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Solubility of gaseous hydrocarbons 
in ionic liquids using equations 
of state and machine learning 
approaches
Reza Nakhaei‑Kohani1, Saeid Atashrouz2*, Fahimeh Hadavimoghaddam3,4, Ali Bostani5, 
Abdolhossein Hemmati‑Sarapardeh6* & Ahmad Mohaddespour7*

Ionic liquids (ILs) have emerged as suitable options for gas storage applications over the past 
decade. Consequently, accurate prediction of gas solubility in ILs is crucial for their application in 
the industry. In this study, four intelligent techniques including Extreme Learning Machine (ELM), 
Deep Belief Network (DBN), Multivariate Adaptive Regression Splines (MARS), and Boosting-
Support Vector Regression (Boost-SVR) have been proposed to estimate the solubility of some 
gaseous hydrocarbons in ILs based on two distinct methods. In the first method, the thermodynamic 
properties of hydrocarbons and ILs were used as input parameters, while in the second method, 
the chemical structure of ILs and hydrocarbons along with temperature and pressure were used. 
The results show that in the first method, the DBN model with root mean square error (RMSE) 
and coefficient of determination (R2) values of 0.0054 and 0.9961, respectively, and in the second 
method, the DBN model with RMSE and R2 values of 0.0065 and 0.9943, respectively, have the most 
accurate predictions. To evaluate the performance of intelligent models, the obtained results were 
compared with previous studies and equations of the state including Peng–Robinson (PR), Soave–
Redlich–Kwong (SRK), Redlich–Kwong (RK), and Zudkevitch–Joffe (ZJ). Findings show that intelligent 
models have high accuracy compared to equations of state. Finally, the investigation of the effect 
of different factors such as alkyl chain length, type of anion and cation, pressure, temperature, 
and type of hydrocarbon on the solubility of gaseous hydrocarbons in ILs shows that pressure and 
temperature have a direct and inverse effect on increasing the solubility of gaseous hydrocarbons 
in ILs, respectively. Also, the evaluation of the effect of hydrocarbon type shows that increasing the 
molecular weight of hydrocarbons increases the solubility of gaseous hydrocarbons in ILs.
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EOS	� Equation of state
RMSE	� Root mean squared error
R2	� Coefficient of determination

Ionic liquids (ILs), unlike most salts, are substances that are liquid at temperatures lower than 373.15 K. As a 
result of various combinations of cations and anions, numerous ILs with tunable properties can be obtained1,2. 
ILs have become commonly used in different industries due to their various appealing properties, such as thermal 
stability, non-flammability, and various electrical and ionic conductivity. Therefore, many ILs have been synthe-
sized for various purposes in recent decades3,4. The implementation of effective solvents is critical in the battle 
to conserve the environment and eliminate dangerous atmospheric concentrations5,6. ILs are one of the most 
prominent eco-friendly solvents. ILs might be regarded as attractive compounds with various potential industrial 
uses because of these exceptional properties5–7. Recent works on ILs have concentrated on structure–property 
correlations to intelligently develop ILs for special purposes. The structure–property interactions related to gas 
solubility in IL are of considerable importance. The application of ILs in separation processes highlights the rel-
evance of gas solubility in ILs. Acknowledging the dissolution process of substances in ILs and how they might 
investigate the key structural properties of the solvent seems to be a more basic objective8,9. For many purposes, 
employing ILs to absorb the major components of natural gas has been a popular study subject. Primarily, such 
information is required to investigate the natural gas sweetening operation, which involves the separation of acid 
gases from methane. This technique is important not only for ecological reasons, but also for preventing subse-
quent process issues including equipment corrosion and pipeline clogging5,10. Furthermore, such information is 
useful for a variety of operations, including supercritical fluid extraction and homogeneous interactions in ILs, as 
well as purification of steam converting or gas-shift processes3,5. Since ILs are structurally heterogeneous on a very 
small scale, the solubility of substances may differ from that of molecular liquids. The solubility of pure gaseous 
hydrocarbons is also a promising topic for investigating the performance of nonpolar component solvation in 
the ILs. While some experimental researches of gaseous hydrocarbons solubility in ILs have been conducted, the 
majority of these researches have relied on gas solubility in ILs based on thermodynamic properties8.

Therefore, the study of the solubility of various gases, especially gaseous hydrocarbons in ILs is of special 
importance. There are various methods such as laboratory tests and the employment of equations of state to 
measure the solubility of gaseous hydrocarbons in ILs. Many studies have been performed on the solubility of 
methane5,11, ethane12,13, normal butane and isobutene8, and other gaseous hydrocarbons in various ILs. Ahsan 
Jalal14 calculated the solubilities of C4-hydrocarbons in various imidazolium-type ILs using the Conductor-like 
Screening Model for Realistic Solvents (COSMO-RS) computations. The COSMO-RS data for each hydrocarbon 
was then examined utilizing semi-empirically determined molecular descriptors of ILs and machine learning 
technologies such as association rule mining and decision tree categorization. The most essential characteristics 
for defining the propensity of ILs towards C4-hydrocarbons are the polarizabilities of both cation and anion, 
as well as the anion’s CPK (space-filling model) area. Zhen Song15 used COSMO-RS to forecast the solubilities 
of 220 imidazolium-based ILs in seven fuel hydrocarbon samples with varying IL and hydrocarbon properties. 
The nitrogen analyzer was used to measure the solubilities of five typical ILs in the examined hydrocarbons, 
revealing COSMO-RS’s adequate capacity to forecast IL-in-hydrocarbon solubilities. AlSaleem16 investigated the 
solubility of three halogenated hydrocarbons in 12 hydrophobic ILs at temperatures ranging from 25 to 45 °C. 
Piperidinium, pyrrolidinium, and ammonium-based cations coupled with [TF2N] anion were studied for their 
chemical structure and alkyl chain length impact. Carbon tetrachloride and bromoform are somewhat miscible in 
all of the ILs tested, although chloroform is fully miscible. The solubility of ammonium-based ionic liquids rises 
as the cation molecular weight and alkyl chain length increase. Hamedi et al.5 calculated the solubility of methane 
in ILs using two equations of state including modified Sanchez and Lacombe (SL) and cubic-plus-association 
(CPA). Comparison of the results showed that the mentioned methods have good accuracy in predicting the 
solubility of methane in ILs. Owing to the very non-ideal reactions, thermodynamic analysis of gas solubility in 
ILs is a difficult undertaking. Typical EOSs, on the other hand, overlook the influence of several essential non-
ideal molecular interactions, like hydrogen bonds and polar interactions, and so are unreliable in predicting 
gas solubility in ILs5,17. This demands the evaluation of more powerful EOSs, which are capable of adequately 
modeling the system across a broad temperature and pressure range and have reasonable conformance with 
the real performance of the system. Recently, machine learning-based approaches have widely been received 
attention for predicting properties of ILs18–24. The excellent results of previous studies further demonstrate the 
reliability and applicability of these methods. Other advantages of these methods are their high accuracy in 
predicting the solubility of gases in ILs and reducing time and cost. Ferreira et al.25 conducted a study on binary 
systems of ionic liquids and liquid hydrocarbons and their modeling by COSMO-RS. The results showed that 
COSMO-RS can be a useful and practical predictive tool. The employment of intelligent methods to predict the 
solubility of various gases such as N2O26, SO2

27,28, H2S24,29, and CO2
30 in ILs has received much attention in the 

last decade, and the results confirm the reliability of these methods. Using the thermodynamic properties of ILs 
and 728 experimental data, Baghban et al.31 developed a multi-layer perceptron (MLP) model and an adaptive 
neuro-fuzzy interference system (ANFIS) to predict the solubility of CO2 in ILs and then compared the results 
with the equations of state. The results showed that the MLP model had the best performance with mean square 
error (MSE) and coefficient of determination (R2) values of 0.000133 and 0.9972, respectively. Ahmadi et al.32 
did the same work by developing artificial neural networks optimized with backpropagation (BP) and particle 
swarm optimization (PSO) algorithms to predict the solubility of H2S in ILs. The mean square error (MSE) and 
R2 values for PSO-ANN were 0.00025 and 0.99218, respectively, which indicated the better performance of this 
model than BP-ANN. Song et al.33 predicted the solubility of CO2 in various ILs by using a very large database 
containing 10,116 experimental data points. In this study, artificial neural networks and support vector machine 
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(SVM) were used to develop the group contribution (GC) method. The results showed that the ANN-GC model 
had the best performance with MSE and R2 values of 0.0202 and 0.9836, respectively. In 2021, Moosanezhad-
Kermani et al.34 developed a group method of data handling method for prediction CO2 solubility in ILs. In 
2022, Mohammadi et al.35 predicted SO2 solubility in ILs using four intelligent models and equations of state.

In this study, using an extensive data bank including 2145 experimental data points, four intelligent models 
including Extreme Learning Machine (ELM), Deep Belief Network (DBN), Multivariate Adaptive Regression 
Splines (MARS), and Boosting-Support Vector Regression (B-SVR) are developed to predict the solubility of gas-
eous hydrocarbons (CH4, C2H6, C3H8, C4H10, C2H4, C3H6, C4H8, and C6H6) in ILs in a wide range of temperature 
and pressure. In this regard, intelligent models are trained based on two strategies, including Model (I): based 
on the thermodynamic properties of ILs and hydrocarbons, and Model (II): based on the chemical structure of 
ILs and hydrocarbons. In the first method, the critical properties of ILs and hydrocarbons and their molecular 
weights are considered as input parameters to the model. In the second method, the effect of the substructures 
that make up ILs and gaseous hydrocarbons are considered. In the development of existing models, the data is 
divided into an 80/20 ratio for the training and testing stages. Results are compared with previous studies and 
equations of state to evaluate the precision of the developed model. Furthermore, the solubility trend study is 
also performed to investigate the effect of different parameters on the solubility of gaseous hydrocarbons in ILs.

Data collection.  In this study, 2145 experimental data for the solubility of gaseous hydrocarbons (CH4, C2H6, 
C3H8, C4H10, C2H4, C3H6, C4H8, and C6H6) in ionic liquids over a wide range of temperature (280–453.15 K) and 
pressure (0–201.64 bar) have been collected from the literature3,4,12,13,36–54. The details of the provided database 
are summarized in Table 1. In the method based on thermodynamic properties, temperature, pressure, molecu-
lar weight, boiling point, and critical properties of ILs and hydrocarbons are considered as input parameters, 
while in the method based on chemical structure, in addition to the substructures of ILs and hydrocarbons, 
temperature and pressure are considered as input parameters. The statistical description of the input parameters 
and a number of substructures used in this study are reported in Table 2 and Table 3, respectively. The data are 
then divided into an 80/20 ratio in the training and testing stages, respectively. Figure 1 illustrates the chemical 
structure of anions and cations used in this study.

Modeling
Multivariate adaptive regression spline (MARS).  The multivariate adaptive regression spline (MARS), 
which is comprised of a count of different basis functions, will be used for regressive assessment and the identi-
fication of estimation techniques. The MARS model can calculate the enhanced structure of the multiplication 
of spline basis functions (BFs). The MARS system may choose the count of BFs and the properties related to 
each one, like the multiplication degree and node positions, autonomously. We might mention recurrent regres-
sion as one of the various clustering techniques. To properly describe higher-order responses, the MARS model 
employs the backward stepwise approach55,56. The MARS concept has several strengths. These benefits provide 
several items that will be detailed further below. This model’s practical property is that the count of parameters 
in this mathematical equation is reduced, which speeds up the calculation of the body while reducing simulation 
precision. Conserving computing resources is extremely desired for researchers. This model’s clever method of 
dividing factors into two groups of crucial factors and supplementary factors, which maximize detection accu-
racy, is another noteworthy aspect. The mathematical look of this concept is one of its most appealing qualities57. 
The dependent and independent components are identified by the mathematical expression form58. There is no 
supposition for linking inputs and output among the premises utilized in the MARS system. The purpose of this 
analysis is to look into the relationship between the output y and inputs {x1,…, xn} based on previous revelations. 
The following is a description of the data generation system59:

e refers to the relative error that matches across the intended region (x1,…, xn) in which the MARS model is 
generated. A progressive linear regression technique is a frequent model-building approach that MARS employs. 
MARS employs an automated way to replace major inputs. A succession of comparable splines and their deriva-
tives is created to provide these possibilities. The splines are coupled and form polynomial curves to construct 
an ideal model. BFs are the name for these polynomials. They can simulate both linear and nonlinear processes. 
BFs are often split into couples, each piecewise linear or cubic in its own right. They have nodes at a certain place, 
each of which is related to the inputs. Below equation gives the shape of distributed linear BFs as59:

The positive component is denoted by “+”, while the node is denoted by “t”. The MARS model is calculated 
using the following formula in its standard form59:

In the above equation, X is the input vector, and Bm, βm, and β0 are mth BF, coefficient of mth BF, and the 
constant of the equation, respectively.

For the MARS approach, there are two stages to follow59:

(1)y = f (x1, . . . , xn)+ e

(2)

(x − t)+ = max(0, x − t) =

{

x − t if x > t
0 otherwise

and (t − x)+ = max(0, t − x) =

{

t − x if x < t
0 otherwise

(3)f (X) = β0 +

M
∑

m=1

βmBm(X)
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Table 1.   Description of systems of ionic liquids and hydrocarbons used in this study.

IL full name IL abbreviation Hydrocarbon T (K) P (bar) S (mole fraction) N

1-Butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] CH4 283.05–343.09 0.465–0.976 0.00045–0.00126 13

1-Ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [EMIM][eFAP] CH4 293.3–363.42 20.76–86.92 0.052–0.155 31

1-Ethyl-3-methylimidazolium ethylsulfate [EMIM][EtSO4] CH4 292.31–293.63 1.98–101.5 0.0013–0.0405 8

1-Butyl-3-methylimidazolium methylsulfate [BMIM][MeSO4] CH4 293.15–413.2 13.63–88.53 0.0091–0.046 24

1-Butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6] CH4 283.15–343.12 0.04–13.99 0–0.1138 99

1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIM][Tf2N] CH4 300.13–453.15 15.01–161.05 0.0298–0.2245 124

1-Hexyl-3-methylimidazolium bis(trifluoromethylsufonyl)imide [HMIM][Tf2N] CH4 293.3–413.25 0.0158–93 0.0007–0.186 125

1-Hexyl-3-methylpyridinium bis(trifluoromethylsufonyl) imide [HMPY][Tf2N] CH4 298.15–333.15 0.0158–10 0.0007–0.0277 50

1,1,3,3-tetramethylguanidine lactate [TMG][L] CH4 308–328 10.4–103.4 0.0009–0.0431 30

1-Hexyl-3-methylimidazolium tricyanomethanide [HMIM][TCM] CH4 293.26–363.37 18–103.6 0.025–0.1 31

N-Methyl-(2-hydroxyethyl)amine propionate [m2HEA][Pr] CH4 313–363.1 25–153.9 0.0153–0.0784 44

Bis(2-hydroxyethyl)amine propionate [BHEA][Pr] CH4 333.1–363.1 48.2–114.6 0.0141–0.0537 16

(2-hydroxyethyl)amine propionate [2HEA][Pr] CH4 333.1–363.1 48.2–114.6 0.0141–0.0537 16

Bis(2-hydroxyethyl) ammonium butanoate [BHEA][Bu] CH4 313–353 24.26–201.64 0.018–0.073 20

1-Hexyl-3-methylimidazolium nitrate [HMIM][NO3] CH4 293.15–343.15 8.74–30.55 0.0204–0.0993 30

1-Ethyl-3-methylimidazolium diethylphosphate [EMIM][dep] CH4 303.17–363.29 16.85–94.41 0.02–0.076 35

Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate [thtdp][phos] CH4 302–363.27 10.15–120.49 0.107–0.496 42

Trihexyltetradecylphosphonium dicyanamide [thtdp][dca] CH4 302.13–363.48 14.28–115.69 0.079–0.343 49

1-Allyl-3-methylimidazolium dicyanamide [amim][dca] CH4 303.19–363.68 33.51–95.9 0.015–0.034 28

1-Butyl-1-methylpyrrolidinium dicyanamide [bmpyrr][dca] CH4 303.22–363.66 25.59–68.98 0.019–0.041 28

1,2,3-Tris(diethylamino)cyclopropenylium dicyanamide [cprop][dca] CH4 303.23–363.78 18.93–70.55 0.029–0.086 28

1,2,3-Tris(diethylamino)cyclopropenylium bis(trifluoromethylsulfonyl)
imide [cprop][Tf2N] CH4 302.82–363.42 18.8–78.85 0.066–0.19 35

1-Butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl) imide [bmpip][Tf2N] CH4 303.03–363.66 14.11–73.83 0.033–0.12 35

Triethylsulfonium bis(trifluoromethylsulfonyl)imide [tes][Tf2N] CH4 303.1–363.46 12.46–82.3 0.024–0.111 35

Methyltrioctylammonium bis(trifluoromethylsulfonyl) imide [toa][Tf2N] CH4 302.96–363.72 11.65–75.43 0.076–0.29 35

1-Hexyl-3-methylpyridinium bis(trifluoromethylsufonyl) imide [HMPY][Tf2N] CH4 298.15–333.15 0.0158–10 0.0007–0.0277 50

1-Butyl-3-methylimidazolium tetrafluoroborate [BMIM[BF4] C2H6 283.02–343.22 0.423–0.936 0.00198–0.00388 12

1-Butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [BMIM][eFAP] C2H6 303.26–343.33 0.9437–1.083 0.0102–0.0173 15

1-Butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6] C2H6 283.15–343.12 0.0002–13 0–0.043 172

1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIM][Tf2N] C2H6 283.15–323.15 0.000425–13 0–0.126 70

1-Butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate [BMPYR][eFAP] C2H6 303.16–344.69 0.3887–0.92 0.00573–0.013 12

1-Ethyl-3-methylimidazolium ethylsulfate [EMIM][EtSO4] C2H6 322.76–349.98 2.1–40.06 0.0016–0.0369 13

1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][Tf2N] C2H6 304.14–344.7 0.4422–0.4977 0.0038–0.0066 9

1-Hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [HMIM][eFAP] C2H6 303.14–343.14 0.5204–0.6656 0.0091–0.0167 13

1-Hexyl-3-methylimidazolium bis(trifluoromethylsufonyl)imide [HMIM][Tf2N] C2H6 283.32–368.4 0.4404–130.7 0.0085–0.4016 118

1-Hexyl-3-methylpyridinium bis(trifluoromethylsufonyl)imide [HMPY][Tf2N] C2H6 298.15–333.15 0.0138–10 0.00076–0.132 54

Hydroxyethyl-propyl-dimethylammonium bis[(trifluoromethyl)sulfonyl]
imide [N1,1,3,2-OH][Tf2N] C2H6 304.15–344.74 0.4363–0.4905 0.0036–0.0062 9

Trihexyl(tetradecyl) phosphonium tris(pentafluoroethyl) trifluorophos-
phate [P6,6,6,14][eFAP] C2H6 303.16–343.29 0.6838–0.8019 0.0253–0.0414 15

N-Pentyl-N-Methylpyrroliidiniumbis(trifluoromethylsulfonyl)imide [pmpyrr][Tf2N] C2H6 298.15–333.15 0.1–13 0.0024–0.1404 30

Diethylmethyl(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)
imide [deme][Tf2N] C2H6 298.15–333.15 0.1–13 0.0023–0.1054 30

1,2,3-Tris(diethylamino)cyclopropenylium bis(trifluoromethanesulfonyl)
imide [TDC][Tf2N] C2H6 298.15–333.15 0.1–13 0.0033–0.2029 30

1-Hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [HMIM][eFAP] C2H6 298.15–333.15 0.1–13 0.0034–0.195 30

1-Butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [BMIM][eFAP] C2H6 298.15–333.15 0.1–13 0.002–0.1499 30

1-Ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [EMIM][eFAP] C2H6 298.15–333.15 0.1–13 0.0019–0.1318 30

1-Hexyl-3-methylimidazolium bis(trifluoromethylsufonyl) imide [HMIM][Tf2N] C3H8 279.98–339.97 0.999–12.182 0.0506–0.2946 33

1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIM][Tf2N] C4H10 280–340 0.21–3.511 0.0284–0.1663 16

1-Butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6] C2H4 283.15–323.15 0.01–13 0.00006–0.099 149

1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIM][Tf2N] C2H4 283.15–323.15 0.0007–13 0.0000005–0.176 57

1-Hexyl-3-methylpyridinium bis(trifluoromethylsufonyl) imide [HMPY][Tf2N] C2H4 298.15–333.15 0.0134–10 0.00057–0.146 50

1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIM][Tf2N] C3H6 279.98–339.97 0.883–10.622 0.016–0.1818 16

1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIM][Tf2N] C4H8 280–340 0.334–3.041 0.0252–0.1409 16

1-Butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] C6H6 283.15–323.15 0.00001–0.202 0–0.43 55
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Stage 1: In the targeted area, a collection of BFs is generated. This process begins with a structure that just has 
the intercept term and adds the phrases one at a time. BFs should be used for the phrases. The forward step can 
be stopped in two ways: the first is when the maximum number of BFs is reached, and the second is when the 
regression coefficient of modifications is less than the set value. Several BFs are consecutively utilized, resulting 
in an overfitting system.

Stage 2: Overfitting is undesired and must be avoided at all costs. Because the system uses a monitoring 
phrase, it must be condensed by deleting at least one more relevant BF at a time. Then, from among the best 
systems of any size, the system with the least general cross-validation (GCV) is chosen to complete the system. 
This procedure concludes with the creation of a final model. GCV is used in the MARS system to eliminate BFs 
that aren’t needed. A GCV expression is as follows60,61:

MSEtrain represents the mean square error when utilizing training datasets, N represents the size of observa-
tions, and enp indicates the number of factors in the practical circumstance. Figure 2 illustrates the schematic 
of the MARS model.

Extreme learning machine (ELM).  Huang G.B. invented the extreme learning machine (ELM) to mini-
mize time-consuming repeated training and improve segmentation accuracy62,63. The ELM architecture consists 
of an input layer, a concealed layer, and an output layer. It is a single-hidden-layer feedforward neural network 
(SLFN). Unlike conventional learning methods (like the Backpropagation), which arbitrarily established all sys-
tem training variables and quickly build local best solutions, the ELM just adjusts the neurons in the invisible 
layer, randomizes the weights between the visible and invisible layers, and also the bias of the hidden neurons 
in the method implementation stage, determines the hidden layer output matrix, and subsequently finds the 
weights. The ELM provides the prospect of quick learning speed because of its straightforward network archi-

(4)GCV =
MSEtrain
(

1−
enp
N

)2

Table 2.   Statistical description of databank used in the current study.

Property Unit

Statistical parameters

Mean Median Kurtosis Skewness Min Max

T K 321.26 318 3.58 1.44 279.98 453.15

P Bar 24.31 9.96 3.32 1.81 1E−05 201.64

Mw (Gas) gr/mole 24.8 28.05 7.97 2.44 16.04 78.11

Tb (Gas) K 153.3 169.5 4.05 1.64 111.63 353.3

Pc (Gas) bar 47.45 46 1.99 − 0.5 38 51.2

Tc (Gas) K 255.7 283 3.83 1.57 190.55 563

ω (Gas) – 0.06 0.086 0.065 0.75 0.011 0.212

Tc (IL) K 1056.6 1189.9 − 0.56 0.188 643.1 1878.8

Pc (IL) bar 21 21.59 0.2 − 0.2 5.13 40.46

Tb (IL) K 772.11 839.7 0.4 0.57 495.2 1374.9

ω (IL) – 0.59 0.585 0.111 0.072 − 0.2 1.43

Mw (IL) gr/mole 392.9 419.4 0.887 0.623 135.16 928.88

Solubility Mole fraction 0.069 0.0367 5.2 2.19 5E−08 0.496

Table 3.   Different substructures of ionic liquids and hydrocarbons.
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–CH3 –COO–

–CH2– =O

>CH– –NH2

>C< –NH3
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tecture and succinct variable calculation operations. Figure 3 depicts the architectural framework of ELM. Fig-
ure 3 shows the construction of an extreme learning machine system, which has n input layer neurons, l hidden 
layer neurons, and m output layer neurons. Given the training set {X,Y} =

{

xi , yi
}

(i = 1, . . . ,Q) , with an input 
parameter X =

[

xi1xi2 . . . xiQ
]

 and an output matrix Y =
[

yi1yi2 . . . yiQ
]

 composed of the training set, the matrix 
X and the matrix Y may be represented as follows64:
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Figure 1.   Chemical structure of some of anions and cations studied in this work.
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here, n and m are the dimensions of the input and output matrices, respectively.
The ELM then adjusts the weights between the input and hidden layers at random64:

The weights between the jth input layer neuron and the ith hidden layer neuron are represented by wij.
Third, the ELM makes the following assumptions about the weights between the hidden and output layers64:

The weights between the jth hidden layer neuron and the kth output layer neuron are represented by βjk.
Fourth, the ELM sets the buried layer neurons’ bias at random64:
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
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Figure 2.   Schematic of the MARS model.
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Fifth, the ELM selects the g(x) system activation function.
The output matrix T may be represented as follows according to Fig. 3:

The output matrix T’s column vectors are as follows64:

Sixth, have a look at Eqs. (9) and (10) to see what we can come up with:

here, T ′ is the transpose of T and H is the concealed layer’s output. We utilize the least square approach to deter-
mine the weight matrix values of β62 to find a particular solution with the least amount of error.

We apply a regularization element to the β65 to increase the network’s generalization capabilities and make 
the findings more robust. When the count of concealed layer neurons is smaller than the number of training 
sets, β can be calculated as:

When the number of concealed layer nodes exceeds the number of training data, β is64:

Support vector regression (SVR).  Smola and Scholkopf66 have written a detailed description of SVR 
methodology. As a result, this study mainly provides a basic overview of SVR. SVR fits the linear relation-
ship y = xTp+ b regarding the designation error reduction theory, in which the regression parameters p and b 
are determined by minimizing the given cost function R67:
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Figure 3.   Schematic of the structure of ELM.
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here, dj and yj refer to the measured and predicted values of the jth training component, respectively, and J is the 
count of training components. This cost function aims to minimize both model intricacy (1/2(PTP)) and actual 
error (C 1

J

∑J
j=1 Lε

(

dj , yj
)

 ) at the same time. C is a regularization coefficient that controls the model intricacy 
vs. actual error trade-off. Lε

(

dj , yj
)

 is the ε-insensitive loss function, as stated in Eq. (16). The cost function R is 
limited in the following scenario when slack parameters ξ are introduced67:

Therefore, by employing the optimization criteria and inserting Lagrange multipliers 
(

α∗
j ,αj

)

 linear relation-
ship y = xTp+ b has the given explicit expression67:

By replacing a kernel function K
(

xj , x
)

 for the dot product 〈xj , x〉 , this linear approach may be extended to 
nonlinear regression in a direct way. As the kernel function, a variety of functions can be employed. The Gaussian 
radial basis function K

(

xj , x
)

= exp
(

−�xj − x�/
(

2γ 2
))

 is a regularly utilized kernel function67. Figure 4 shows 
the flowchart of the SVR approach.

Boosting support vector regression (B‑SVR).  For the regression problem, many implementations 
of boosting were utilized, including adaptive boosting for regression68 and Stochastic gradient boosting69. The 
essential objective of B-SVR is to train a series of SVR systems, each of which is built often using data with high 
mistakes gained from the prior SVR designs. The following is a description of the technique67.

To begin, all of the data in the initial training dataset are given identical weights w(1)
j = 1, j = 1, . . . , J.

Then, for each computation phase t = 1,…,T (where T is the group size or repetition number), do the foregoing:
(First Stage): The probability of drawing the ith input for SVR analysis is67:
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Figure 4.   Flowchart of the SVR model.
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J samples (sometimes with repetition, i.e., some values that occur several times in the boosting collection) 
are chosen from the main training samples according to the selection probability functions f(t).

(Second stage): Utilizing boosting dataset, create an SVR network and predict the outputs of the main train-
ing data.

(Third stage): Using the given loss function, calculate a loss value for each item in the initial training dataset67:

(Fourth stage): Determine the mean loss:

(Fifth stage): Consider βt = Lt
1−Lt

 and modify the weight of each component in the previous training dataset 
utilizing67:

The notation (1 − Lj) indicates that βt has been increased to the (1 − Lj)th power. This weight-updating 
technique indicates that if the SVR system generated in the second stage fails to estimate data, its weight will 
be raised. βt is a measure of the developed SVR model’s reliability. A high βt suggests that the SVR system has a 
poor level of certainty. Because the quantity of w(t+1)

j  is required to calculate f (t+1)
j  in the first stage of the next 

computation phase (t + 1), Eq. (22) yields a transition to the next calculation cycle (t + 1). T is chosen by the 
training collection’s root mean squared error (RMSE)70, and boosting cycle is performed by Drucker71 when the 
average loss is less than 0.567.

Finally, in terms of estimation, each of the T SVR systems produces a forecasting y(t)j  for the jth unknown 
feature and a matching βt . These T forecasts are merged to provide a target variable utilizing the weighted median 
method, which is calculated as follows:

Arrange these T forecasts, y(t)j  (t = 1,…, T), in increasing sequence for the jth sample 67:

here, nj (j = 1, 2,…, J; J = T) is the initial cycle number t for the jth sample’s associated forecast. Consider the case 
where the biggest predicted value of yi was anticipated by the third computation cycle (t = 3), in which case y(nJ)j  
should equal y(3)j  . From the lowest term n1 to the rth term nr, add the sum of log( 1

βnj
) through j until the following 

inequality is satisfied67:

The overall estimate for the jth data is then extracted from the forecast from the nrth SVR system71. Utilizing 
the same technique as before, group estimates of outputs for additional inputs may also be produced67.

Deep belief network (DBN).  Artificial Neural Networks (ANNs) have been initially suggested in the 
1960s and now have grown in prominence in a variety of machine learning approaches, including classifica-
tion, clustering, regression, and forecasting72. ANNs are flexible analytical approaches that can build compli-
cated associations between real-world information. Among the several types of ANNs, the Back-Propagation 
(BP) mechanism is one of the most common structures. Although, it should be highlighted that using casual 
weights at the beginning of the training process is one of the difficulties with BP. As a consequence of this chal-
lenge, a unique technique, Deep Belief Network (DBN), for deep network pre-training was devised in 200673, 
leading to significant advances in machine learning.

A DBN is comprised of several Restricted Boltzmann Machines (RBMs), which are unattended creative 
prediction model that uses one hidden layer to mimic the presumed distribution of measurable variables. Our 
DBN uses a series of RBMs to identify relevant architectures, which extract high-level properties from original 
data. Figure 5 shows a DBN in graphical form74.

DBN training is divided into three phases75:

1.	 Conduct unsupervised and hungry layer-wise pre-training utilizing a collection of RBMs.
2.	 After haphazardly setting the linking weights matrix between the last hidden layer and the output neuron, 

calculate the error (first fine-tuning stage).
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3.	 As a second fine-tuning stage, use error Back Propagation. The RBM training technique is described as fol-
lows:

Restricted Boltzmann machine.  The encoder/decoder technique used by the Restricted Boltzmann Machine 
turns inputs  into an increased attributes statement (Fig. 6). The decoder may then retrieve the inputs. RBM 
growth through the reproduction of inputs is a major feature of DBN because this strategy is unregulated and 
does not need marked data76.
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Figure 5.   The DBN algorithm flowchart.
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Figure 6.   Schematic of the restricted Boltzmann machine.
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The RBM is made up of a number of visible, v ∈ {0,1}gv, and concealed units, h ∈ {0,1}gh, the number of which 
is represented by the gv and gh, respectively. The energy of the joint link {v,h} in RBM, considering bias, is77:

The vectors of visible units, hidden units, visible unit’s bias, and hidden unit’s bias are denoted by x, h, b, and 
c, respectively. The transpose vectors of v, b, and c are denoted by vT, bT, and cT, respectively. The weight matrix 
is also W. The following formula is used to compute the probability of each possible situation {v,h}v76:

here, Z is the normalizing factor and denotes:

In this work, we have used intelligent models based on two different methods. The reason for choosing the 
thermodynamic properties-based method is to make a model whose inputs are the same as the equations of 
state so that it is simple and a reasonable comparison can be made. The reason for choosing the method based 
on chemical structure is to make a model that is more general and can be used for different ionic liquids and 
operating conditions.

Equations of state (EOSs)
Equations of state (EOSs) are utilized  to determine the thermodynamic characteristics of pure sub-
stances and mixtures, particularly for processes at pressures higher than 10 bar, since in these circumstances at 
least one constituent exists in supercritical phase in most cases. The cubic EOSs are the most common types of 
EOS. The van der Waals EOS, proposed in 187378 as the first model to represent features of both liquid and vapor 
phases, is the source of these approaches. Numerous EOS have been built on top of the van der Waals EOS in 
recent decades. For instance, there are over 220 versions and numerous researches that are relevant to param-
eterization and application to compounds for the widely used Peng–Robinson EOS. Cubic EOS has become 
quite widespread in the oil and gas industry because they are straightforwardly formulated mathematically and 
provide good thermodynamic property relationships and forecasts for compounds of different fluids79. In this 
study, to evaluate the performance of intelligent techniques, the obtained results are compared with equations 
of state. In this regard, four equations of state including Peng–Robinson (PR), Soave–Redlich–Kwong (SRK), 
Redlich–Kwong (RK), and Zudkevitch–Joffe (ZJ) have been used. The mathematical relations of the equations 
mentioned are summarized in Table 4.

Results and discussion
Statistical analysis.  In this study, the solubility of gaseous hydrocarbons in ILs was predicted using 2145 
laboratory data with the four intelligent models already mentioned. For this purpose, two different methods 
based on thermodynamic properties and the chemical structure of ILs and hydrocarbons have been used. The 
process of model development and estimation of the solubility values is illustrated in Fig. 7. Statistical criteria 
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Table 4.   Equations of state applied in this work.
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comparing the performance of intelligent models are root mean squared error (RMSE) and coefficient of deter-
mination (R2), the mathematical relationships of which are defined as follows24,80:

where HSiexp , HSipred , HSiexp , and n refer to experimental hydrocarbon solubility, predicted hydrocarbon solubil-
ity, mean value of experimental hydrocarbon solubility, and total number of data points, respectively.

The results of statistical analysis of the developed models are reported in Table 5. According to the obtained 
results, the DBN model has the best performance in both methods. In the method based on thermodynamic 
properties, the DBN model has the highest accuracy with R2 and RMSE values of 0.9961 and 0.0054, respectively. 
The R2 and RMSE values for the DBN model in the chemical structure-based method are 0.9943 and 0.0065, 
respectively. Generally, the developed models are arranged in the following order of increasing accuracy:

Model (I): MARS < B-SVR < ELM < DBN.
Model (II): MARS < B-SVR < ELM < DBN.
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Figure 7.   Procedure of data preparation and model development for hydrocarbon solubility prediction.
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Graphical analysis.  Plotting the predicted values versus the experimental values obtain a cross plot dia-
gram. In this diagram, the more points that correspond to the X = Y line, the closer the predicted values are to the 
actual values, so the accuracy of the model will increase. Figure 8 shows a cross-plot diagram for models devel-
oped based on thermodynamic properties. As can be seen from Fig. 8, the DBN model has higher density points 
around the X = Y line, which indicates the higher accuracy of this model than other models, although other 
models are also in an acceptable situation. Figure 9 shows the cross-plot diagram of the results of the method 
based on chemical structure, temperature, and pressure. The graphical analysis presented in Fig. 9 also confirms 
the results of Table 5, and the DBN model has a more appropriate cross plot diagram than the other models.

Figures 10 and 11 illustrate the distribution of the deviation of the predicted values from the actual values 
for Model (I) and Model (II), respectively. The higher the focus around the zero line, the closer the predicted 
values are to the actual values and the more accurate the model. Therefore, as can be seen from Figs. 10 and 11, 
the DBN model is in a better position than the other smart models in both methods.

The Taylor diagram81 was developed in Fig. 12, which integrates a number of statistical variables for a more 
understandable representation. This illustration depicts all of the smart approaches in respect of how well they 
forecast gaseous hydrocarbon solubility in various ILs. Three performance parameters [standard deviation (SD), 
RMSE, and R2] of each network, including DBN, ELM, B-SVR, and MARS, are utilized to quantify the degree 
of discrepancy between the systems’ estimates and the related actual values. The reference point is a distance 
from the full measure that is used to calculate the centered RMSE. Another reference is the optimal estimation 
technique, which is denoted by a point with R2 equal to 1. Figure 12a,b show the Taylor diagram of the DBN 
model for the results of Model (I) and Model (II), respectively. In Fig. 12a, the RMSE and R2 values are 0.0054 and 
0.9961, respectively. In Fig. 12b, the RMSE and R2 values are 0.0065 and 0.9943, respectively. Figure 12 depicts 
the performance parameters of the systems after they have been encapsulated within the Taylor diagram. The 
Taylor diagram in this picture verifies DBN’s dominance by demonstrating that their worldwide performance 
assessment is the most accurate.

Equations of state evaluation.  Equations of state are one of the conventional methods for calculating the 
solubility of gases in ILs. Comparing the results of smart models with equations of state can reveal the efficiency 
and performance of smart models well. For this purpose, four equations of state including Peng–Robinson (PR), 
Soave–Redlich–Kwong (SRK), Redlich–Kwong (RK), and Zudkevitch–Joffe (ZJ) have been used to calculate the 
solubility of gaseous hydrocarbons in ILs. Figure 13 shows the results obtained for two systems ([BMIM][PF6]-
CH4 and [BMIM][PF6]-C2H6) at 323.15 K. As can be seen from Fig. 13, with increasing pressure, the solubility 
of gaseous hydrocarbons increases, a trend that can also be seen in the equations of state. Also, the solubility of 
C2H6 in [BMIIM][PF6] is higher compared to CH4. Another noteworthy point is the very good agreement of the 
results of the smart models with the experimental data. It can also be found that the equations of state overesti-
mate the solubility and the difference between the calculated values and the experimental data is also significant.

Hamedi et al.5 calculated the solubility of methane in ILs using two equations of state including modified 
Sanchez and Lacombe (SL) and cubic-plus-association (CPA). In this study, 649 experimental data related to 
19 ionic liquid and methane systems were used. Figure 14 shows a comparison of current study models and 
Hamedi et al. results. As can be seen, the accuracy of the intelligent models compared to the equations of state 
used by Hamedi et al.5 is significant. The advantages of the proposed models in the current study over the work 
of Hamedi et al. are the use of a wider database (2145 experimental data) including more diverse systems (48 
systems) and more advanced general models. Also, the results obtained in this study are more accurate than the 
research of Hamedi et al.

Trend analysis.  Involvement of various parameters such as temperature, pressure, intermolecular interac-
tions, etc. in the solubility of gases in ILs makes it difficult to find physical phenomena affecting the transfer 

Table 5.   Statistical analysis results of developed models.

Model Data

Statistical parameter

Model (I) Model (II)

RMSE R2 RMSE R2

Boosting-SVR

Train 0.0083 0.9906 0.0075 0.9923

Test 0.0119 0.9825 0.0110 0.9849

Total 0.0091 0.9889 0.0083 0.9907

DBN

Train 0.0033 0.9985 0.0055 0.9959

Test 0.0101 0.9874 0.0097 0.9883

Total 0.0054 0.9961 0.0065 0.9943

ELM

Train 0.0052 0.9963 0.0052 0.9964

Test 0.0105 0.9863 0.0111 0.9846

Total 0.0066 0.9942 0.0068 0.9938

MARS

Train 0.0135 0.9752 0.0104 0.9851

Test 0.0169 0.9646 0.0152 0.9714

Total 0.0142 0.9729 0.0115 0.9822
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process, but in simpler terms, changing solubility factors (such as Henry’s constant) due to changes in physical 
and chemical properties cause these trends82,83. Enthalpy, entropy, and interactions between gas and ionic liquid 
are the most important factors affecting the solubility of gases in ILs. Therefore, the effect of changes in pres-
sure, temperature, type of anion and cation on solubility is affected by changes in enthalpy and entropy. In other 
words, the endothermic or exothermic nature of the dissolution process, which is also depends on the interac-
tions between the gas and the ionic liquid, affects how the gas solubility changes with the increase of each of the 
mentioned parameters84.

Pressure and anion type effect.  Previous studies have shown that although ILs have similar solubility at low 
pressures85, increasing pressure leads to increasing the solubility of gases in ILs and the rate of increase varies for 
different ILs86. Figure 15 shows the changes in the solubility of gaseous hydrocarbons with increasing pressure 
for a number of systems used in this study. As can be seen, increasing the pressure increases the solubility of 
gaseous hydrocarbons in ILs. The effect of the type of anions existing in the structure of ILs has been studied in 
many studies86. As mentioned in the literature, the main reasons for changes in the solubility due to changes in 
pressure and anion type are enthalpy and entropy changes, and the interactions between gas and ILs84. The effect 
of a number of anions has been investigated for example. Investigation of the systems reported in Fig. 15 shows 
that the effect of anion type on the solubility of C2H6 in ILs is as follows:

Cation effect.  In previous studies, the influence of cation type has been investigated43. The reasons for the effect 
of cation type on solubility are similar to the reasons mentioned for the effect of anion type. In this study, the 

[BMIM][PF6] < [BMIM][TF2N] < [BMIM][eFAP].
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Figure 8.   Cross plot diagram of the results of Model (I): (a) DBN model, (b) ELM model, (c) B-SVR model, (d) 
MARS model.
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effect of a number of cations on the solubility of gaseous hydrocarbons in ILs has been studied. Figure 16 exam-
ines a number of systems studied in this work. According to the results obtained for the proposed systems, the 
effect of cation type on the solubility of methane in ILs is as follows:

Temperature and alkyl chain length effect.  Many researchers have studied the effect of temperature86 and alkyl 
chain length87 on the solubility of gases in ILs. The results show that increasing the temperature reduces the 
solubility86. Generally, the dependency of solubility on temperature is thermodynamically related to the enthalpy 
of dissolution. For example, in exothermic processes (such as dissolution of CO2 in ILs) the solubility of the 
gas decreases with increasing temperature, and in endothermic processes (such as dissolution of N2 in ILs) the 
increase in temperature increases the solubility83,84. Also, increasing the alkyl chain length increases the solubil-
ity of hydrocarbons in ILs87. The reason for this subject is the increased entropy of solvation for ILs84. According 
to Fig. 17, although increasing the alkyl chain length does not show a specific trend in ethane solubility in the 
proposed systems, increasing the temperature has reduced the ethane solubility in the proposed systems.

Effect of the type of hydrocarbon.  In order to investigate the effect of hydrocarbon type on the solubility of gase-
ous hydrocarbons, four different systems have been investigated. Figure 18 shows the trend of solubility changes 
for these four systems with increasing pressure at 320 K. According to the results, it can be seen that the solubility 
of proposed hydrocarbons in [BMIM][TF2N] is determined as follows:

[tes][TF2N] <
[

bmpip
]

[TF2N] <
[

cprop
]

[TF2N] < [toa][TF2N].
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Figure 9.   Cross plot diagram of the results of Model (II): (a) DBN model, (b) ELM model, (c) B-SVR model, 
(d) MARS model.
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Therefore, it can be concluded that increasing the molecular weight of hydrocarbons can increase their 
solubility in ILs.

Therefore, as it was investigated, different parameters can affect the solubility of gaseous hydrocarbons in 
ionic liquids, and this effect can vary depending on the type of gas and ionic liquid. For example, Ramdin et al.4 
reported that although the enthalpy of absorption of CO2 is higher in [amim][dca] than in [thtdp[phos], its 
solubility is lower in [amim][dca]. On the other hand, this effect was the opposite for CH4, and the solubility 
of methane in ionic liquids corresponded to the enthalpy of adsorption. Also, its solubility in ionic liquids with 
longer non-polar alkyl chains is higher. Thus, entropic effects and solvent–solvent interactions prevailed for 
CO2 and CH4, respectively. The solubility of hydrocarbons in ILs is important in many ways. The selection of 
ILs as solvents in reactions involving permanent gas and gas storage media is strongly influenced by the degree 
of gas solubility in ILs and is essential for the development of separation methods. Investigation of the effect 
of various parameters such as temperature, pressure, etc. is necessary to deal with the separation of CO2 from 
natural gas as well as the low adsorption of light hydrocarbons in ILs such as methane, ethane and propane. 
Therefore, evaluating the effect of temperature, pressure, anion and cation type, hydrocarbon type, and alkyl 
chain length can help researchers to select the appropriate ILs in different operating conditions. The findings 
of the study also show that ILs are suitable candidates for the solubility of hydrocarbons so they can be used in 
various operational applications.

C3H6 < C3H8 < C4H8 < C4H10.
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Figure 10.   Distribution of deviation of predicted values from actual values for Model (I): (a) DBN model, (b) 
ELM model, (c) B-SVR model, (d) MARS model.
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Conclusions
In this work, the solubility of gaseous hydrocarbons in ILs was predicted using DBN, ELM, Boost-SVR, and 
MARS models. In this regard, the thermodynamic properties and chemical substructures of gaseous hydrocar-
bons and ILs along with temperature and pressure have been used in distinct methods to predict the solubility 
of gaseous hydrocarbons in ILs. The findings of this study give the following conclusions:

•	 In the method based on thermodynamic properties, the DBN model with RMSE and R2 values of 0.0054 and 
0.9961, respectively, has the most accurate estimates.

•	 In the method based on chemical structure, temperature, and pressure, the DBN model with RMSE and R2 
values of 0.0065 and 0.9943, respectively, has the best performance.

•	 Comparison of the results of smart models with equations of state shows that the accuracy of the former is 
much higher than the latter.

•	 The study of the effect of different factors on the solubility of gaseous hydrocarbons shows that increasing 
the pressure and molecular weight of hydrocarbons increases the solubility, while increasing the temperature 
decreases the solubility of gaseous hydrocarbons in ILs.

•	 Investigation of the effect of the type of anion and cation in the structure of ILs shows that the following order 
have been established for the solubility of the studied systems:
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Figure 11.   Distribution of deviation of predicted values from actual values for Model (II): (a) DBN model, (b) 
ELM model, (c) B-SVR model, (d) MARS model.
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	   Order of the solubility of C2H6 in ILs based on the anion type: [BMIM][PF6] < [BMIM][TF2N] < [BMIM]
[eFAP]

	   Order of the solubility of CH4 in ILs based on the cation type: [tes][TF2N] < [bmpip][TF2N] < [cprop]
[TF2N] < [toa][TF2N]

Figure 12.   Taylor diagram of developed models: (a) Model (I), (b) Model (II).
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Figure 13.   Comparison of the results of the DBN models and equations of state; (a) [BMIM][PF6]-CH4, (b) 
[BMIM][PF6]-C2H6.
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Figure 14.   Comparison of the results of the current study models and equations of state used in previous 
studies.
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Figure 15.   Pressure and anion type effect on the solubility of gaseous hydrocarbons in ionic liquids.
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Figure 16.   Cation type effect on the solubility of gaseous hydrocarbons in ionic liquids.
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Figure 17.   Temperature and alkyl chain length effect on the solubility of gaseous hydrocarbons in ionic liquids.
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