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Deep learning‑based 
diagnosis from endobronchial 
ultrasonography images 
of pulmonary lesions
Takamasa Hotta, Noriaki Kurimoto, Yohei Shiratsuki, Yoshihiro Amano, Megumi Hamaguchi, 
Akari Tanino, Yukari Tsubata* & Takeshi Isobe

Endobronchial ultrasonography with a guide sheath (EBUS-GS) improves the accuracy of 
bronchoscopy. The possibility of differentiating benign from malignant lesions based on EBUS findings 
may be useful in making the correct diagnosis. The convolutional neural network (CNN) model 
investigated whether benign or malignant (lung cancer) lesions could be predicted based on EBUS 
findings. This was an observational, single-center cohort study. Using medical records, patients were 
divided into benign and malignant groups. We acquired EBUS data for 213 participants. A total of 
2,421,360 images were extracted from the learning dataset. We trained and externally validated a 
CNN algorithm to predict benign or malignant lung lesions. Test was performed using 26,674 images. 
The dataset was interpreted by four bronchoscopists. The accuracy, sensitivity, specificity, positive 
predictive value (PPV), and negative predictive value (NPV) of the CNN model for distinguishing 
benign and malignant lesions were 83.4%, 95.3%, 53.6%, 83.8%, and 82.0%, respectively. For the 
four bronchoscopists, the accuracy rate was 68.4%, sensitivity was 80%, specificity was 39.6%, PPV 
was 76.8%, and NPV was 44.2%. The developed EBUS-computer-aided diagnosis system is expected 
to read EBUS findings that are difficult for clinicians to judge with precision and help differentiate 
between benign lesions and lung cancers.

When lung cancer is suspected on chest X-ray or computed tomography examination, it is important to accurately 
collect cells and tissues from the suspected site to reach a definitive diagnosis. Endobronchial ultrasonography 
using a guide sheath (EBUS-GS) is a common technique implemented for obtaining biopsy specimens from 
peripheral pulmonary lesions1. The diagnostic yield is reported to be 83–87% when the probe is at the center of 
the lesion (within) and much lower at 42–61% when the probe is adjacent to the lesion1–3.

Generally, when performing EBUS-GS for diagnosis of a lung lesion, the suspicion of malignancy is high, 
and cancer diagnosis should not be missed (false negatives). When performing EBUS-GS for a peripheral lung 
lesion, because the technique is not performed under direct vision, it cannot be confirmed whether the biopsy 
was performed at the correct location.

Previous reports on ultrasound findings have classified internal tumor echo findings into three types (six 
subclasses) and stated that it is possible to discriminate between benign and malignant peripheral pulmonary 
lesions with high probability4. Thus, EBUS findings are very important for assisting final diagnosis. However, 
classification based on ultrasound findings has not been effectively utilized owing to variations in technology 
acquisition and accuracy.

Regarding the use of artificial intelligence (AI) in ultrasonic findings, deep learning application studies have 
been conducted on breast ultrasonography5 and intraductal papillary mucinous neoplasm of the pancreas6, and 
good results have been obtained. Histogram data collected from EBUS-GS images have been reported to be use-
ful for diagnosing lung cancers as a method for quantitatively evaluating EBUS images of peripheral pulmonary 
lesions7. Therefore, in the present study, we examined the efficacy and consistency of AI-assisted ultrasonic 
findings in distinguishing benign and malignant pulmonary lesions.
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Methods
Patient population.  For this observational retrospective cohort study, we obtained EBUS images of 
peripheral pulmonary lesions that were recorded between April 2017 and November 2019 at our institute. 
Bronchoscopy was performed in midazolam-sedated patients using a flexible bronchoscope (BF-P260F, BF-260, 
BF-6C260, or BF-1T260; Olympus Medical Systems, Tokyo, Japan). EBUS images were obtained using a min-
iature ultrasound probe (UM-S20-17S, UM-S20-20R, Olympus Medical Systems) and endoscopic ultrasound 
processors (Endoscopic Ultrasound Center; EU-ME1, Olympus Medical Systems). The inclusion criteria for 
EBUS images of malignancy were histopathologically confirmed cases of lung adenocarcinoma, squamous cell 
lung cancer, and small cell lung cancer, diagnosed either by surgery or bronchoscopic biopsy. The inclusion 
criteria for EBUS images of benign lesions were bacteriological diagnosis of histopathologically confirmed cases 
or the disappearance of lung shadows for a minimum of 6 months of follow-up. EBUS images of poor quality 
were excluded from the study due to the unclear depiction of lesions. Tumor lesions were visible on all images, 
and multiple images were collected for the same lesion to include different distances and angles. Lesions were 
selected by an experienced bronchoscopist (bronchoscopy specialist, 11 years of experience in bronchoscopy, 
and research experience related to EBUS imaging) to generate image datasets for deep learning models. This 
retrospective study was approved by the Shimane University Institutional Review Board (IRB study number: 
5073). The requirement for informed consent was waived due to the retrospective nature of the study, which was 
approved by the Shimane University Institutional Review Board. This study was conducted in accordance with 
the amended Declaration of Helsinki.

Data preprocessing.  Data augmentation was used to increase the variation of the image. Previous reports 
have shown that these techniques are effective in improving the accuracy of recognition and classification for 
analysis with endoscopic ultrasonography images8. The dataset augmentation methods used were rotation, 
inversion, and enlargement. Data augmentation was applied to the training image.

Model development.  Our convolutional neural network (CNN) structure is shown in Fig.  1. First, the 
EBUS image was input to the feature extraction CNN. In the first block of the CNN, local features, such as edges 
and textures, were extracted from the input image. When passing through a network, the features were inte-
grated. Finally, it was converted into a feature that was useful for discrimination between benign and malignant 
lesions. Next, these useful features were input into the classification neural network. In neural network classifica-

Figure 1.   Convolutional neural network architecture in this study. Feature extraction using CNN consists of 
two stages, with each stage consisting of multiple blocks and one pooling layer. The first stage consists of 11 
blocks and one pooling layer, while the second consists of 16 blocks and one global average pooling layer. One 
block consists of a convolution layer (Conv), batch normalization layer (BN), and rectified linear unit (ReLU) 
function. Conv is a dilated convolution. The size of the kernel is 3. Both the dilation size and padding size are 
3. The number of channels of Conv in the first and second stages is 135 and 270, respectively. The classification 
neural network is composed of a fully connected layer (FC) and a softmax layer. The figure was generated by 
PlotNeuralNet and modified. PlotNeuralNet v1.0.0 (https://​github.​com/​Haris​Iqbal​88/​PlotN​eural​Net) is released 
under the MIT License (https://​opens​ource.​org/​licen​ses/​mit-​licen​se.​php).

https://github.com/HarisIqbal88/PlotNeuralNet
https://opensource.org/licenses/mit-license.php
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tion, the probabilities of the lesion being benign or malignant are estimated. The one with the highest probability 
was used as the discrimination result.

Outcome measures.  The entire data was divided into training data and test data to check the accuracy of 
the model. Using hold-out validation, the images were divided into training (80% of patients) and test sets (20% 
of patients) (Fig. 2). Data with a new date were used as the test sets. The classification provided by the CNN-
computer-aided diagnosis (CAD) system was compared with the histopathology results. Accuracy, sensitivity, 
specificity, positive predictive value (PPV), and negative predictive value (NPV) were used as evaluation indexes.

To provide a comparison of the classification performance of the CNN-CAD system, four bronchoscopists 
were tasked with evaluating the test sets. Among them, two bronchoscopists were classified as Expert 1 (bron-
choscopy specialist, 35 years of experience in bronchoscopy, research works related to EBUS imaging) and Expert 
2 (bronchoscopy specialist, 7 years of experience in bronchoscopy, and research works related to EBUS imag-
ing). The others were classified as Trainee 1 (bronchoscopy specialist, 12 years of experience in bronchoscopy) 
and Trainee 2 (5 years of experience in bronchoscopy) after being trained in interpreting EBUS images. The 
bronchoscopists received the original EBUS image without information on the CNN-CAD system classification 
results and provided their own classifications (benign or malignant).

Visualization of the CNN‑CAD system.  CNN-based models provide excellent performance, but they 
lack intuitive components and are difficult to interpret. To better understand the prediction process of deep 
learning models, we used visualization techniques such as a novel class-discriminative localization technique 
and gradient-weighted class activation mapping9.

Statistical analysis.  Statistical analyses were performed using R (version 3.6.2, R Foundation for Statistical 
Computing, Vienna, Austria). Quantitative variables were reported as mean and standard deviation, and quali-
tative variables were reported as frequency and percentage. Categorical data were analyzed using Fisher’s exact 
test. Accuracy, sensitivity, specificity, PPV, and NPV between the bronchoscopists and the CNN-CAD system 
were expressed as percentages. The accuracy was compared using the McNemar test. Statistical significance was 
defined as a P-value < 0.05.

Results
Clinicopathological and patient characteristics.  After applying the inclusion and exclusion criteria, 
we finally used 2,421,360 images of 171 peripheral pulmonary lesions as the training image dataset (55,376 
images of 76 adenocarcinomas, 27,038 images of 41 squamous cell carcinomas, 5136 images of 10 small cell car-
cinomas, and 33,518 images of 44 benign lesions). Data augmentation was applied to the training image dataset 
(1,107,520 images of adenocarcinomas, 540,760 images of squamous cell carcinomas, 102,720 images of small 
cell carcinomas, and 670,360 images of benign lesions). Data recorded from April 2017 to June 2019 were used as 
the training dataset. We also procured a test dataset of 26,674 EBUS images of 42 peripheral pulmonary lesions 
(11,650 images of 16 adenocarcinomas, 4473 images of 9 squamous cell carcinomas, 2952 images of 5 small cell 
carcinomas, and 7599 images of 12 benign lesions) (Fig. 2). We then collated an independent test dataset of 42 
peripheral pulmonary lesions that had been recorded from June 2019 to November 2019 (16 adenocarcinoma, 9 

Figure 2.   Data preprocessing flow and analysis data breakdown in this study. Training image dataset were 
55,376 images of 76 adenocarcinomas, 27,038 images of 41 squamous cell carcinomas, 5136 images of 10 small 
cell carcinomas, and 33,518 images of 44 benign lesions. Data augmentation was applied to the training image 
dataset. Test dataset were 11,650 images of 16 adenocarcinomas, 4473 images of 9 squamous cell carcinomas, 
2952 images of 5 small cell carcinomas, and 7599 images of 12 benign lesions. The ratio for training and test 
datasets was 80:20. AD adenocarcinoma, SCC squamous cell carcinomas, SCLC small cell lung cancer.
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squamous cell carcinoma, 5 small cell carcinoma, and 12 benign lesions) (Table 1). The percentages of malignant 
lesions in the training and test datasets were 74.2% and 71.4%, respectively. There were no significant differences 
in lesion size or endobronchial ultrasound visualization. In malignant lesions, there was no significant differ-
ence in stage (according to the eighth edition of the TNM classification) between the training and test datasets 
(Table 2).

Model performance.  In the test dataset, 26,674 EBUS images of 42 peripheral pulmonary lesions were 
analyzed. The CNN-CAD system to differentiate malignant lesions (19,075 images) from benign lesions (7,599 
images) showed an accuracy, sensitivity, specificity, PPV, and NPV of 83.4% (95% CI: 83.0–83.9%), 95.3% (95% 
CI: 95.0–95.6%), 53.4% (95% CI: 52.3–54.6%), 83.8% (95% CI: 83.3–84.3%), and 82.0% (95% CI: 80.9–83.0%), 
respectively (Table 3). For each case, when the ratio of images estimated to be correct was 50% or more, the 
result was judged to be correct. Even if the positional relationship between the probe and the lesion was “adja-
cent to,” malignancy could be diagnosed (Fig. 3). In the 42 test cases (30 cases of malignant and 12 cases of 
benign lesions), the accuracy, sensitivity, specificity, PPV, and NPV of the CNN-CAD system in differentiating 
lung cancer patients from those with benign lesions were 83.3% (95% CI: 68.6–93.0%), 100% (95% CI: 83.3–

Table 1.   Clinicopathological characteristics.

Diagnosis Training dataset (N = 171) Test dataset (N = 42)

Malignant lesions (%) N = 127 N = 30

    Adenocarcinoma 76 (60) 16 (53)

    Squamous cell carcinoma 41 (32) 9 (30)

    Small-cell lung cancer 10 (8) 5 (17)

Benign lesions (%) N = 44 N = 12

    Infectious diseases 19 (43) 2 (16)

    Organizing pneumonia 4 (9) 1 (8)

Sarcoidosis/Amyloidoma/Fibrosis/Hamartoma 3 (7)/2 (4.5)/2 (4.5)/0 0/0/0/1(8)

    Benign (spontaneously disappear) 14 (32) 8 (68)

Table 2.   Patients’ characteristics.

Training dataset (N = 171) Test dataset (N = 42) P-value

Age, year, mean 72.7 ± 10.8 74.8 ± 12.6 0.072

Sex, female (%)/male (%) 57 (33)/114 (77) 12 (29)/30 (71) 0.5873

Lesion size, cm, mean 3.5 ± 2.1 3.1 ± 1.9 0.1856

Endobronchial ultrasound visualization, Adjacent to (%)/Within (%) 35 (20)/136 (80) 12 (29)/30 (71) 0.2992

Stage (%) 0.8394

    IA-B 51 (40) 12 (40)

    IIA-B 9 (7) 1 (3)

    IIIA-C 20 (16) 4 (13)

    IVA-B 47 (37) 13 (44)

Table 3.   Diagnostic performance of the convolutional neural network computer-aided detection system 
compared to bronchoscopist. CNN-CAD convolutional neural network computer-aided detection, PPV 
positive predictive value, NPV negative predictive value.

CNN-CAD CNN-CAD Bronchoscopist

Total (N = 4)(All images) (Each case) Expert 1 Expert 2 Trainee 1 Trainee 2

Accuracy, % 
(95% CI) 83.4 (83.0–83.9) 83.3 (68.6–93.0) 73.8 (58.0–86.1) 66.7 (50.5–80.4) 57.1 (41.0–72.3) 76.2 (60.5–87.9) 68.5 (60.8–

75.4)

Sensitivity, % 
(95% CI) 95.3 (95.0–95.6) 100 (83.3–100) 80 (61.4–92.3) 83.3 (65.3–94.4) 63.3 (43.9–80.1) 93.3 (77.9–99.2) 80.0 (71.7–

86.7)

Specificity, % 
(95% CI) 53.4 (52.3–54.6) 41.7 (15.2–72.3) 58.3 (27.7–84.8) 25 (5.5–57.2) 41.7 (15.2–72.3) 33.3 (9.9–65.1) 39.6 (25.8–

54.7)

PPV, % (95% 
CI) 83.8 (83.3–84.3) 81.1 (64.8–92.0) 82.8 (64.2–94.2) 73.5 (55.6–87.1) 73.1 (52.2–88.4) 77.8 (60.8–89.9) 76.8 (68.4–

83.9)

NPV, % (95% 
CI) 82.0 (80.9–83.0) 100 (35.9–100) 53.8 (25.1–80.8) 37.5 (8.5–75.5) 31.2 (11.0–58.7) 66.7 (22.3–95.7) 44.2 (29.1–

60.1)
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100%), 41.7% (95% CI: 15.2–72.3%), 81.1% (95% CI: 64.8–92.0%), and 100% (95% CI: 35.9–100%), respectively 
(Table 3). As with the CNN-CAD system, for the four bronchoscopists, if more than 50% reached the correct 
decision, the result was judged to be correct. On comparison, the accuracy of the CNN-CAD system was found 
to be higher than that of the four bronchoscopists (p = 0.0433) (Table 4).

Visualization was performed using gradient-weighted class activation mapping. The regions of interest (malig-
nant lesions) by CNN were visualized in red, and the regions of interest (benign lesions) were visualized in blue 
(Fig. 4).

Discussion
Our CNN-CAD system differentiated lung cancer from benign lung lesions with an accuracy of 83.4% in the 
independent test dataset. Furthermore, in a case-by-case analysis, the CNN-CAD system achieved a sensitivity 
of 100%. To the best of our knowledge, this is the first study to report the efficacy of the CNN-CAD system in 
distinguishing lung cancer from EBUS images.

The findings obtained by EBUS show the positional relationship between the ultrasonic probe and the lesion, 
and these positions are roughly divided into three patterns: within (lesion visualized all around), adjacent to 
(visualized adjacent to the core lesion), and invisible (lesion not visualized at all). The diagnosis rate differs 
depending on this positional relationship, and if the tumor cannot be physically reached by the biopsy device, 
tissue cannot be collected and the diagnosis rate drops to approximately 60% or less1–3. This study included 
adjacent to cases for both learning and testing datasets (Fig. 2). An accuracy of 83.4% was demonstrated, which 
points towards a room for improvement, but the technique may be useful in the cases where the EBUS probe is 
adjacent to the lesion.

Regarding the use of ultrasound images in bronchoscopy, it has been reported that convex probe endobron-
chial ultrasound sonographic images are useful. In a previous study10, a deep learning model was used to deter-
mine whether the mediastinal lymph nodes were benign or malignant. The accuracy was reported as 88.57%. 
Use of AI enables real-time diagnosis of a lesion, and if benign and malignant lesions can be distinguished based 
on the ultrasonic images, unnecessary biopsy can be avoided. We believe that diagnostic assistance using AI is 
useful not only for improving the accuracy of diagnosis but also for maintaining safety.

Methods for distinguishing benign and malignant lesions by using EBUS, which were based on the internal 
structure of the lesion, have been reported in the literature. The focus was on internal echo, bronchial and vas-
cular patency, and morphology of the hyperechoic region4. In this study, the visualization of CNN-CAD system 
suggests that AI pays attention not only to the internal structure but also to the edges. AI may reflect differences 
that are undetectable to the human eye, such as echo attenuation.

One limitation of this study is that it was an observational study conducted in a single facility. However, 
virtual bronchoscopic navigation11 or electromagnetic navigation bronchoscopy systems12,13 have emerged as a 
means of supporting biopsy-based diagnosis of peripheral pulmonary lesions. The existing technical differences 
between the various facilities are being equalized by using an image-guided system.

Figure 3.   Accuracy for each case. For each case, when the ratio of images estimated to be correct was 50% or 
more, it was judged to be correct. When the endobronchial ultrasound visualization was adjacent to case, the 
graph showed a sprite pattern.

Table 4.   Comparison of accuracy between the CNN-CAD model and four bronchoscopists. CNN-CAD 
convolutional neural network computer-aided detection.

Bronchoscopists (total N = 4) Accuracy

Correct Incorrect P-value

CNN-CAD (each case)
Correct 25 10

0.0433
Incorrect 2 5
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Another limitation of this study was the lack of data on benign diseases, which reduced the specificity of 
the obtained results. However, due to the nature of bronchoscopy itself, which deals mainly with malignancies, 
sensitivity takes precedence over specificity. As a multicenter study, it is also necessary to collect data on benign 
diseases. In the future, we aim to conduct studies to determine whether real-time evaluation of EBUS data during 
bronchoscopy can contribute to the diagnostic accuracy.

In conclusion, we can state that use of CNN-CAD system for diagnosing peripheral pulmonary lesions aids 
in the accurate diagnosis of lung cancer.

Data availability
The datasets generated and analyzed during the current study are not publicly available due to the waiver of the 
requirement of consent from patients, but are available from the corresponding author on reasonable request. 
The data provided will be de-identified, not raw data.
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