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In order to effectively solve the problems of redundant medical material allocation, unbalanced 
material allocation, high distribution cost and lack of symmetry caused by unreasonable prediction 
in the case of sudden epidemic disasters, the prospect theory is introduced to establish a two-stage 
robust allocation model of medical materials, and the HQDRO based on the two-stage decision model 
is proposed. Aiming at minimizing the emergency response time and the total number of allocated 
materials, and taking the dynamic change of medical material demand in the epidemic sealed control 
area as the constraint condition, a two-stage robust planning model of medical materials based on 
scenario is established to realize the symmetrical allocation of medical materials under the sudden 
epidemic situation. Then, the perception model based on demand prediction, symmetry optimization, 
targeted distribution and psychological expectation of medical materials are constructed. Through 
the comparative analysis with the fitness of three commonly used algorithms in this field, the 
effectiveness of the robust configuration model and HQDRO proposed in this paper is verified.

Different kinds of serious natural disasters have occurred in many countries around the world in recent years, 
such as the Wenchuan earthquake in China, Hurricane Katrina in the United States, the snowstorm in southern 
China and, in particular, the outbreak of the New Crown Pneumonia epidemic in December 2019, which has 
caused great harm and losses to public health, life safety and economic and social development worldwide. 
During the outbreak of the epidemic, there was an explosive increase in the demand for medical supplies from 
countries around the world, while there was a shortage of medical supplies, ineffective connection between supply 
and demand information, and improper allocation of medical supplies, which reflected the existence of certain 
shortcomings in China’s and the world’s medical emergency supplies security system. The basis for good medi-
cal material security is an accurate forecast of material needs. However, the source of infection, the pathogenic 
mechanism of transmission, the duration, the risk of mutation, and the intensity of infection of the new pneumo-
nia epidemic are all unpredictable, which poses great difficulties in predicting the demand for medical supplies 
and is also a problem that restricts the dispatch of medical supplies. In order to effectively solve the problems of 
difficult demand forecasting, low allocation efficiency, and high logistics and transportation costs for medical 
supplies, a two-stage robust allocation model for medical supplies is proposed by introducing foreground theory, 
while a hybrid quantum dandelion multiplication algorithm for solving the model is proposed in stage 2. Finally, 
the effectiveness of the proposed model and algorithm is verified through arithmetic examples. The overall struc-
ture of the paper is as follows: In Section “Current status of research”, the related works are introduced and the 
different methods are compared. In Section “Optimization model of medical supplies allocation”, a model of the 
medical supplies allocation problem under demand uncertainty is developed, describing the objective function of 
the problem as well as the constraints. In Section “Distribution disturbance management algorithm”, a two-stage 
robust configuration model for medical supplies is proposed by introducing robust control level parameters, as 
well as a Hybrid Quantum Dandelion Reproduction Optimization Algorithm (HQDRO). In Section “Example 
simulation”, the simulation examples are tested and comparatively analyzed to verify the effectiveness of the model 
and algorithms. In Section “Conclusion”, an improved rescheduling strategy is concluded.
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Current status of research
The key to the rational distribution of medical supplies by emergency management is to resolve the contradic-
tion between the scarce supply of medical supplies and the excessive demand in the areas where the epidemic is 
being controlled. Relevant scholars at home and abroad have conducted exploratory studies on the allocation of 
medical supplies in epidemic areas from different perspectives, and have made progress in stages. Some schol-
ars have developed a decision optimization model for emergency supplies allocation for public health events 
such as infectious diseases, using an infectious disease dynamics model to predict the demand for emergency 
supplies1,2. For example, Du et al. proposed the need for a government-led diversified medical supplies supply 
model by examining medical supplies security in Wuhan in response to the New Crown Pneumonia epidemic, 
and also proposed research frontiers in medical supplies demand to forecast and matching supply and demand 
for donated supplies3. Ge and Liu constructed a scenario for the evolution of major infectious disease epidemics 
in seven dimensions, including period, key events, spatial distribution and medical supplies, and proposed five 
key emergency supplies allocation decision problems. A multi-cycle Bayesian sequential decision model was 
constructed, and the validity of the model was verified by combining the Wuhan epidemic with an arithmetic 
analysis4. Fridell et al.5 examined the relationship between the accessibility of medical and health supplies and 
mortality, suggesting that effective deployment of medical supplies would reduce the impact of disaster shocks, 
but further evidence is needed. Barasa et al.6 studied the experiences of the health sector and other sectors 
through a literature review and summarized the factors influencing resilience in resilient organizations, including 
physical materials, preparation and planning, information management, subsidiary pathways and redundancy. 
Blanchet et al.7 developed a new framework for resilient governance of health systems, encompassing the ability 
to collect and analyze different information and knowledge, anticipate and respond to future uncertainty, man-
age interdependencies between environments, and develop systems and rules that conform to norms. Berardi 
et al.8 concluded through their research that diversification of the healthcare system, adequate infrastructure, 
and integrated emergency response have increased the resilience of the Lebanese healthcare system to cope with 
Syrian refugees. Qiu et al.9 used data from the Health Management System (HMIS) in the context of the Ebola 
crisis to analyze the number of indirect deaths due to lack of access to antenatal care services in Sierra Leone to 
assess the health system resilience. In recent years, some other scholars have predicted the number of medical 
supplies demanded from studies that consider the evolution of epidemics, with research methods including 
simulation models10, infectious disease dynamics models such as SIR models11, SIRD models12, IHRD models13, 
SEIR models, etc.14. The demand for medical supplies is mainly influenced by the evolution of the epidemic, while 
the supply of medical supplies also affects the evolution of the epidemic, and there is a coupling between them.

In summary, infectious disease dynamics model forecasting has been applied in the field of emergency medi-
cal supplies allocation management, but most of the relevant studies are based on macro aspects of the role of 
health system resilience governance strategies in the process of medical supplies allocation, while fewer studies 
are using medical supplies robust allocation model technology and analysis methods throughout the entire 
process of medical supplies allocation, and there is a lack of specific medical supplies allocation model research 
based on demand forecasting real-time information updates. Traditional research methods lack the technology to 
update material demand information in real-time, which leads to a mismatch between actual material supply and 
demand, inadequate targeting capabilities for allocation decisions, and insufficient medical material allocation 
capabilities. Therefore, there is an urgent need to combine robust techniques to study the deployment of supplies 
in an epidemic situation to improve the accuracy of the deployment of medical relief supplies in an epidemic.

Optimization model of medical supplies allocation
Problem description.  Factors affecting the allocation of emergency medical relief materials include the 
number of emergency distribution centers and relief points, the number of emergency medical relief materi-
als, distribution conditions and supply and demand situation, and the primary goal of allocation is to meet the 
needs of different relief materials in the shortest possible time. In this paper, multiple decision-making objectives 
such as multiple distribution centers, multiple rescue points, time cost, economic cost and equity are considered 
comprehensively under the condition of adequate emergency medical supplies. The problem is described as fol-
lows: after the outbreak of the epidemic, distribution points of emergency medical relief supplies of appropriate 
scale and quantity should be set up around the affected area, and medical supplies should be transferred from 
the distribution points to temporary pharmacy intravenous admixture services (PIVAS). Then appropriate dis-
tribution methods are selected to supply relief materials from PIVAS to different relief points. Assuming that 
each path of the road network has at least one PIVAS and p PIVAS exist in the epidemic area, the PIVAS set L 
can be expressed as L = {Li|i = 1, 2, . . . , p} . The reserve amount of emergency medical relief materials of each 
PIVAS is c1,c2,…cp; There are k epidemic sites R1,R2,…,Rk, the demand for emergency medical relief supplies at 
each epidemic point is d1,d2,…,dk, and 

∑p
m=1 cm ≥

∑k
n=1 dn . There is a corresponding relationship between 

potential epidemic points and PIVAS of medical supplies, and there are qi potential epidemic points for each Li. 
In the case of sufficient supply of emergency medical rescue materials, the decision objective of the allocation 
optimization model is to meet the demand of emergency medical aid materials of each rescue point within the 
specified distribution time, and to reasonably plan the distribution route, so as to minimize the total supply time 
of emergency medical aid materials. Make the following assumptions:

(1)	 PIVAS can deliver supplies to relief points multiple times, and different relief supplies can be mixed.
(2)	 The vehicles for delivering emergency medical relief materials start from the starting point and return to 

the starting point after completing their tasks.
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(3)	 The “demand segmentation” strategy is adopted for the massive demand rescue points, and the combination 
of “full load direct delivery” and “itinerant distribution” is adopted, according to the principle of full load 
direct delivery priority.

(4)	 The speed of the distribution vehicle is randomly and dynamically variable.

Symbol definition.  Ci : Decision variable, indicating the material owned by PIVAS Li.
S
j
i : Supplies needed for outbreak site Rj

i.

s
j
i : Distribution of medical supplies by PIVAS Li to point Rj

i in its area of service.

s
j
i−h : Distribution of medical supplies by PIVAS Li to nearby outbreak sites Rj

h outside its service area.

r
j
h : The urgency of the material needs of potential outbreak site Rj

h , r ∈ [0, 1][0, 1].

g
j
h : Whether Lh distributes medical supplies to Rj

i during the second phase, i.e.

u
j
h : The number of outbreaks at epidemic points Rj

h during the statistical period.
S
j
h : Average demand for medical supplies at epidemic points Rj

h during the statistical period.
α,β adjustment ratio coefficient, the initial value is 0.5.
oj(0) : In the first phase, the quantity of supplies delivered to point j.
sj(t) : In the second phase, the quantity of supplementary supplies delivered to epidemic point j at time t.
sij(t) : Material delivered by PIVAS i to epidemic point j at time t.

s
′

i(t) : Materiel PIVAS i can provide at moment t.
Tij : Travel time of material PIVAS i to epidemic point j.

Model building.  A two-stage decision model can be established for medical allocation. In the first stage, the 
decision time and the optimal allocation of medical supplies are determined according to the characteristics of 
epidemic infection rate, so as to reduce the distribution cost as much as possible. In order to minimize the total 
allocation of medical supplies within the road network, an optimization model of medical supplies allocation 
is established. The second stage is to determine PIVAS and material quantity based on the optimal allocation 
of medical supplies, aiming at the shortest emergency delivery time. The two-stage model can be expressed as:

First stage model.  Objective function

Equation (1) is the objective function, indicating that the total amount of medical supplies in the road network 
in the epidemic area is the least. Equations (2)–(4) represent constraint conditions, where Eq. (2) represents the 
quantity of medical supplies received at each epidemic point to meet the overall demand; Eq. (3) ensures that 
each medical supplies PIVAS has supplies that meet the needs of other potential epidemic sites; Eq. (4) ensures 
that each PIVAS of medical supplies can meet the demand of supplies in case of other outbreaks within the dis-
tribution range after providing the demand of supplies near epidemic points outside the distribution range in 

g
j
h =

{

1, delivery

0, no delivery

(1)minZ =

m
∑

i=1

Ci

(2)s.t. s
j
i +

m
∑

h=1,h�=1

g
j
hs

j
h−i ≥ S

j
i(i = 1, 2, . . . ,m; j = 1, 2, . . . , ni)

(3)
ni
∑

j=1

s
j
i + r

j
hs

j
i−h ≤ Ci

(4)g
j
hs

j
h−i +

nh
∑

j=1

s
j
h ≤ Ch

(5)
m
∑

h=1,h�=i

g
j
h = 1(i = 1, 2, . . . ,m; j = 1, 2, . . . , ni)

(6)g
j
h = 0, 1(i = 1, 2, . . . ,m; j = 1, 2, . . . , nh)
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proportion. Equations (5) and (6) represent the parameter constraints of Eq. (1) and the premise of the model 
that only two medical supplies distributed by PIVAS can meet the rescue needs of the accident.

When an epidemic occurs, the urgency of the demand for medical supplies at potential epidemic sites depends 
on the frequency of the epidemic and the evaluation demand for medical supplies. The study quantified it as 
follows:

It is assumed that there are nh potential epidemic points in Lh of PIVAS, Fj(j = 1, 2, . . . , nh) represents epi-
demic frequency coefficient, Dj(j = 1, 2, . . . , nh) represents epidemic material demand coefficient, then

Second stage model.  In the second stage, the shortest emergency delivery time is taken as the goal. Assuming 
that n epidemic cases occur, the epidemic place is denoted by j, then the epidemic point collection is denoted by 
R = {Rj|j = 1, 2, . . . , n} . After the outbreak of the epidemic, rapid response time is the key to ensure the dispatch 
of emergency medical supplies, so the second phase aims to minimize the outbreak response time.

Equation (10) represents the objective function of minimizing emergency response time, and Eq. (11) rep-
resents the number of supplies PIVAS i provided to each epidemic point j at time t should not be higher than 
the total number of supplies.

Analysis of psychological expectation perception of epidemic patients.  Patients’ psychological 
expectation of medical supplies is related to PIVAS, patients’ psychological status and the time Tf of the actual 
arrival of medical supplies. When patients eagerly look forward to a batch of medical supplies, their expectation 
decision weight function can be expressed as:

m, n represent the objective probability value of negative effects and the objective probability value of positive 
effects, and τ i(m) represents the probability decision weight function of probability m; τ i(n) represents the prob-
ability decision weight function of probability n, that is, τ i(0) = 0, τ i(1) = 1.

Patient’s expectation judgment of medical supplies distribution is shown in Eq. (13) :

In Eq. (13), υ i represents the value function, υ i(x) and υ i(y) represent the patient’s subjective value relative 
to the reference point (patient’s psychological expected time). If the patient’s psychological expected time T0 is 
taken as the reference point and the prospect theory is combined15, when Tf < T0, that is, the actual arrival time 
of medical supplies is less than the patient’s psychological expected time, the patient’s psychological expected 
aversion degree is very small (denoting 0). When the value of Tf approaches T0, the patient’s psychological expec-
tation aversion increases continuously; when Tf > T0, the patient’s psychological expectation aversion increases 
significantly16. Therefore, when PIVAS delivery time is taken as the abscissa and patients’ psychological expecta-
tion perception degree is taken as the ordinate, the psychological expectation perception curve of patients for 
PIVAS arrival time can be deduced according to the value curve of prospect theory17, as shown in Fig. 1.

When Tf = T0, expected aversion is expressed as D0. According to the above value function model 
of prospect theory, the psychological expectation perception function model of patients can be set as 
Di(T) = −Vi(−x + T0)+ Di

0 , namely, the psychological expectation perception function model of medical 
supplies delivery arrival time considering different disturbance target i is:

(7)r
j
h = αFj + βDj

(8)
Fj =

α
j
h

nh
∑

j=1
u
j
h

(9)
Dj =

S
j
h

nh
∑

j=1
S
j
h

(10)

minZ = {[

n
∑

j=1

(oj(0)+

N
∑

t=1

sj(t))−

N
∑

t=0

n
∑

j=1

m
∑

i=1

sij(t)] + [

n
∑

j=1

(sj(t)−

m
∑

i=1

sij(t))]+

N
∑

t=0

n
∑

j=1

m
∑

i=1

(t + Tij)}

(11)s.t.

n
∑

j=1

sij(t) ≤ s
′

i(t − 1)−

n
∑

i=1

sij(t − 1)t(i = 1, 2, ...,m; t = 0, 1, 2, ...,N)

(12)τ i(m(Tf )) > τ i(m) > 0, τ i(n) > τ i(n(Tf )) > 0

(13)Vi(Tf ) = τ i(m(Tf )) · υ
i(x)+ τ i(n(Tf )) · υ

i(y) < τ i(m) · υ i(x)+ τ i(n) · υ i(y) = Vi
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Distribution disturbance management algorithm
Hybrid quantum dandelion reproduction optimization algorithm.  HQDRO is a heuristic algo-
rithm based on the floating propagation of dandelions, it does not easily get stuck at a local optimum. It has 
the strong robustness, however, the floating of the algorithm takes a fixed step size, it may take time to hover 
around the optimal location for searching and cause loss of highly adapted dandelion individuals18. Considering 
that quantum computing has exponential storage capacity, parallelism, and exponential acceleration. And the 
entanglement, overlap, and interference of quantum states may help to reduce the complexity of some large-scale 
problems19. So, this article proposed the HQDRO. The state and location of individual dandelions are indeter-
minate in quantum space, and these individuals are determined by the wave function ψ(Y , t).The probability 
density function for individual locations is expressed as |ψ |2 , establishing the attraction on the dimension of 
each attractor based on the δ potential well model. The potential energy function can be expressed as follows:

Y = xid − Pd is the distance between the individual position of the dandelion and its attractor.
The steps of HQDRO are described below:

Step 1:	 Initialize the number of dandelion individuals as bn, the filter times as Ned, the number of reproductions 
as Nre, the chemotactic times as Nc, the falling times as Ns and the probability of filtering as Ped.

Step 2:	 The vector xi of dandelion individual i is randomly generated in the solution space.
Step 3:	 Solve the fitness function of all dandelion individuals.
Step 4:	 Quantum location is updated. The parameter is the transfer period l=1:Ned; the reproductive cycle 

bc=1:Nre; the falling cycle dc=1: Nc.
Step 5:	 Falling operation, adjust orientation with random vector � ∈ Rn , each vector of � is a random number 

in the interval [− 1,1]. Update the dandelion individual position xid by formula (14) 20, the rest of the variables 
remain unchanged.

S(i ,dc) Indicates the forward falling step size, η(i) indicates the direction after the change.

Step 6:	 Filter operation. Calculate the fitness of xi(dc + 1, bc , l) . If it is better than xi(dc , bc , l) , replace it and 
filter it according to the wind direction until the fitness value is stable.

Di =

{

−(T0 − Tf )
αi + Di

0, Tf ≤ T0,

�
i(Tf − T0)

β i
+ Di

0, Tf > T0.

V(Y) = −γ δ(Y)

(14)xid = Pd ±
L

2
ln(1/u), u ∼ U(0, 1)

(15)xid(dc + 1, bc , l) = xid(dc , bc , l)+ S(i, dc)η(i)

(16)η(i) =
�(i)

√

�T (i)�(i)

psychological expectation perception D

D0

the start moment of the disturbance event  T0 time reference point
T

Figure 1.   The psychological expectation perception curve chart16.
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Step 7:	 Quantum irrigation operation. Sort them according to the fitness of all dandelion individuals and 
irrigate the individuals (b, Ped) with higher suitability.

Step 8:	 Determine if the operation is done.

Convergence comparison of algorithms.  To verify the performance of the HQDRO proposed in this 
paper. A classical Solomon example21 is selected to execute one standard question for 20times from each of the 
six types of questions in Matlab9.0 by using HQDRO. The results are compared with DOA20, QBFO22 and TSG23 
that are widely used in this field to verify the feasibility and efficiency of the proposed methods. The performance 
of the four algorithms is compared by using the standard test function Rastrigrin24 as the fitness function, as 
shown in Formula (17):

Set the number of individual dandelions to 20 and the maximum number of iterations to 100. It shows the 
convergence curve of the approximate optimal solution for the test function operation using four algorithms in 
Fig. 2. From Fig. 2, this paper presents that the convergence speed and fitness value of HQDRO algorithm are 
significantly higher than other algorithms, and it has better global optimization ability.

Example simulation
In order to verify the effectiveness of HQDRO method based on prospect theory, the experimental data set in 
this section are as follows: A COVID-19 Department has been isolated from the epidemic area as a control area. 
The new crown pneumonia epidemic prevention and control headquarters has established 46 Epidemic relief 
point (ERP) in the region. The abscissa and ordinate of each rescue point are randomly generated within [0,60], 
(unit: km). Specific data are shown in Table 1. The materials needed for epidemic prevention and control are 
urgently gathered from regional foreign exchange to PIVAS, set coordinates to (30,30). These materials need to 
be delivered to each ERP as soon as possible; The quantity of materials allocated for each rescue point is gener-
ated according to the demand weight in the interval [200,600].

DRO based results.  Selection and division of transit point (TP) based on DRO.  This paper implements the 
DRO algorithm in 4.1 based on MATLAB R2018a. The relevant parameters of the algorithm are set as follows: 
DRO fuzzy weighting coefficient w = 1.5, iterative algorithm termination threshold = 1 × 10–5, and the maximum 
number of iterations is set to 100. After 38 iterations, the algorithm reaches the termination condition, and the 
final DRO objective function value is 6975.58. The results of TP selection and ERP division are shown in Fig. 3 
(the box represents PIVAS, five circles represent the selected TP, and the other five different shapes represent 
ERP).

Table 2 lists the specific location of TP selected and the ERP cluster responsible for distribution at each 
transfer point. The vehicle residual capacity (VRC) of each transfer point Distribution area (DA) can be obtained 
by combining the material allocation of each ERP in Table 1. In Table 2, NCi represents the adjusted medical 
assistance point DA, nCi represents the number of assistance points, Msj represents the material allocation of 
assistance point j, and Crs represents VRC. As can be seen from Table 2, there is more residual capacity in DA1 
to DA4. Although the DRO method minimizes the total distance between the emergency transfer point and the 
medical assistance point, because the DRO method only considers the distance criterion and lacks the vehicle 
capacity constraint for each DA, it is easy to lead to the imbalance of VRC in the transfer point.

(17)f (y) =

20
∑

i=1

[y2i − 10 cos 2πyi + 10]

yi ∈ [−100, 100].

Figure 2.   The fitness convergence curve of 4 algorithms.
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Table 1.   ERP coordinates and distribution of medical materials.

ERP Abscissa Ordinate Allocation ERP Abscissa Ordinate Allocation

1 37.8 34.8 493 24 13.8 54.2 332

2 1 25.8 362 25 29.8 42.4 529

3 56.2 54.6 303 26 5.4 10.2 314

4 31.2 13.8 523 27 45.6 39 441

5 32.8 40.8 211 28 11.8 12.4 468

6 41.8 39.6 507 29 56.2 39.4 517

7 19.2 8.2 501 30 14.2 54.8 347

8 24.6 32.2 481 31 58.2 4.6 494

9 25.6 8.2 314 32 33 11.8 524

10 16.6 22 413 33 51 43.6 254

11 9.6 53 458 34 34 35.8 570

12 18.6 8.4 512 35 55 3.6 348

13 11.8 42 368 36 19.8 27 501

14 15.6 14.2 585 37 37.2 10.2 524

15 26.4 22.2 465 38 58 53.8 441

16 39 32.4 590 39 10.8 22.2 293

17 33.4 42 351 40 46.8 56.8 271

18 58 25 281 41 2.8 15 461

19 46.6 8.8 555 42 3.4 34 516

20 2.4 39 417 43 29.4 14.4 595

21 16 40 206 44 37 34.6 443

22 31.2 46 323 45 0.4 19 309

23 37.2 33.6 407 46 19.2 55.2 293

Figure 3.   TP selection and division based on DRO.

Table 2.   Selection and division of TP based on DRO.

DA Abscissa Ordinate NCi nCi Msj Crs

P1 52.13 12.46 {1,7,12,18,22,27,36,37,40} 9 242 12.23

P2 6.33 10.15 {4,8,9,11,19,20,25,30,32,39,45} 11 239 16.52

P3 48.02 30.19 {2,5,10,13,15,17,26,28,31,33,41,44,46} 13 347 11.16

P4 25.08 30.16 {3,14,16,23,24,29,35,42} 8 221 14.84

P5 11.08 49.25 {6,21,34,38,43} 5 114 4.56
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DRO based distribution route results.  After the TP location is selected, the subsequent problem is to plan the 
transportation route from the transfer point to ERP and design the optimization model of transportation route. 
It is assumed that the vehicle capacity is 20 m3 and the vehicle running speed is 80 km / h. The route structure is 
shown in Fig. 4 and Table 3: The total delivery time is 633.82 min, the number of medical assistance vehicles is 
12, the total VRC is 59.31 m3, the average waiting time is 52.82 min, and the maximum waiting time is 72.53 min.

From the above results, it can be seen that the DRO method can obtain the TP division location and the cor-
responding material transportation route, but due to the lack of constraints on VRC in the division, the division 
is unreasonable. For example, the route marked by the thick line in Fig. 4 has large vehicle capacity idle, and the 
remaining capacity is 12.32 and 12.11 respectively. Other lines also have different degrees of remaining capacity.

Results based on HQDRO.  Selection and division based on HQDROTP.  Considering the limitations of 
DRO method, this section continues to run Matlab R2018a to realize the HQDRO algorithm in 4.1. The final 
HQDRO adjustment results are shown in Fig. 5 and Table 4. By comparing Tables 2 and 4, it can be found that 
the adjustment of the division of epidemic relief points by HQDRO reduces the VRC in each division.

Transportation route based on HQDRO.  The same parameters as those set in 4.1: the vehicle capacity is 20 m3 
and the vehicle running speed is 80 km/h. The calculation results are shown in Fig. 6 and Table 5: the total 
delivery time is 511.77 min, the number of epidemic relief vehicles is 11, and the total VRC is 39.84 m3, which 
is nearly 20 m3 less than the DRO method (the capacity of one vehicle); The average waiting time was 46.52 min 
and the maximum waiting time was 67.23 min.

Comparative analysis.  In order to verify the effectiveness of the proposed HQDRO, the researcher com-
pared the results of the proposed method with those obtained using the DRO method20 in terms of Number of 
vehicle (NV), Total VRC (TV), Maximum Single VRC (MSV), Average waiting time (AT) and Maximum wait-
ing time (MT) respectively, as shown in Table 6.

From the comparison results in Table 6, it can be seen that for this paper 46 ERPs are proposed for the dis-
tribution transit requirements:

Figure 4.   Distribution route selected by TP based on DRO.

Table 3.   Distribution route of transfer point based on DRO.

DA Distribution route VRC (m3)

Total waiting time of materials
Maximum waiting time of 
materials

PIVAS  →  TP TP  →  ERP PIVAS  →  TP TP  →  ERP

P1

0  →  37  →  1  →  0 1.06 32.93 48.75 32.93 48.71

0  →  22  →  36  →  40  →  0 3.86 32.53 112.35 32.53 72.53

0  →  12 → 18 → 7 → 27 → 0 7.31 32.93 90.11 32.93 56.53

P2

0 → 4 → 19 → 32 → 9 → 0 12.32 25.92 176.15 25.92 59.58

0 → 11 → 30 → 25 → 20 → 8 → 0 3.56 25.92 140.98 25.92 44.01

0 → 39 → 45 → 0 0.45 25.92 43.97 25.92 38.01

P3

0 → 15 → 10 → 26 → 2 → 31 → 0 8.32 37.36 119.12 37.36 62.16

0 → 33 → 17 → 13 → 41 → 44 → 0 0.99 37.36 83.77 37.36 52.43

0 → 46 → 5 → 28 → 0 1.85 37.36 103.05 37.36 41.64

P4
0 → 29 → 35 → 3 → 0 12.11 36.32 59.8 36.32 39.32

0 → 14 → 23 → 24 → 16 → 42 → 0 2.73 36.32 113.16 36.32 55.15

P5 0 → 38 → 21 → 34 → 43 → 6 → 0 4.56 39.29 123.42 39.29 63.75
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Figure 5.   Division of configuration transfer points based on HQDRO.

Table 4.   Division of configuration transfer points based on HQDRO.

DA Abscissa Ordinate NCi nCi Msj Crs

P1 52.13 12.46 {1,7,12,18,22,27,36} 7 209 12.42

P2 6.33 10.15 {4,8,9,11,19,20,25,30,32,39} 10 224 10.17

P3 48.02 30.19 {2,5,10,13,15,17,26,28,31,33,37,40,41} 13 349 7.34

P4 25.08 30.16 {3,14,16,23,24,29,35,44,45} 9 232 8.41

P5 11.08 49.25 {6,21,34,38,42,43,46} 7 153 1.50

Table 5.   Transit point distribution route based on HQDRO.

DA Distribution route VRC (m3)

Total waiting time of 
materials

Maximum waiting time of 
materials

PIVAS → TP TP → ERP PIVAS → TP TP → ERP

P1
0 → 1 → 36 → 12 → 0 6.36 29.87 45.69 29.83 43.41

0 → 18 → 22 → 27 → 7 → 0 6.06 29.47 109.29 29.43 67.23

P2

0 → 4 → 19 → 32 → 9 → 0 2.59 29.87 87.05 29.83 51.23

0 → 11 → 30 → 25 → 20 → 0 3.07 22.86 173.09 22.82 54.28

0 → 8 → 39 → 0 4.51 22.86 137.92 22.82 38.71

P3

0 → 15 → 10 → 26 → 2 → 31 → 0 2.38 22.86 40.91 22.82 32.71

0 → 33 → 17 → 13 → 41 → 0 1.14 34.3 116.06 34.26 56.86

0 → 37 → 40 → 5 → 28 → 0 3.82 34.3 80.71 34.26 47.13

P4
0 → 29 → 35 → 3 → 45 → 0 6.17 34.3 99.99 34.26 36.34

0 → 14 → 23 → 44 → 24 → 16 → 0 2.24 33.26 56.74 33.22 34.02

P5 0 → 38 → 21 → 34 → 42 → 6 → 43 → 46 → 0 1.50 33.26 110.1 33.22 49.85

Figure 6.   Transit point distribution route based on HQDRO.
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(1)	 From the NV point of view, the HQDRO method uses 11 delivery vehicles while minimizing undelivered 
time as much as possible, whereas the DRO method runs results in 12 vehicles.

(2)	 From the TV point of view, the HQDRO distribution process vehicle residual capacity is 32.83% lower than 
the vehicle residual capacity of the DRO method.

(3)	 From the MSV point of view, the maximum remaining capacity of a single vehicle with HQDRO is 6.36m3, 
which is more than 40% more than the maximum remaining capacity of a single vehicle with DRO of 
12.32m3; the combined TV and MSV show the advantage of this method in terms of fully utilizing vehicle 
capacity.

(4)	 From the AT and MT point of view, the time savings with HQDRO versus DRO are 11.93% and 7.31% 
respectively, making this method superior to the DRO method.

In summary, the proposed HQDRO minimizes the number of vehicles dispatched as well as the space and 
time costs of distribution compared to the general DRO method. Therefore, the results obtained by this method 
are more practical.

Conclusion
Aiming at the problems of improper allocation of medical supplies between medical supplies and epidemic 
relief points, low allocation efficiency, and a high vacancy rate of distribution vehicles that may occur in sud-
den epidemic disasters, a two-stage robust allocation model for medical supplies and an HQDRO algorithm 
based on the two-stage decision model are proposed by introducing prospect theory. After comparing with 
three commonly used algorithms in this field, it is verified that the convergence speed and fitness value of the 
proposed HQDRO algorithm are significantly higher than those of other algorithms, and it has a better global 
optimization finding ability. This paper was run with 46 ERPs in a region closed to control due to an epidemic, 
and the following main conclusions were drawn from the results. (1) The general DRO algorithm results in a 
division that minimizes the total distance between the configured transit point and the medical aid point, but 
the lack of constraints on the capacity of the vehicles in each division results in a large residual capacity (vacancy 
rate); (2) The adjustment of the medical aid point divisions by HQDRO makes the VRC in each division smaller 
and enables a reduction in the total delivery time and average waiting time, effectively reducing the number 
of delivery vehicles. Based on the results of this paper, the next step in the research is to accurately predict the 
number of medical supplies needed at the aid points based on the epidemic scenario and how to overcome the 
unevenness in the number of aid points.

Data availability
The datasets generated during the current study are not publicly available due reason for confidentiality but are 
available from the corresponding author on reasonable request.
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