streamflow (rain) or snowfall take place.

Previous study showed that the sensitivity of SRM parameters ranked as follows: α > γ > CS > CR > TCRIT , 
and successfully simulated the snowmelt runoff process of 2002 and 2003 in  LRB26.

Data availability
MOD11C3 LST, MODIS daily cloud-free snow cover in the Tibetan Plateau (2002–2015) and GPM IMERG 
were downloaded from https:// doi. org/ 10. 5067/ MODIS/ MOD11 C3. 061, http:// www. tpdc. ac. cn/ and https:// 
gpm. nasa. gov/ data/ direc tory, respectively. The air temperature in the meteorological stations was downloaded 
from http:// data. cma. cn. The estimated air temperature dataset, the data of snow cover days ratio with elevation, 
and the observed air temperature of four meteorological stations with corresponding MOD11C3 LST could be 
obtained from the supplementary files.
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