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Shear characteristics and shear 
strength model of rock mass 
structural planes
Shan Dong1,2*, Yulin Peng1,2, Zhichun Lu1,2, Heng Zhang1,2, Weihua Hou1,2 & Aijun Su1,2

Accurately determining the shear strength of structural planes is crucial for evaluating the stability of 
rock masses. The shear test using the sawtooth structural plane usually captures the main influencing 
factors of its shear characteristics. In this study, the two-dimensional particle flow code (PFC2D) 
numerical simulation method was used to conduct shear tests on the sawtooth structural planes of 
rock masses with undulant angles of 10°, 20°, and 30°, respectively. With the increase in normal stress 
and the undulant angle, the shear failure of the structural planes was found to no longer be pure slip 
failure or shear failure but accompanied by a compression-induced fracture phenomenon. Based on 
the analysis of the shear test results, a peak shear strength model considering different undulant 
angles and normal stresses was proposed, and the hyperbolic function post-peak shear strength model 
was improved. The peak shear strength obtained from the physical direct shear tests was compared 
with those calculated using the proposed model, Parton model, and Shen model. The calculation 
error under low and high normal stress of the proposed method was found to be within an acceptable 
range. Additionally, when calculating the peak shear strength of a structural plane under high normal 
stress, applying the calculation method proposed in this study is a better option than applying the 
other models. Furthermore, although the variation trend of the post-peak shear strength was similar 
to that of the experimental results, the values obtained using the hyperbolic variation model were 
too large. The variation trend of the post-peak shear strength obtained using the improved function 
was essentially consistent with the experimental results, and the calculated values were close to the 
experimental results. The systematic research on the shear strength calculation model of rock mass 
structural planes contributes to the theoretical research of rock mass mechanics, and this study can 
act as a guide for landslide prediction and control projects.

Rough and undulating rock mass structural planes widely develop along rocky slopes. Structural planes reduce 
the integrity of a rock mass and improve the physical and mechanical properties of the rock mass anisotropy, 
discontinuity, and heterogeneity, which control the mechanical properties of the rock  mass1–7. Furthermore, the 
shear mechanical properties of these structural planes substantially influence the stability of these  slopes8–10. For 
example, the Jiweishan and Qianjiangping landslides were caused by the further weakening of the mechanical 
properties along the weak interlayer structural planes at the bottom of a sliding body that eventually developed 
into a sliding  surface11–18. Therefore, the shear strength of rock mass structural planes is one of the most impor-
tant indices in the evaluation of the stability of rock masses. Additionally, the shear characteristics and a shear 
strength model of rock mass structural planes are crucial for theoretical research and engineering practices.

The shear characteristics and empirical models of the shear strength along rock mass structural planes have 
attracted extensive attention, and ample research has been conducted on the topic.  Patton19 used a direct shear 
test and discovered that the peak shear strength of a structural plane is related to the normal stress, and proposed 
the popular Patton linear formula. However, the peak shear strength envelopes for non-planar rock joints are 
nonlinear. There are some differences between the Patton linear relationship and the actual rough joint surface 
shearing situation. Ladanyi and  Archambault20 established a peak shear strength model for rock mass structural 
planes containing a rock bridge by combining the effects of friction, dilatancy, cohesion, and rock bridge strength 
considering the shear sliding mechanism of natural rock mass structural planes. But the method proposed by 
Ladanyi and  Archambault20 is more accurate when only the undulant angle is considered. Based on the study 
by Ladanyi and  Archambault20 and using numerical simulations, Huang et al.21 established an empirical shear 
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strength formula that considers the slip and shear effects of serrated rock mass structural planes. By analysing 
the relationships between structural plane roughness, normal stress, and the dilatancy angle, the Barton-Bandis 
(B-B) shear strength model was  proposed22,23. Based on the Barton-Bandis (B-B) shear strength model, many 
improved models for shear strength estimation of structural planes with parameters including roughness and 
fluctuation characteristics have been put forward in recent  years24–26. Shen and  Zhang27 amended the shear 
strength model using dilatancy and shearing effects by introducing a correction factor for the internal friction 
angle and the comprehensive cohesion of rock mass structural planes. Ueng et al.28 and Vallier et al.29 further 
verified the substantial change in the ratio of the shear strength to the normal stress of the structural planes owing 
to an increase in the normal stress. Although substantial research has been conducted on the shear character-
istics of structural surfaces, which has contributed to defining the shear mechanical properties and parameter 
values of rock mass structure planes, studies on the most essential mechanical index, namely the shear strength 
of structural surfaces, are limited.

The interference from manual excavation and seismic load may not cause a rock mass to suddenly destabilise 
owing to displacement and deformation, but instead, the rock mas may gradually stabilise. Additionally, the 
post-peak shear strength of the structural plane controls the stability of the rock  mass30–34. Additionally, several 
studies have been conducted on the post-peak shear strength of rock mass structural planes. For instance, Saeb 
and  Amadei35,36 established a shear stress–strain model for the shear process by graphically and analytically 
investigating the shear stress–strain curve of a structural plane under normal stress. These authors were the first 
to propose a linear attenuation model of the post-peak shear strength.  Simon37 used a simple exponential func-
tion model to describe the entire shear stress–displacement process and proposed a complete stress–displace-
ment surface model to describe the nonlinear shear stress–displacement relationship. Lee et al.38 reported that 
the decrease in the experimental curve of the shear stress from the peak to the residual shear was similar to a 
hyperbolic variation. Grasselli and  Egger39 adopted a hyperbolic variation to propose a model for post-peak shear 
strength. Indraratna et al.40 introduced the dilation rate ( ̇v ) into the shear stress–shear displacement model of 
the structural plane, thereby obtaining a dynamic shear stress–displacement model of the plane under constant 
normal stiffness conditions. However, the existing post-peak shear strength calculation model cannot accurately 
reflect the nonlinear variation trend of post-peak shear stress–shear displacement. Therefore, the calculation 
accuracy of this model needs to be improved.

Previous studies have mainly examined the shear strength of structural planes based on experimental and 
theoretical estimations. In experimental estimations, the shear strength law curve and related mechanical mecha-
nism were investigated based on numerous direct shear tests on structural planes. Finally, the test results were 
fitted to the shear strength test estimation formula. In contrast, in theoretical estimations, the shear strength 
along the structural plane was theoretically analysed, after which a theoretical model was proposed. Finally, the 
theoretical model was verified and revised using related tests. Experimental methods mainly included physical 
direct shear tests and numerical simulations. The physical direct shear test can only obtain the mechanical prop-
erties of the structural plane through macro analysis, and observing the micro-failure phenomenon along the 
structural plane during the shear process is difficult. However, the numerical calculation method can overcome 
many difficulties related to the physical direct shear test, and the meso-failure characteristics of the shear pro-
cess can be directly  observed41–45. The particle flow code (PFC) method proposed by  Cundall46 can simulate the 
adhesion and friction between rock mineral particles in a mesoscale, thereby avoiding the reliance on empirical 
parameters to obtain the macroscopic composition of the model. At present, PFC is applied widely for simulating 
the mechanical properties of  rocks47–52.

In this study, based on the two-dimensional PFC (PFC2D) calculation program, a numerical direct shear test 
was performed on rock mass structural planes by considering different undulant angles and normal stresses. The 
failure characteristics of the structural plane were analysed. Further, the evolution characteristics of the shear 
stress with the change in the shear displacement were analysed in-depth to improve the peak and post-peak shear 
strength models for rock mass structural planes. The systematic research on the shear strength calculation model 
of rock mass structural planes enriches the basic theoretical research of rock mass mechanics. Simultaneously, 
this study can act as a guide for landslide prediction and control projects.

Parameter calibration
Because the meso-level parameters involved in PFC2D possess internal randomness and a complicated relation-
ship with macro-mechanical properties, the calibration of these parameters is crucial for ensuring the accuracy 
of the test. To ensure the highest level of consistency between the numerical test results with the results of the 
physical test, the parameters should be calibrated using the macroscopic physical test results before conducting 
the numerically simulated direct shear test on the structural plane. In the macroscopic physical test, the trial-
and-error method is used to repeatedly modify the meso-parameters until the results of the numerical simulation 
and the test results are within the error range. When the macro-mechanical properties are consistent with the 
physical test results, the calibration parameters are considered to be  optimised53–56.

Physical shear test. An intact Jurassic red-bed sandstone rock sample (with dimensions of 
100 mm × 100 mm × 100 mm) and a red-bed sandstone rock sample with a flat structural plane (dimensions of 
the upper and lower parts were 100 mm × 100 mm × 50 mm each) were used for the physical direct shear tests. 
The portable rock mechanical performance multifunctional test device that was independently developed by 
the Chengdu University of Technology, was used to perform the physical direct shear tests. Additionally, this 
test device mainly comprises normal loading, horizontal loading, shearing, and measuring systems (Fig. 1). The 
shear tests were conducted under the normal stress values of 1, 2, and 3 MPa. During the shearing process, the 
normal load remained unchanged and the shear load was applied step by step. Simultaneously, the shear and 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13637  | https://doi.org/10.1038/s41598-022-17998-z

www.nature.com/scientificreports/

normal displacement under each level of shear load were measured and recorded. Figures 3 and 4 show the 
shear stress–shear displacement curves obtained using the physical direct shear tests performed on the intact 
sandstone rock sample and the rock sample with a flat structural plane.

Parameter calibration. To construct the PFC rock sample, uniformly distributed particles with diameters 
ranging from 0.15 to 0.3 mm were generated in the wall box, the size of which was identical to that of the actual 
sample (100 mm × 100 mm), by setting an initial porosity of 0.15. Subsequently, the particles were re-balanced 
under an isotropic compressive stress of 100 kPa, and the PFC built-in contact model of the linear parallel bond 
model was used to bond the particles in contact. A parallel bond imparts the mechanical behaviour of a finite-
sized piece of cement-like material deposited between the two contacting particles, and the granular material 
becomes rock-like after  bonding53. Additionally, a joint was added to the bonded assembly by applying the PFC 
built-in contact model of the smooth-joint model to selected contacts. The smooth-joint model was used to 
simulate the mechanical behaviour of a rock  joint53. The PFC intact rock sample and the PFC rock sample with 
a flat joint are shown in Figs. 2 and 3.

The shear rate ( Vs ) in the simulation was proportional to the length of the specimen and was calculated using 
the following equation:

Figure 1.  Portable rock mechanical property multifunctional test  device57. 1: bottom frame baffle; 2: lower 
shear box; 3: upper shear box; 4: horizontal jack loading; 5: vertical frame baffle; 6: force transmission device; 7: 
vertical jack loading; 8: top frame baffle; 9: skateboards; 10: ball bearings; 11: magnetic stand; 12: dial gauge.

Figure 2.  PFC intact rock sample and the PFC rock sample with a flat structural plane.
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where L is the sample length. The calculated Vs was approximately 0.7 mm/min.
During the shearing process, the data, including shear stress and normal displacement, were recorded for 

every 0.5% shear strain, and the test was terminated when the shear displacement was 3.5 mm with reference to 
the physical direct shear test results. Using trial and error, the PFC parameters were adjusted repeatedly until the 
shear stress–displacement curve obtained from the simulation fitted well with that obtained from the physical 
direct shear test (Figs. 3 and 4). Tables 1, 2 and 3 list the calibration parameters.

(1)Vs =
5000× 0.5%× L

60

Figure 3.  Comparison of the shear stress–displacement curves obtained from the physical direct shear tests and 
simulations on the sandstone sample without a structural plane.

Figure 4.  Shear stress–displacement curves obtained from the simulations of the flat structural plane in the 
sandstone sample.

Table 1.  Microscopic parameters of the test particles used in the numerical simulations.

Lithology
Minimum particle radius 
(mm)

Maximum particle 
radius (mm) Particle density (g/cm3)

Particle contact modulus 
(GPa)

Normal and tangential 
stiffness ratio of particles

Particle friction 
coefficient

Sandstone 0.15 0.3 2.65 1.0 2.0 0.5

Table 2.  Meso-parameters of the parallel bonding model in the numerical simulations.

Linear or parallel 
connection elastic 
modulus (GPa)

Linear or parallel 
bond stiffness ratio

Bonding distance 
(mm)

Contact friction 
coefficient

Average contact 
tensile strength 
(MPa)

Standard deviation 
of contact tensile 
strength (MPa)

Standard deviation 
of contact cohesion 
(MPa)

Average contact 
cohesion (MPa)

1.0 2.0 0.5 0.5 10 5 5 10
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Shear test on the structural plane
The morphological characteristics of the structural plane mainly affect its shear strength. The surface morphol-
ogy of a regularly undulating structural plane can generally be divided into three types according to geometric 
characteristics: straight, sawtooth, and stepped. The shear strength of a real unfilled structural plane is mainly 
composed of the following three aspects: (1) the frictional force provided by the basic friction angle, (2) ascent 
angle owing to the surface morphology, and (3) gnawing force owing to the abrasion or shearing of the surface 
protrusions. When the sawtooth structural plane is sheared, distinct mechanical effects, such as the ascent and 
gnawing effects may occur. This can quantitatively describe the effect of the undulant angle on the mechanical 
properties of the structural plane. The existing research  results48,54–56 demonstrate that although differences exist 
between the sawtooth and straight structural planes, the shear test using the sawtooth structural plane usually 
captures the main influencing factors of its shear characteristics, such as roughness and undulation, with certain 
rationality. Therefore, the regular sawtooth structural plane samples were selected for the structural plane simu-
lations to examine the macro and meso-failure processes, as well as the shear stress evolution characteristics of 
the rock mass structural plane. In this simulation, the undulant angles of the regular sawtooth structural plane 
were 10°, 20°, and 30°.

According to the direct shear model of the upper and lower shear boxes on a 2D plane established by  Fu58 
and Zhang et al.59, a total of eight walls were established to simulate the shear box. Among them, walls #1–3 
formed the lower shear box, whereas walls #4–6 formed the upper shear box, as shown in Fig. 5. The height and 
width of the upper and lower shear boxes were 50 and 100 mm, respectively (Fig. 5). Additionally, walls #7 and 8 
acted as wing walls on both sides to prevent the overflow of the particles (Fig. 5). A total of 50,964 particles were 
generated randomly in this model with their radii evenly distributed in the range of 0.15–0.3 mm, a density of 
2650 kg/m3, and porosity of 0.16. A parallel contact model was used as the contact constitutive model between 
particles, and a smooth-joint contact model was used to simulate the rock mass structural plane.

In this test, the normal stress was measured at 0.1, 0.5, 1, 2, and 3 MPa. Wall #5 was controlled using servo 
control with constant normal stress being applied to the sample. Additionally, a displacement control method was 
used to apply a shear load. A series of structural plane shear tests conducted by Barton and  Choubey60 revealed 
that the peak shear strength of a structural plane causes the shear displacement to be approximately 1% of the 
length of the structural surface. However, when the shear strength decreases to the residual strength, the shear 
displacement is approximately 10% of the length of the structural  plane60. Therefore, the shear target displace-
ment was set to 10% of the length of the structural plane, which was 10 mm. The wall below the shear plane was 
fixed; however, that above the shear plane moved periodically at a uniform speed of 0.7 mm/min. During the 
shear process, the data, including the normal stress, horizontal displacement, and shear stress, were recorded 
at every horizontal shear displacement of 0.4%. Additionally, images were recorded at the corresponding times.

Table 3.  Meso-parameters of the smooth-joint model in the numerical simulations.

Normal stiffness 
(GPa)

Normal and 
tangential stiffness 
ratio

Contact friction 
coefficient Dilatancy angle (°)

Average contact 
tensile strength (Pa)

Standard deviation 
of contact tensile 
strength (Pa)

Average contact 
cohesion (Pa)

Standard 
deviation of 
contact cohesion 
(Pa)

1.0 2.0 0.5 0.0 0.0 0.0 0.0 0.0

Figure 5.  Diagram of the particle flow code (PFC) numerical simulation model.
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Analysis of the numerical simulation results
Analysis of the shear failure characteristics. According to the physical direct shear test results, when 
the undulant angle of the structural plane and normal stress were small, the failure model of the structural plane 
mainly included slip failure. In contrast, with the increase in the undulant angle of the structural plane and 
normal stress, the failure model of the structural plane mainly included shear failure. However, when the values 
of undulant angle and normal stress were large, shear failure accompanied by a compression-induced fracture 
phenomenon gradually occurred. This phenomenon has been reported in many previous  studies61–68. For exam-
ple, as the structural plane with the undulant angle of 20° when the normal stress is 3 MPa, and the structural 
plane undulant angle of 30° when the normal stress is 2 and 3 MPa. The failure mode of the shear failure and the 
compression-induced fracture phenomenon was accompanied by tension and crushing, which was considerably 
different from the slip failure and pure shear failure modes.

According to the numerical simulations, the shear failure accompanied by the compression-induced fracture 
phenomenon was as follows:

1. In the initial stages, as the shear displacement increased, the force area of the structural plane decreased with 
the stress concentrated at the contact (Fig. 6a).

2. A difference was observed in the displacement between the contacted and uncontacted parts, thereby result-
ing in tensile stress at the contact and tensile-shear crevices being generated (Fig. 6b).

3. After the appearance of tensile-shear crevices, part B in Fig. 6c tended to flip owing to the bending moment. 
Simultaneously, as the shear stress increased, the cracks continued to expand and gradually became parallel 
to the direction of the maximum principal stress (Fig. 6c).

4. As the shear displacement continued to increase, part B gradually became perpendicular to the maximum 
principal stress, thereby crushing the undulating body. Simultaneously, affected by the stress concentration 
at the ’’locking section’’ and crushing zone, the crevices penetrated the undulating body, thereby resulting 
in shearing and damage (Fig. 6d).

5. After the structural surface was damaged, the shear strength of the structural plane in the subsequent shear-
ing process was mainly derived from friction on the contact surface of the structural plane, structural plane 
and cutting fill, and friction between the cutting fills. The volume and distribution of the cutting fill greatly 
influenced the shear strength (Fig. 6e).

Evolution characteristics of shear stress. The shear stress-displacement curves are shown in Fig. 7. 
When the undulant angle was 10°, the normal stress was 0.1, 0.5, and 1 MPa; whereas when the undulant angle 
was 20°, the normal stress was 0.1 MPa. Furthermore, the shear stress–displacement curves were slip curves. In 
all other instances, these curves were peak curves. Notably, the peak curves were mainly divided into two types, 
the multi-peak and single-peak curves. The analysis of the shear failure characteristics of the structural plane 
revealed that the slip, multi-peak, and single-peak curves corresponded to the slip failure mode, pure shear fail-
ure, and shear failure accompanied by the compression-induced fracture, respectively.

The slip curve reflects that the slip failure of the structural plane is a cumulative damage process when the 
normal stress and undulant angle are small with unobservable fracture failure. During pure shear failure, the 
undulating body was sheared multiple times during the shearing process and the shear displacement was nonu-
niform, which caused a sudden increase in the shearing displacement, therefore, the shear stress–displacement 
curve with the multi-peak. When the normal stress and undulant angle were large, the undulating body produced 
cracks or was crushed in the initial stage owing to the stress concentration at the locking section and crushing 
zone. This caused the entire undulating body to be directly sheared and destroyed under the shear stress, thereby 
resulting in a shear stress–displacement curve with a single peak.

Shear strength model of rock mass structural planes
Peak shear strength. The Mohr–Coulomb equation is as follows:

where τ is the shear stress, σn is the effective normal stress, c is the cohesion, σn is the normal stress, and φ is the 
total friction angle. The peak shear strength envelopes for non-planar rock joints are some differences between 
the Coulomb relationship and the actual situation of rough structure plane  shearing69. Furthermore, several 
previous studies have shown that the shear strength of a structural plane is related closely to normal stress and 
 roughness39,60,70 and cohesion can be ignored when calculating the shear strength of structural  surfaces71.

In addition, the shear resistance of the unfilled natural structural plane is mainly caused by the undulation 
of this plane and friction in the contacts. Therefore, the friction angle can be expressed as

where ϕb  is the basic frictional angle and α  is the undulant angle of the structural plane. Furthermore, for a flat 
structural plane, ϕ = ϕb.

When the change in the basic friction angle during the shear process is disregarded, the initial undulant angle 
directly influences the friction angle for the same type of rock mass structural plane. Based on the direct shear test 
results obtained from the simulation that accounts for the normal stress and initial undulant angle, a good rela-
tionship between the normal stress, initial undulant angle, and peak strength is found to exist (Fig. 8) as follows:

(2)τ = c + σntan(ϕ),

(3)ϕ = ϕb + α,

(4)τ = Aσn + B
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where τ is the peak shear strength, σn is the normal stress, and A and B are the coefficients related to the initial 
undulant angle. Additionally, coefficients A and B only consider fitting with tan(ϕ0 + α0) . An optimal linear 
relationship is indicated between A , B , and tan(ϕ0 + α0) (Fig. 9):

Figure 6.  Process diagram of shear failure accompanied by the compression-induced fracture mechanism. 
The deformation and failure mechanism of the undulating body on the upper part of the rock mass sample is 
essentially identical to that on the lower part of the rock mass sample.
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where ϕ0 is the initial basic friction angle; α0 is the initial undulant angle; and C1 , C2,D1 , and D2 are the fitting 
coefficients.

Combining Eqs. (5) and (6), Eq. (4) can be expressed as follows:

According to the fitting results of the test data, the empirical equation of the shear peak strength of the 
structural plane is as follows:

Then, Eq. (8) was rewritten as follows:

(5)A = C1tan(ϕ0 + α0)+ D1

(6)B = C2tan(ϕ0 + α0)+ D2,

(7)τ = [C1tan(ϕ0 + α0)+ D1]σn + [C2tan(ϕ0 + α0)+ D2]

(8)τ = [0.6787tan(ϕ0 + α0)+ 0.1841]σn + [0.59987tan(ϕ0 + α0)− 0.3131]

Figure 7.  Shear stress–displacement curves of three structural planes under different normal stresses ( α  is the 
undulant angle of the structural plane).
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such that the following are obtained:

Next, Eq. (9) was expressed as follows:

where Kn denotes the correction coefficient of the friction coefficient corresponding to the structural plane, which 
is related to the normal stress, and Knτ denotes the correction coefficient of the shear strength of the structural 
plane related to the normal stress.

Post-peak shear strength. Grasselli and  Egger39 and Lee et al.38 demonstrated that the shear stress curves 
from peak to residual shear values are close to a hyperbola. Furthermore, Grasselli and  Egger39 proposed that 
an increase in the relative displacement results in a decrease in the friction coefficient as a hyperbolic function:

(9)τ = [0.1841σn − 0.3131]+ [0.6787σn + 0.59987]tan(ϕ0 + α0)

(10)Knτ = 0.1841σn − 0.3131

(11)Kn = 0.6787σn + 0.59987

(12)τ = Knτ + Kntan(ϕ0 + α0)

(13)f = fr +
(

fp − fr
) lp

l

(14)f = tanϕ

(15)fr = tanϕr

Figure 8.  Peak shear strength trend as a function of the normal stress.

Figure 9.  Trends of parameters A and B as a function of tan(ϕ0 + α0).
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where lp is the shear displacement corresponding to the peak point of the shear stress, l  is the shear displacement, 
fr is the residual friction coefficient, fp is the peak friction coefficient, ϕr is the residual friction angle, and ϕp is 
the peak friction angle. Therefore, the following expression can be obtained:

According to the elastic theory, the shear strength of the serrated rock mass structural plane mainly comprises 
the resistance caused by the friction angle of the rock. Based on the Eqs. (2) and (17) and ignoring the cohesion, 
the structural plane shear strength after peak shear can be expressed as follows:

where τr is the residual shear strength and τp is the peak shear strength.
Considering the physical direct shear test of the structural plane with an undulant angle of 30° as an example, 

the variation trend in the shear stress under different normal stresses is obtained using the hyperbolic variation 
model. The calculation results obtained using the hyperbolic variation model proposed by Grasselli and  Egger39 
were found to be larger than and deviating significantly from the physical direct shear test results (Fig. 10).

Therefore, according to the experimental results and hyperbolic variation model proposed by Grasselli and 
 Egger39, as well as repeated trial calculations, the equation for the post-peak shear strength can be improved as 
follows:

where τr is the residual shear stress, lp is the shear displacement corresponding to the peak point of the shear 
stress, l  is the shear displacement, and A and B are the fitting coefficients.

According to Fig. 10, the fitting equations for the structural plane with an initial undulant angle of 30° under 
different normal stresses are as follows:

0.1 MPa:

0.5 MPa:

1 MPa:

2 MPa:

3 MPa:

According to Eqs. (20)–(24), coefficients A and B have a good linear relationship with the peak shear strength 
and normal stress, respectively (Figs. 11 and 12).

Based on Eqs. (19), (25), and (26), the post-peak shear strength can be expressed as follows:

Shear strength verification
Physical experiments. The data from the sandstone serrated structural planes studied by  Cao72 were used 
in our analyses. A similar material with a mass ratio of high-strength gypsum: water: retarder = 1:0.25:0.005 
was used to construct the structure plane samples. Table 4 lists the basic mechanical parameters of the similar 
material and sandstone. The mechanical parameters of the selected similar materials were equivalent to those 
of sandstone.

The sample was cylindrical, and the structural plane with an undulant angle of 30° was located in the middle 
of the cylinder (Fig. 13). Figure 14 shows a diagram of the serrated structural plane of the test sample. The TJXW-
600 microcomputer-controlled direct shear seepage coupling system developed by Changsha Yaxing Numerical 
Control Technology Co., Ltd. was used to conduct the rock mass structural plane shear  test72. Figure 15 shows a 

(16)fp = tanϕp,

(17)tanϕ = tanϕr +
(

tanϕp − tanϕr
) lp

l

(18)τ = τr +
(

τp − τr
) lP

l
,

(19)τ = τr + Ae[−(l−lp)/B],

(20)τ = τr + 0.67e[−(l−lp)/0.89]

(21)τ = τr + 0.87e[−(l−lp)/0.88]

(22)τ = τr + 0.875e[−(l−lp)/0.86]

(23)τ = τr + 1.95e[−(l−lp)/0.78]

(24)τ = τr + 2.70e[−(l−lp)/0.68]

(25)A = 0.6131τp + 0.1348

(26)B = −0.0749σn + 0.9177

(27)τ = τr + (0.6131τp + 0.1348)e[−(l−lp)/(−0.0749σn+0.9177)]
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Figure 10.  Comparison between the shear stress–displacement curves after the peak shear strength.

Figure 11.  Trend of parameter A as a function of the peak shear strength.
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schematic diagram of the shear box. The shear tests were performed using different normal stresses (1.27, 1.91, 
and 2.55 MPa) with a shear rate of 15 mm/min and shear displacement of 32 mm.

The shear strength–displacement curves are shown in Fig. 16. Additionally, the direct shear data from the 
artificial serrated structural plane obtained by  Cao72 were used to verify the shear strength calculation model 
proposed in this study.

Comparative analysis. Background. To verify the effectiveness of the shear strength model proposed in 
this study, the peak shear strength obtained experimentally was compared with the values calculated using the 
proposed model, as well as the models proposed by  Parton19 and  Shen27. The post-peak shear strength obtained 
experimentally was compared with the values calculated using the hyperbolic variation model proposed by 
Grasselli and  Egger39 and that proposed in this study. The peak shear strength models proposed by  Parton19 and 
 Shen27 are briefly introduced below. The post-peak shear strength obtained using the hyperbolic variation model 
proposed by Grasselli and  Egge39 is discussed in “Evolution characteristics of shear stress” section.

(1) Patton model
Newland and  Allely73 first proposed the following equation to represent the shear strength of a structural 

plane:

Figure 12.  Trend of parameter B as a function of the normal stress.

Table 4.  Mechanical parameters of sandstone and similar  materials72.

Material Density (g  cm−3)

Uniaxial 
compressive 
strength (MPa) Cohesion (MPa) Friction angle (°)

Elastic modulus 
(GPa) Poisson’s ratio

Sandstone 2.130 39.760 5.157 58.312 29.102 0.225

Similar materials 2.066 38.800 5.300 60.030 28.791 0.230

Figure 13.  Schematic diagram of the test sample with a structural  plane72.
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Based on the equation proposed by Newland and  Allely73,  Partton19 and Goldstein et al.74 proposed the fol-
lowing equation for the peak shear strength of a serrated structural plane as follows:

In Eqs. (28) and (29), σn is the normal stress, ϕb is the friction angle corresponding to the smooth structural 
plane, i is the average deviation angle of particle displacements from the applied shear stress direction, and α is 
the undulant angle of the structural plane.

(2) Shen model
Shen and  Zhang27 proposed an empirical equation according to experimental tests and the Patton model:

where τp is the peak shear strength, σn is the normal stress, ϕb is the basic friction angle, α is the undulant angle 
of the regular structural plane, Kβ is the correction coefficient of the comprehensive internal friction angle of 
the structural plane, and Kc is the correction coefficient for the comprehensive cohesion of the structural plane. 
When the normal stress is 0, Kc is also 0. Based on the results of the structural shear test conducted by Shen and 
 Zhang27, Kβ = 0.21 and Kc = 0.038.

Comparison between the results. (1) Peak shear strength
Table 5 summarizes the peak shear strength values obtained using the physical direct shear test, Parton model, 

Shen model, and our proposed model. The errors between the peak shear strength calculated using the Patton 
model and that obtained from the physical direct shear test were discrete. Additionally, an increase in the normal 
stress increased the error, and the maximum error was 5.6%. This indicated that the Patton model may not apply 
to the shear of a structural plane under high normal stress. Furthermore, the results calculated using the Shen 

(28)τ = σntan(ϕb + i)

(29)τ = σntan(ϕb + α)

(30)τp = σntan
(

ϕb + Kββ
)

+ Kcα,

Figure 14.  Plane diagram of the serrated structural plane in the test sample.

Figure 15.  Shear box model.
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model differed substantial from those obtained using the physical direct shear test, the Patton model, and the 
proposed model. This result was ascribed to the correction coefficients proposed in the Shen model not being 
specifically applicable to structural planes with a certain lithology because they were obtained from a concrete 
structural plane  sample27. The error between the peak shear strength calculated using the proposed model and 
that using the direct shear test was < 3%, thereby demonstrating the feasibility of our proposed model.

(2) Verification of the post-peak shear strength model
Figure 16 shows the variation trend of the post-peak shear stress with the shear displacement obtained using 

the physical direct shear test and that calculated using the proposed and hyperbolic variation models. The shear 
strength obtained using the hyperbolic variation model was higher than those obtained using the proposed 
model and physical direct shear test. Although the post-peak shear strength calculated using the hyperbolic 
model was too large, its variation trend was similar to those obtained from the experimental results. This was 
probably owing to the hyperbolic variation function proposed based on the direct shear test of natural structural 

Figure 16.  Comparison between the calculated post-peak shear stress values as a function of the shear 
displacement.
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planes, and the experimental results obtained using the natural structural planes have increased randomness 
and uncertainty; therefore, the accuracy of the calculation model obtained based on the experimental results of 
the natural structural planes needs to be improved.

The proposed model was improved based on the hyperbolic variation function. The variational trend of the 
post-peak shear strength obtained using the improved function was essentially consistent with the experimental 
results, and the calculated values were close to those obtained from the real experimental results. Moreover, the 
fitting degree of the results obtained using the proposed model was superior to that obtained using the hyper-
bolic variation model, thereby demonstrating the feasibility of the proposed calculation model for determining 
post-peak shear stress.

Discussion
The verification of the peak shear strength revealed that the model proposed by  Patton19 may not apply to the 
shear of a structural plane under high normal stress. In fact, by applying the statistical analysis of several shear test 
results of structural planes,  Barton75 also reported that the Patton model yielded a large error under high normal 
stress; however, this model demonstrated high accuracy under low normal stress. Based on this, Table 5 reveals 
that the error between the experimental results and the results obtained using the proposed model increases 
with the decrease in the normal stress, and under low normal stress, such as 1.27 MPa, the error between the 
experimental results and the results obtained using the Parton model (0.57%) is much smaller than that between 
the experimental results and the results obtained using the proposed model (2.65%). This is because the structural 
plane was mainly subject to sliding failure under low normal stress, and the Patton model was mainly proposed 
for sliding failure. Based on the above analysis, this study suggested that the Patton model should be used to 
calculate the peak shear strength of the structural plane under low normal stress. In contrast, when calculating 
the peak shear strength of the structural plane under high normal stress, using the calculation method proposed 
in this study is a better alternative.

Notably, in this study, the proposed calculation models were only based on the test and verification of the 
structural planes of the sandstone rock mass. Accordingly, the coefficients of the equations proposed in this study 
might be appropriate only for calculating sandstone or mudstone rock masses. For other types of rock masses, 
particularly hard rock, such as granite, the values of the related parameters must be re-determined through 
experimentation. In future research, the shear strength of structural planes with different lithologies must be 
studied. The calculation model and particularly, the relevant parameters of the calculation model proposed in 
this study can be improved using statistical analysis of a large amount of experimental data.

In addition, this study ignored the influence of the second-order undulations on the shear strength of the 
structural plane. However, many previous studies have revealed that the classic rock mass shear strength model 
does not consider the influence of the second-order undulations and underestimates the shear strength when the 
normal stress is  low76–79. Therefore, in future research, when studying the influence of the shear characteristics 
of the rock mass structural plane under low normal stress, the combined effects of the first and second-order 
undulations on the structural plane must be considered and a shear constitutive model must be established.

Conclusion
In this study, the PFC2D numerical simulation method was used to conduct shear tests on the structural planes 
of rock masses with undulant angles of 10°, 20°, and 30°. The failure characteristics of the structural planes during 
the shear processes and the evolution characteristics of the shear stress with the change in the shear displacement 
were analysed in-depth. Based on the analysis of the shear test results, a peak shear strength model consider-
ing different undulant angles and normal stresses was proposed, and the hyperbolic function post-peak shear 
strength model was improved. The following conclusions were drawn:

1. During the shear process of the structural plane, with the increase in the undulant angle and normal stress, 
the shear failure of the structural plane was no longer a simple slip failure and shear failure but a shear failure 
accompanied by a compression-induced fracture phenomenon.

2. For the peak shear strength, although the calculation method of the Patton model is highly accurate under 
low normal stress, the calculation error of the low and high normal stress conditions of the proposed method 
was within an acceptable range. When calculating the peak shear strength of the structural planes under 
high normal stress, applying the proposed calculation method is a better option.

Table 5.  Comparison between the shear stress calculation results.

Normal stress
(MPa)

Test peak strength 
(MPa)

Initial basic 
friction angle (°)

Initial undulant 
angle (°)

Proposed model 
(MPa)

Parton model
(MPa)

Shen model
(MPa)

Error between 
test results and 
proposed model
(%)

Error between 
test results and 
Parton model
(%)

1.27 5.28 46.4 30 5.42 5.25 2.81 2.65 0.57

1.91 7.74 46.4 30 7.87 7.89 3.65 1.67 1.90

2.55 9.95 46.4 30 9.79 10.54 4.49 1.60 5.60
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3. For the post-peak shear strength, the improved hyperbolic variational function had a better fitting degree. 
Additionally, the calculated values obtained using the improved method were close to those obtained experi-
mentally.

4. In future research, the shear strength of structural planes with different lithologies must be studied. Addi-
tionally, the combined effects of the first and second-order undulations must be simultaneously considered 
on the structural planes and a shear constitutive model must be established.

Data availability
The data that support the findings of this study are available on request from the corresponding author.
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