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A processing‑in‑pixel‑in‑memory 
paradigm for resource‑constrained 
TinyML applications
Gourav Datta1,3*, Souvik Kundu1,3, Zihan Yin1,3, Ravi Teja Lakkireddy1, Joe Mathai2, 
Ajey P. Jacob2, Peter A. Beerel1 & Akhilesh R. Jaiswal1,2

The demand to process vast amounts of data generated from state‑of‑the‑art high resolution 
cameras has motivated novel energy‑efficient on‑device AI solutions. Visual data in such cameras 
are usually captured in analog voltages by a sensor pixel array, and then converted to the digital 
domain for subsequent AI processing using analog‑to‑digital converters (ADC). Recent research has 
tried to take advantage of massively parallel low‑power analog/digital computing in the form of 
near‑ and in‑sensor processing, in which the AI computation is performed partly in the periphery of 
the pixel array and partly in a separate on‑board CPU/accelerator. Unfortunately, high‑resolution 
input images still need to be streamed between the camera and the AI processing unit, frame by 
frame, causing energy, bandwidth, and security bottlenecks. To mitigate this problem, we propose 
a novel Processing‑in‑Pixel‑in‑memory  (P2M) paradigm, that customizes the pixel array by adding 
support for analog multi‑channel, multi‑bit convolution, batch normalization, and Rectified Linear 
Units (ReLU). Our solution includes a holistic algorithm‑circuit co‑design approach and the resulting 
 P2M paradigm can be used as a drop‑in replacement for embedding memory‑intensive first few layers 
of convolutional neural network (CNN) models within foundry‑manufacturable CMOS image sensor 
platforms. Our experimental results indicate that  P2M reduces data transfer bandwidth from sensors 
and analog to digital conversions by ∼ 21× , and the energy‑delay product (EDP) incurred in processing 
a MobileNetV2 model on a TinyML use case for visual wake words dataset (VWW) by up to ∼ 11× 
compared to standard near‑processing or in‑sensor implementations, without any significant drop in 
test accuracy.

Today’s widespread applications of computer vision spanning  surveillance1, disaster  management2, camera traps 
for wildlife  monitoring3, autonomous driving, smartphones, etc., are fueled by the remarkable technological 
advances in image sensing  platforms4 and the ever-improving field of deep learning  algorithms5. However, 
hardware implementations of vision sensing and vision processing platforms have traditionally been physi-
cally segregated. For example, current vision sensor platforms based on CMOS technology act as transduction 
entities that convert incident light intensities into digitized pixel values, through a two-dimensional array of 
 photodiodes6. The vision data generated from such CMOS Image Sensors (CIS) are often processed elsewhere in 
a cloud environment consisting of CPUs and  GPUs7. This physical segregation leads to bottlenecks in throughput, 
bandwidth, and energy-efficiency for applications that require transferring large amounts of data from the image 
sensor to the back-end processor, such as object detection and tracking from high-resolution images/videos.

To address these bottlenecks, many researchers are trying to bring intelligent data processing closer to the 
source of the vision data, i.e., closer to the CIS, taking one of three broad approaches—near-sensor  processing8,9, 
in-sensor  processing10, and in-pixel  processing11–13. Near-sensor processing aims to incorporate a dedicated 
machine learning accelerator chip on the same printed circuit  board8, or even 3D-stacked with the CIS  chip9. 
Although this enables processing of the CIS data closer to the sensor rather than in the cloud, it still suffers from 
the data transfer costs between the CIS and processing chip. On the other hand, in-sensor processing  solutions10 
integrate digital or analog circuits within the periphery of the CIS sensor chip, reducing the data transfer between 
the CIS sensor and processing chips. Nevertheless, these approaches still often require data to be streamed (or 
read in parallel) through a bus from CIS photo-diode arrays into the peripheral processing  circuits10. In con-
trast, in-pixel processing solutions, such  as11–15, aim to embed processing capabilities within the individual CIS 
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pixels. Initial efforts have focused on in-pixel analog convolution  operation14,15 but  many11,14–16 require the use 
of emerging non-volatile memories or 2D materials. Unfortunately, these technologies are not yet mature and 
thus not amenable to the existing foundry-manufacturing of CIS. Moreover, these works fail to support multi-bit, 
multi-channel convolution operations, batch normalization (BN), and Rectified Linear Units (ReLU) needed for 
most practical deep learning applications. Furthermore, works that target digital CMOS-based in-pixel hardware, 
organized as pixel-parallel single instruction multiple data (SIMD) processor  arrays12, do not support convolution 
operation, and are thus limited to toy workloads, such as digit recognition. Many of these works rely on digital 
processing which typically yields lower levels of parallelism compared to their analog in-pixel alternatives. In 
contrast, the work  in13, leverages in-pixel parallel analog computing, wherein the weights of a neural network 
are represented as the exposure time of individual pixels. Their approach requires weights to be made available 
for manipulating pixel-exposure time through control pulses, leading to a data transfer bottleneck between the 
weight memories and the sensor array. Thus, an in-situ CIS processing solution where both the weights and input 
activations are available within individual pixels that efficiently implements critical deep learning operations 
such as multi-bit, multi-channel convolution, BN, and ReLU operations has remained elusive. Furthermore, all 
existing in-pixel computing solutions have targeted datasets that do not represent realistic applications of machine 
intelligence mapped onto state-of-the-art CIS. Specifically, most of the existing works are focused on simplistic 
datasets like  MNIST12, while  few13 use the CIFAR-10 dataset which has input images with a significantly low 
resolution ( 32× 32 ), that does not represent images captured by state-of-the-art high resolution CIS.

Towards that end, we propose a novel in-situ computing paradigm at the sensor nodes called Processing-
in-Pixel-in-Memory  (P2M), illustrated in Fig. 1, that incorporates both the network weights and activations to 
enable massively parallel, high-throughput intelligent computing inside CISs. In particular, our circuit architec-
ture not only enables in-situ multi-bit, multi-channel, dot product analog acceleration needed for convolution, 
but re-purposes the on-chip digital correlated double sampling (CDS) circuit and single slope ADC (SS-ADC) 
typically available in conventional CIS to implement all the required computational aspects for the first few layers 
of a state-of-the-art deep learning network. Furthermore, the proposed architecture is coupled with a circuit-
algorithm co-design paradigm that captures the circuit non-linearities, limitations, and bandwidth reduction 
goals for improved latency and energy-efficiency. The resulting paradigm is the first to demonstrate feasibility 
for enabling complex, intelligent image processing applications (beyond toy datasets), on high resolution images 
of Visual Wake Words (VWW) dataset, catering to a real-life TinyML application. We choose to evaluate the 
efficacy of  P2M on TinyML applications, as they impose tight compute and memory budgets, that are otherwise 
difficult to meet with current in- and near-sensor processing solutions, particularly for high-resolution input 
images. Key highlights of the presented work are as follows:

1. We propose a novel processing-in-pixel-in-memory  (P2M) paradigm for resource-constrained sensor intel-
ligence applications, wherein novel memory-embedded pixels enable massively parallel dot product accelera-
tion using in-situ input activations (photodiode currents) and in-situ weights all available within individual 
pixels.

2. We propose re-purposing of on-chip memory-embedded pixels, CDS circuits and SS-ADCs to implement 
positive and negative weights, BN, and digital ReLU functionality within the CIS chip, thereby mapping all 
the computational aspects for the first few layers of a complex state-of-the-art deep learning network within 
CIS.

3. We further develop a compact MobileNet-V2 based model optimized specifically for  P2M-implemented 
hardware constraints, and benchmark its accuracy and energy-delay product (EDP) on the VWW dataset, 
which represents a common use case of visual TinyML.

The remainder of the paper is organized as follows. Section "Challenges and opportunities in  P2M" discusses the 
challenges and opportunities for  P2M. Section "P2M circuit implementation" explains our proposed  P2M circuit 
implementation using manufacturable memory technologies. Then, Sect. "P2M-constrained algorithm-circuit 
co-design" discusses our approach for  P2M-constrained algorithm-circuit co-design. Section "Experimental 
results" presents our TinyML benchmarking dataset, model architectures, test accuracy and EDP results. Finally, 
some conclusions are provided in Sect. "Conclusions".

Figure 1.  Existing and proposed solutions to alleviate the energy, throughput, and bandwidth bottleneck 
caused by the segregation of Sensing and Compute.
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Challenges and opportunities in  P2M
The ubiquitous presence of CIS-based vision sensors has driven the need to enable machine learning computa-
tions closer to the sensor nodes. However, given the computing complexity of modern CNNs, such as Resnet-1817 
and  SqueezeNet18, it is not feasible to execute the entire deep-learning network, including all the layers within 
the CIS chip. As a result, recent intelligent vision sensors, for example, from  Sony9, which is equipped with basic 
AI processing functionality (e.g., computing image metadata), features a multi-stacked configuration consisting 
of separate pixel and logic chips that must rely on high and relatively energy-expensive inter-chip communica-
tion bandwidth.

Alternatively, we assert that embedding part of the deep learning network within pixel arrays in an in-situ 
manner can lead to a significant reduction in data bandwidth (and hence energy consumption) between sensor 
chip and downstream processing for the rest of the convolutional layers. This is because the first few layers of 
carefully designed CNNs, as explained in “P2M-constrained algorithm-circuit co-design” section, can have a 
significant compressing property, i.e., the output feature maps have reduced bandwidth/dimensionality compared 
to the input image frames. In particular, our proposed  P2M paradigm enables us to map all the computations of 
the first few layers of a CNN into the pixel array. The paradigm includes a holistic hardware-algorithm co-design 
framework that captures the specific circuit behavior, including circuit non-idealities, and hardware limitations, 
during the design, optimization, and training of the proposed machine learning networks. The trained weights for 
the first few network layers are then mapped to specific transistor sizes in the pixel-array. Because the transistor 
widths are fixed during manufacturing, the corresponding CNN weights lack programmability. Fortunately, it is 
common to use the pre-trained versions of the first few layers of modern CNNs as high-level feature extractors 
are common across many vision  tasks19. Hence, the fixed weights in the first few CNN layers do not limit the use 
of our proposed scheme for a wide class of vision applications. Moreover, we would like to emphasize that the 
memory-embedded pixel also work seamlessly well by replacing fixed transistors with emerging non-volatile 
memories, as described in “CIS process integration and area considerations” section. Finally, the presented  P2M 
paradigm can be used in conjunction with existing near-sensor processing approaches for added benefits, such 
as, improving the energy-efficiency of the remaining convolutional layers.

P2M circuit implementation
This section describes key circuit innovations that enable us to embed all the computational aspects for the first 
few layers of a complex CNN architecture within the CIS. An overview of our proposed pixel array that enables 
the availability of weights and activations within individual pixels with appropriate peripheral circuits is shown 
in Fig. 2.

Multi‑channel, multi‑bit weight embedded pixels. Our modified pixel circuit builds upon the stand-
ard three transistor pixel by embedding additional transistors Wi s that represent weights of the CNN layer, as 
shown in Fig. 2. Each weight transistor Wi is connected in series with the source-follower transistor Gs . When 
a particular weight transistor Wi is activated (by pulling its gate voltage to VDD ), the pixel output is modulated 
both by the driving strength of the transistor Wi and the voltage at the gate of the source-follower transistor Gs . 

Figure 2.  Proposed circuit techniques based on presented  P2M scheme capable of mapping all computational 
aspects for the first few layers of a modern CNN layer within CIS pixel arrays.
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A higher photo-diode current implies the PMOS source follower is strongly ON, resulting in an increase in the 
output pixel voltage. Similarly, a higher width of the weight transistor Wi results in lower transistor resistance 
and hence lower source degeneration for the source follower transistor, resulting in higher pixel output volt-
age. Figure 3a, obtained from SPICE simulations using 22 nm GlobalFoundries technology exhibits the desired 
dependence on transistor width and input photo-diode current. Thus, the pixel output performs an approximate 
multiplication of the input light intensity (voltage at the gate of transistor Gs ) and the weight (or driving strength) 
of the transistor Wi , as exhibited by the plot in Fig. 3b. The approximation stems from the fact that transistors 
are inherently non-linear. In “P2M-constrained algorithm-circuit co-design” section, we leverage our hardware-
algorithm co-design framework to incorporate the circuit non-linearities within the CNN training framework, 
thereby maintaining close to state-of-the-art classification accuracy. Multiple weight transistors Wi s are incor-
porated within the same pixel and are controlled by independent gate control signals. Each weight transistor 
implements a different channel in the output feature map of the layer. Thus, the gate signals represent select lines 
for specific channels in the output feature map. Note, it is desirable to reduce the number of output channels so 
as to reduce the total number of weight transistors embedded within each pixel while ensuring high test accuracy 
for VWW. For our work, using a holistic hardware-algorithm co-design framework (“Classification accuracy” 
section), we were able to reduce the number of channels in the first layer from 16 to 8, this implies the proposed 
circuit requires 8 weight transistors per pixel, which can be reasonably implemented.

The presented circuit can support both overlapping and non-overlapping strides depending on the number 
of weight transistors Wi s per pixel. Specifically, each stride for a particular kernel can be mapped to a different 
set of weight transistors over the pixels (input activations). The transistors Wi s represent multi-bit weights as 

Figure 3.  (a) Pixel output voltage as a function of weight (transistor width) and input activation (normalized 
photo-diode current) simulated on GlobalFoundries 22 nm FD-SOI node. As expected pixel output increases 
both as a function of weights and input activation. (b) A scatter plot comparing pixel output voltage to ideal 
multiplication value of Weights×Input activation (Normalized W × I ). (c) Analog convolution output voltage 
versus ideal normalized convolution value when 75 pixels are activated simultaneously.
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the driving strength of the transistors can be controlled over a wide range based on transistor width, length, and 
threshold voltage.

In‑situ multi‑pixel convolution operation. To achieve the convolution operation, we simultaneously 
activate multiple pixels. In the specific case of VWW, we activate X × Y × 3 pixels at the same time, where X 
and Y denote the spatial dimensions and 3 corresponds to the RGB (red, blue, green) channels in the input acti-
vation layer. For each activated pixels, the pixel output is modulated by the photo-diode current and the weight 
of the activated Wi transistor associated with the pixel, in accordance with Fig. 3a,b. For a given convolution 
operation only one weight transistor is activated per pixel, corresponding to a specific channel in the first layer 
of the CNN. The weight transistors Wi represent multi-bit weights through their driving strength. As detailed in 
“Multi-channel, multi-bit weight embedded pixels” section, for each pixel, the output voltage approximates the 
multiplication of light intensity and weight. For each bit line, shown as vertical blue lines in Fig. 2, the cumula-
tive pull up strength of the activated pixels connected to that line drives it high. The increase in pixel output 
voltages accumulate on the bit lines implementing an analog summation operation. Consequently, the voltage at 
the output of the bit lines represent the convolution operation between input activations and the stored weight 
inside the pixel.

Figure 3c plots the output voltage (at node Analog Convolution Output in Fig. 2) as a function of normal-
ized ideal convolution operation. The plot in the figure was generated by considering 75 pixels are activated, 
simultaneously. For each line in Fig. 3c, the activated weight transistors Wi are chosen to have the same width 
and the set of colored lines represents the range of widths. For each line, the input I is swept from its minimum 
to maximum value and the ideal dot product is normalized and plotted on x-axis. The y-axis plots the actual 
SPICE circuit output. The largely linear nature of the plot indicates that the circuits are working as expected and 
the small amount of non-linearities are captured in our training framework described in “Custom convolution 
for the first layer modeling circuit non-idealities” section.

Note, in order to generate multiple output feature maps, the convolution operation has to be repeated for 
each channel in the output feature map. The corresponding weight for each channel is stored in a separate weight 
transistor embedded inside each pixel. Thus, there are as many weight transistors embedded within a pixel as 
there are number of channels in the output feature map. Note that even though we can reduce the number of 
filters to 8 without any significant drop in accuracy for the VWW dataset, if needed, it is possible to increase 
the number of filters to 64 (many SOTA CNN architectures have up to 64 channels in their first layer), without 
significant increase in area using advanced 3D integration, as described in “CIS process integration and area 
considerations” section.

In summary, the presented scheme can perform in-situ multi-bit, multi-channel analog convolution operation 
inside the pixel array, wherein both input activations and network weights are present within individual pixels.

Re‑purposing digital correlated double sampling circuit and single‑slope ADCs as ReLU neu‑
rons. Weights in a CNN layer span positive and negative values. As discussed in the previous sub-section, 
weights are mapped by the driving strength (or width) of transistors Wi s. As the width of transistors cannot be 
negative, the Wi transistors themselves cannot represent negative weights. Interestingly, we circumvent this issue 
by re-purposing on-chip digital CDS circuit present in many state-of-the-art commercial  CIS20,21. A digital CDS 
is usually implemented in conjunction to column parallel Single Slope ADCs (SS-ADCs). A single slope ADC 
consists of a ramp-generator, a comparator, and a counter (see Fig. 2). An input analog voltage is compared 
through the comparator to a ramping voltage with a fixed slope, generated by the ramp generator. A counter 
which is initially reset, and supplied with an appropriate clock, keeps counting until the ramp voltage crosses the 
analog input voltage. At this point, the output of counter is latched and represents the converted digital value 
for input analog voltage. A traditional CIS digital CDS circuit takes as input two correlated samples at two dif-
ferent time instances. The first sample corresponds to the reset noise of the pixel and the second sample to the 
actual signal superimposed with the reset noise. A digital CIS CDS circuit then takes the difference between the 
two samples, thereby, eliminating reset noise during ADC conversion. In an SS-ADC the difference is taken by 
simply making the counter ‘up’ count for one sample and ‘down’ count for the second.

We utilize the noise cancelling, differencing behavior of the CIS digital CDS circuit already available on com-
mercial CIS chips to implement positive and negative weights and implement ReLU. First, each weight transistor 
embedded inside a pixel is ‘tagged’ as a positive or a ‘negative weight’ by connecting it to ‘red lines’ (marked as 
VDD for positive weights in Fig. 2) and ‘green lines’ (marked as VDD for negative weights in Fig. 2). For each 
channel, we activate multiple pixels to perform an inner-product and read out two samples. The first sample cor-
responds to a high VDD voltage applied on the ‘red lines’ (marked as VDD for positive weights in Fig. 2) while 
the ‘green lines’ (marked as VDD for negative weights in Fig. 2) are kept at ground. The accumulated multi-bit 
dot product result is digitized by the SS-ADC, while the counter is ‘up’ counting. The second sample, on the other 
hand, corresponds to a high VDD voltage applied on the ‘green lines’ (marked as VDD for negative weights in 
Fig. 2) while the ‘red lines’ (marked as VDD for positive weights in Fig. 2) are kept at ground. The accumulated 
multi-bit dot product result is again digitized and also subtracted from the first sample by the SS-ADC, while 
the counter is ‘down’ counting. Thus, the digital CDS circuit first accumulates the convolution output for all 
positive weights and then subtracts the convolution output for all negative weights for each channel, controlled 
by respective select lines for individual channels. Note, possible sneak currents flowing between weight tran-
sistors representing positive and negative weights can be obviated by integrating a diode in series with weight 
transistors or by simply splitting each weight transistor into two series connected transistors, where the channel 
select lines control one of the series connected transistor, while the other transistor is controlled by a select line 
representing positive/negative weights.
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Interestingly, re-purposing the on-chip CDS for implementing positive and negative weights also allows us to 
easily implement a quantized ReLU operation inside the SS-ADC. ReLU clips negative values to zero. This can 
be achieved by ensuring that the final count value latched from the counter (after the CDS operation consisting 
of ‘up’ counting and then ‘down’ counting’) is either positive or zero. Interestingly, before performing the dot 
product operation, the counter can be reset to a non-zero value representing the scale factor of the BN layer as 
described in “P2M-constrained algorithm-circuit co-design” section. Thus, by embedding multi-pixel convolu-
tion operation and re-purposing on-chip CDS and SS-ADC circuit for implementing positive/negative weights, 
batch-normalization and ReLU operation, our proposed  P2M scheme can implement all the computational aspect 
for the first few layers of a complex CNN within the pixel array enabling massively parallel in-situ computations.

Putting these features together, our proposed  P2M circuit computes one channel at a time and has three 
phases of operation: 

1. Reset Phase: First, the voltage on the photodiode node M (see Fig. 2) is pre-charged or reset by activating 
the reset transistor Gr . Note, since we aim at performing multi-pixel convolution, the set of pixels X × Y × 3 
are reset, simultaneosuly.

2. Multi-pixel Convolution Phase: Next, we discharge the gate of the reset transistor Gr which deactivates Gr . 
Subsequently, X × Y × 3 pixels are activated by pulling the gate of respective GH transistors to VDD. Within 
the activated set of pixels, a single weight transistor corresponding to a particular channel in the output 
feature map is activated, by pulling high its gate voltage through the select lines (labeled as select lines for 
multiple channels in Fig. 2). As the photodiode is sensitive to the incident light, photo-current is gener-
ated as light shines upon the diode (for a duration equal to exposure time), and voltage on the gate of Gs is 
modulated in accordance to the photodiode current that is proportional to the intensity of incident light. 
The pixel output voltage is a function of the incident light (voltage on node M) and the driving strength of 
the activated weight transistor within each pixel. Pixel output from multiple pixels are accumulated on the 
column-lines and represent the multi-pixel analog convolution output. The SS-ADC in the periphery converts 
analog output to a digital value. Note, the entire operation is repeated twice, one for positive weights (‘up’ 
counting) and another for negative weights (‘down counting’).

3. ReLU Operation: Finally, the output of the counter is latched and represents a quantized ReLU output. It is 
ensured that the latched output is either positive or zero, thereby mimicking the ReLU functionality within 
the SS-ADC.

The entire  P2M circuit is simulated using commercial 22 nm GlobalFoundries FD-SOI (fully depleted silicon-
on-insulator) technology, the SS-ADCs are implemented using a using a bootstrap ramp generator and dynamic 
comparators. Assuming the counter output which represents the ReLU function is an N-bit integer, it needs 2N 
cycles for a single conversion. The ADC is supplied with a 2GHz clock for the counter circuit. SPICE simulations 
exhibiting the multiplicative nature of weight transistor embedded pixels with respect to photodiode current is 
shown in Fig. 3a,b. Functional behavior of the circuit for analog convolution operation is depicted in Fig. 3c. A 
typical timing waveform showing pixel operation along with SS-ADC operation simulated on 22 nm Global-
Foundries technology node is shown in Fig. 4.

It may also be important to note that a highlight of our proposal is that we re-purpose various circuit func-
tions already available in commercial cameras. This ensures most of the existing peripheral and corresponding 
timing control blocks would require only minor modification to support our proposed  P2M computations. Spe-
cifically, instead of activating one row at a time in a rolling shutter manner,  P2M requires activation of group of 
rows, simultaneously, corresponding to the size of kernels in the first layers. Multiple group of rows would then 

Figure 4.  (a) A typical timing waveform, showing double sampling (one for positive and other for negative) 
weights. The numerical labels in the figure correspond to the numerical label in the circuit shown in Fig. 2. (b) 
Typical timing waveform for the SS-ADC showing comparator output (Comp), counter enable (trigger), ramp 
generator output, and counter clock (Counter).
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be activated in a typical rolling shutter format. Overall, the sequencing of pixel activation (except for the fact 
that group of rows have to be activated instead of a single row), CDS, ADC operation and bus-readout would 
be similar to typical  cameras22.

CIS process integration and area considerations. In this section, we would like to highlight the viabil-
ity of the proposed  P2M paradigm featuring memory-embedded pixels with respect to its manufacturability 
using existing foundry processes. A representative illustration of a heterogeneously integrated system catering to 
the needs of the proposed  P2M paradigm is shown in Fig. 5. The figure consists of two key elements, (i) backside 
illuminated CMOS image sensor (Bi-CIS), consisting of photo-diodes, read-out circuits and pixel transistors 
(reset, source follower and select transistors), and (ii) a die consisting of multiple weight transistors per pixel 
(refer Fig 2). From Fig. 2, it can be seen that each pixel consists of multiple weight transistors that would lead to 
exceptionally high area overhead. However, with the presented heterogeneous integration scheme of Fig. 5, the 
weight transistors are vertically aligned below a standard pixel, thereby incurring no (or minimal) increase in 
footprint. Specifically, each Bi-CIS chip can be implemented in a leading or lagging technology node. The die 
consisting of weight transistors can be built on an advanced planar or non-planar technology node such that 
the multiple weight transistors can be accommodated in the same footprint occupied by a single pixel (assum-
ing pixel sizes are larger than the weight transistor embedded memory circuit configuration). The Bi-CIS image 
sensor chip/die is heterogeneously integrated through a bonding process (die-to-die or die-to-wafer) integrat-
ing it onto the die consisting of weight transistors. Preferably, a die-to-wafer low-temperature metal-to-metal 
fusion with a dielectric-to-dielectric direct bonding hybrid process can achieve high-throughput sub-micron 
pitch scaling with precise vertical  alignment23 . One of the advantages of adapting this heterogeneous integration 
technology is that chips of different sizes can be fabricated at distinct foundry sources, technology nodes, and 
functions and then integrated together. In case there are any limitations due to the increased number of transis-
tors in the die consisting of the weights, a conventional pixel-level integration scheme, such as Stacked Pixel 
Level Connections (SPLC), which shields the logic CMOS layer from the incident light through the Bi-CIS chip 
region, would also provide a high pixel density and a large dynamic  range24. Alternatively, one could also adopt 
the through silicon via (TSV) integration technique for front-side illuminated CMOS image sensor (Fi-CIS), 
wherein the CMOS image sensor is bonded onto the die consisting of memory elements through a TSV process. 
However, in the Bi-CIS, the wiring is moved away from the illuminated light path allowing more light to reach 
the sensor, giving better low-light  performance25.

Advantageously, the heterogeneous integration scheme can be used to manufacture  P2M sensor systems on 
existing as well as emerging technologies. Specifically, the die consisting of weight transistors could use a ROM-
based structure as shown in “P2M circuit implementation” section or other emerging programmable non-volatile 
memory technologies like  PCM26,  RRAM27,  MRAM28, ferroelectric field effect transistors (FeFETs)29 etc., manu-
factured in distinct foundries and subsequently heterogeneously integrated with the CIS die. Thus, the proposed 
heterogeneous integration allows us to achieve lower area-overhead, while simultaneously enabling seamless, 
massively parallel convolution. Specifically, based on reported contacted poly pitch and metal pitch  numbers30, 
we estimate more than 100 weight transistors can be embedded in a 3D integrated die using a 22 nm technology, 
assuming the underlying pixel area (dominated by the photodiode) is 10 µ m × 10 µ m. Availability of back-end-
of-line monolithically integrated two terminal non-volatile memory devices could allow denser integration of 
weights within each pixel. Such weight embedded pixels allow individual pixels to have in-situ access to both 
activation and weights as needed by the  P2M paradigm which obviates the need to transfer weights or activation 
from one physical location to another through a bandwidth constrained bus. Hence, unlike other multi-chip 
 solutions9, our approach does not incur energy bottlenecks.

Figure 5.  Representative illustration of heterogeneously integrated system featuring  P2M paradigm, built on 
backside illuminated CMOS image sensor (Bi-CIS). 1© Micro lens, 2© Light shield, 3© Backside illuminated 
CMOS Image Sensor (Bi-CIS), 4© Backend of line of the Bi-CIS, 5© Die consisting of weight transistors, 6© solder 
bumps for input/output bus (I/O).
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P2M‑constrained algorithm‑circuit co‑design
In this section, we present our algorithmic optimizations to standard CNN backbones that are guided by (1)  P2M 
circuit constraints arising due to analog computing nature of the proposed pixel array and the limited conver-
sion precision of on-chip SS-ADCs, (2) the need for achieving state-of-the-art test accuracy, and (3) maximizing 
desired hardware metrics of high bandwidth reduction, energy-efficiency and low-latency of  P2M computing, 
and meeting the memory and compute budget of the VWW application. The reported improvement in hardware 
metrics (illustrated in “EDP estimation” section), is thus a result of intricate circuit-algorithm co-optimization.

Custom convolution for the first layer modeling circuit non‑idealities. From an algorithmic per-
spective, the first layer of a CNN is a linear convolution operation followed by BN, and non-linear (ReLU) 
activation. The  P2M circuit scheme, explained in “P2M circuit implementation” section, implements convolution 
operation in analog domain using modified memory-embedded pixels. The constituent entities of these pixels 
are transistors, which are inherently non-linear devices. As such, in general, any analog convolution circuit con-
sisting of transistor devices will exhibit non-ideal non-linear behavior with respect to the convolution operation. 
Many existing works, specifically in the domain of memristive analog dot product operation, ignore non-ideal-
ities arising from non-linear transistor  devices31,32. In contrast, to capture these non-linearities, we performed 
extensive simulations of the presented  P2M circuit spanning wide range of circuit parameters such as the width 
of weight transistors and the photodiode current based on commercial 22 nm Globafoundries transistor tech-
nology node. The resulting SPICE results, i.e. the pixel output voltages corresponding to a range of weights and 
photodiode currents, were modeled using a behavioral curve-fitting function. The generated function was then 
included in our algorithmic framework, replacing the convolution operation in the first layer of the network. In 
particular, we accumulate the output of the curve-fitting function, one for each pixel in the receptive field (we 
have 3 input channels, and a kernel size of 5× 5 , and hence, our receptive field size is 75), to model each inner-
product generated by the in-pixel convolutional layer. This algorithmic framework was then used to optimize 
the CNN training for the VWW dataset.

Circuit‑algorithm co‑optimization of CNN backbone subject to  P2M constrains. As explained 
in “Multi-channel, multi-bit weight embedded pixels” section, the  P2M circuit scheme maximizes parallelism 
and data bandwidth reduction by activating multiple pixels and reading multiple parallel analog convolution 
operations for a given channel in the output feature map. The analog convolution operation is repeated for each 
channel in the output feature map serially. Thus, parallel convolution in the circuit tends to improve parallel-
ism, bandwidth reduction, energy-efficiency and speed. But, increasing the number of channels in the first layer 
increases the serial aspect of the convolution and degrades parallelism, bandwidth reduction, energy-efficiency, 
and speed. This creates an intricate circuit-algorithm trade-off, wherein the backbone CNN has to be optimized 
for having larger kernel sizes (that increases the concurrent activation of more pixels, helping parallelism) and 
non-overlapping strides (to reduce the dimensionality in the downstream CNN layers, thereby reducing the 
number of multiply-and-adds and peak memory usage), smaller number of channels (to reduce serial operation 
for each channel), while maintaining close to state-of-the-art classification accuracy and taking into account the 
non-idealities associated with analog convolution operation. Also, decreasing number of channels decreases the 
number of weight transistors embedded within each pixel (each pixel has weight transistors equal to the number 
of channels in the output feature map), improving area and power consumption. Furthermore, the resulting 
smaller output activation map (due to reduced number of channels, and larger kernel sizes with non-overlapping 
strides) reduces the energy incurred in transmission of data from the CIS to the downstream CNN processing 
unit and the number of floating point operations (and consequently, energy consumption) in downstream layers.

In addition, we propose to fuse the BN layer, partly in the preceding convolutional layer, and partly in the 
succeeding ReLU layer to enable its implementation via  P2M. Let us consider a BN layer with γ and β as the 
trainable parameters, which remain fixed during inference. During the training phase, the BN layer normalizes 
feature maps with a running mean µ and a running variance σ , which are saved and used for inference. As a 
result, the BN layer implements a linear function, as shown below.

We propose to fuse the scale term A into the weights (value of the pixel embedded weight tensor is A · θ , where 
θ is the final weight tensor obtained by our training) that are embedded as the transistor widths in the pixel 
array. Additionally, we propose to use a shifted ReLU activation function, following the covolutional layer, as 
shown in Fig. 6 to incorporate the shift term B. We use the counter-based ADC implementation illustrated in 
“Re-purposing digital correlated double sampling circuit and single-slope ADCs as ReLU neurons” section to 
implement the shifted ReLU activation. This can be easily achieved by resetting the counter to a non-zero value 
corresponding to the term B at the start of the convolution operation, as opposed to resetting the counter to zero.

Moreover, to minimize the energy cost of the analog-to-digital conversion in our  P2M approach, we must 
also quantize the layer output to as few bits as possible subject to achieving the desired accuracy. We train a 
floating-point model with close to state-of-the-accuracy, and then perform quantization in the first convolutional 
layer to obtain low-precision weights and activations during  inference33. We also quantize the mean, variance, 
and the trainable parameters of the BN layer, as all these affect the shift term B (please see Eq. 1), that should be 
quantized for the low-precision shifted ADC implementation. We avoid quantization-aware  training34 because 
it significantly increases the training cost with no reduction in bit-precision for our model at iso-accuracy. Note 

(1)Y = γ
X − µ

√
σ 2 + ǫ

+ β =
(

γ
√
σ 2 + ǫ

)

· X +
(

β −
γµ

√
σ 2 + ǫ

)

= A · X + B
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that the lack of bit-precision improvement from QAT is probably because a small improvement in quantization 
of only the first layer may have little impact on the test accuracy of the whole network.

With the bandwidth reduction obtained by all these approaches, the output feature map of the 
 P2M-implemented layers can more easily be implemented in micro-controllers with extremely low memory 
footprint, while  P2M itself greatly improves the energy-efficiency of the first layer. Our approach can thus enable 
TinyML applications that usually have a tight compute and memory budget, as illustrated in “Benchmarking 
dataset and model” section.

Quantification of bandwidth reduction. To quantify the bandwidth reduction (BR) after the first layer 
obtained by  P2M (BN and ReLU layers do not yield any BR), let the number of elements in the RGB input image 
be I and in the output activation map after the ReLU activation layer be O. Then, BR can be estimated as

Here, the factor 
(
4
3

)
 represents the compression from Bayer’s pattern of RGGB pixels to RGB pixels because we 

can either ignore the additional green pixel or design the circuit to effectively take the average of the photo-diode 
currents from the two green pixels. The factor 12Nb

 represents the ratio of the bit-precision between the image pixels 
captured by the sensor (pixels typically have a bit-depth of  1235) and the quantized output of our convolutional 
layer denoted as Nb . Let us now substitute

(2)BR =
(
O

I

)(
4

3

)(
12

Nb

)

(3)O =
(
i − k + 2 ∗ p

s
+ 1

)2

∗ co, I = i2 ∗ 3

Figure 6.  Algorithm-circuit co-design framework to enable our proposed  P2M approach optimize both the 
performance and energy-efficiency of vision workloads. We propose the use of ① large strides, ② large kernel 
sizes, ③ reduced number of channels, ④  P2M custom convolution, and ⑤ shifted ReLU operation to incorporate 
the shift term of the batch normalization layer, for emulating accurate  P2M circuit behaviour.
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into Eq. (2), where i denotes the spatial dimension of the input image, k, p, s denote the kernel size, padding and 
stride of the in-pixel convolutional layer, respectively, and co denotes the number of output channels of the in-
pixel convolutional layer. These hyperparameters, along with Nb are obtained via a thorough algorithmic design 
space exploration with the goal of achieving the best accuracy, subject to meeting the hardware constraints and 
the memory and compute budget of our TinyML benchmark. We show their values in Table 1, and substitute 
them in Eq. (2) to obtain a BR of 21×.

Experimental results
Benchmarking dataset and model. This paper focuses on the potential of  P2M for TinyML applica-
tions, i.e., with models that can be deployed on low-power IoT devices with only a few kilobytes of on-chip 
 memory36–38. In particular, the Visual Wake Words (VWW)  dataset39 presents a relevant use case for visual 
TinyML. It consists of high resolution images that include visual cues to “wake-up” AI-powered home assistant 
devices, such as Amazon’s  Astro40, that requires real-time inference in resource-constrained settings. The goal of 
the VWW challenge is to detect the presence of a human in the frame with very little resources - close to 250KB 
peak RAM usage and model  size39. To meet these constraints, current solutions involve downsampling the input 
image to medium resolution ( 224× 224 ) which costs some  accuracy33.

In this work, we use the images from the COCO2014  dataset41 and the train-val split specified in the seminal 
 paper39 that introduced the VWW dataset. This split ensures that the training and validation labels are roughly 
balanced between the two classes ‘person’ and ‘background’; 47% of the images in the training dataset of 115k 
images have the ‘person’ label, and similarly, 47% of the images in the validation dataset are labelled to the 
‘person’ category. The authors also ensure that the distribution of the area of the bounding boxes of the ‘person’ 
label remain similar across the train and val set. Hence, the VWW dataset with such a train-val split acts as the 
primary benchmark of tinyML  models42 running on low-power microcontrollers. We choose  MobileNetV243 as 
our baseline CNN architecture with 32 and 320 channels for the first and last convolutional layers respectively 
that supports full resolution ( 560× 560 ) images. In order to avoid overfitting to only two classes in the VWW 
dataset, we decrease the number of channels in the last depthwise separable convolutional block by 3× . Mobile-
NetV2, similar to other MobileNet class of models, is very  compact43 with size less than the maximum allowed 
in the VWW challenge. It performs well on complex datasets like  ImageNet44 and, as shown in “Experimental 
results” section, does very well on VWWs.

To evaluate  P2M on MobileNetV2, we create a custom model that replaces the first convolutional layer with 
our  P2M custom layer that captures the systematic non-idealities of the analog circuits, the reduced number of 
output channels, and limitation of non-overlapping strides, as discussed in “P2M-constrained algorithm-circuit 
co-design” section.

We train both the baseline and  P2M custom models in PyTorch using the SGD optimizer with momentum 
equal to 0.9 for 100 epochs. The baseline model has an initial learning rate (LR) of 0.03, while the custom coun-
terpart has an initial LR of 0.003. Both the learning rates decay by a factor of 0.2 at every 35 and 45 epochs. After 
training a floating-point model with the best validation accuracy, we perform quantization to obtain 8-bit integer 
weights, activations, and the parameters (including the mean and variance) of the BN layer. All experiments are 
performed on a Nvidia 2080Ti GPU with 11 GB memory.

Table 1.  Model hyperparameters and their values to enable bandwidth reduction in the in-pixel layer.

Hyperparameter Value

Kernel size of the convolutional layer (k) 5

Padding of the convolutional layer (p) 0

Stride of the convolutional layer (s) 5

Number of output channels of the convolutional layer ( co) 8

Bit-precision of the  P2M-enabled convolutional layer output ( Nb) 8

Table 2.  Test accuracies, number of MAdds, and peak memory usage of baseline and  P2M custom compressed 
model while classifying on the VWW dataset for different input image resolutions.

Image resolution Model Test accuracy (%) Number of MAdds (G) Peak memory usage (MB)

560 × 560
Baseline 91.37 1.93 7.53

P2M custom 89.90 0.27 0.30

225 ×  225
Baseline 90.56 0.31 1.2

P2M custom 84.30 0.05 0.049

115 ×  115
Baseline 91.10 0.09 0.311

P2M custom 80.00 0.01 0.013
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Classification accuracy. Comparison between baseline and P2M custom models: We evaluated the perfor-
mance of the baseline and  P2M custom MobileNet-V2 models on the VWW dataset in Table 2. Note that both 
these models are trained from scratch. Our baseline model currently yields the best test accuracy on the VWW 
dataset among the models available in literature that does not leverage any additional pre-training or augmenta-
tion. Note that our baseline model requires a significant amount of peak memory and MAdds ( ∼30× more than 
that allowed in the VWW challenge), however, serves a good benchmark for comparing accuracy. We observe 
that the  P2M-enabled custom model can reduce the number of MAdds by ∼7.15× , and peak memory usage by 
∼25.1× with 1.47% drop in the test accuracy compared to the uncompressed baseline model for an image resolu-
tion of 560× 560 . With the memory reduction, our  P2M model can run on tiny micro-controllers with only 270 
KB of on-chip SRAM. Note that peak memory usage is calculated using the same convention  as39. Notice also 
that both the baseline and custom model accuracies drop (albeit the drop is significantly higher for the custom 
model) as we reduce the image resolution, which highlights the need for high-resolution images and the efficacy 
of  P2M in both alleviating the bandwidth bottleneck between sensing and processing, and reducing the number 
of MAdds for the downstream CNN processing.

Comparison with SOTA models: Table 3 provides a comparison of the performances of models generated 
through our algorithm-circuit co-simulation framework with SOTA TinyML models for VWW. Our  P2M cus-
tom models yield test accuracies within 0.37% of the best performing model in the  literature45. Note that we 
have trained our models solely based on the training data provided, whereas  ProxylessNAS45, that won the 2019 
VWW challenge leveraged additional pretraining with ImageNet. Hence, for consistency, we report the test 
accuracy of ProxylessNAS with identical training configurations on the final network provided by the authors, 
similar  to33. Note  that46 leveraged massively parallel energy-efficient analog in-memory computing to implement 
MobileNet-V2 for VWW, but incurs an accuracy drop of 5.67% and 4.43% compared to our baseline and the 
previous state-of-the-art45 models. This probably implies the need for intricate algorithm-hardware co-design 
and accurately modeling of the hardware non-idealities in the algorithmic framework, as shown in our work.

Effect of quantization of the in-pixel layer: As discussed in “P2M-constrained algorithm-circuit co-design” 
section, we quantize the output of the first convolutional layer of our proposed model after training to reduce the 
power consumption due to the sensor ADCs and compress the output as outlined in Eq. (2). We sweep across 
output bit-precisions of {4,6,8,16,32} to explore the trade-off between accuracy and compression/efficiency as 
shown in Fig. 7a. We choose a bit-width of 8 as it is the lowest precision that does not yield any accuracy drop 
compared to the full-precision models. As shown in Fig. 7, the weights in the in-pixel layer can also be quantized 
to 8 bits with an 8-bit output activation map, with less than 0.1% drop in accuracy.

Ablation study: We also study the accuracy drop incurred due to each of the three modifications (non-
overlapping strides, reduced channels, and custom function) in the  P2M-enabled custom model. Incorporation 

Table 3.  Performance comparison of the proposed  P2M-compatible models with state-of-the-art deep CNNs 
on VWW dataset.

Authors Description Model architecture Test accuracy (%)

Saha et al.33 RNNPooling MobileNetV2 89.65

Han et al.45 ProxylessNAS Non-standard architecture 90.27

Banbury et al.38 Differentiable NAS MobileNet-V2 88.75

Zhoue et al.46 Analog compute-in-memory MobileNet-V2 85.7

This work P2M MobileNet-V2 89.90

Figure 7.  (a) Effect of quantization of the in-pixel output activations, and (b) effect of the number of channels 
in the 1st convolutional layer for different kernel sizes and strides, on the test accuracy of our  P2M custom 
model.
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of the non-overlapping strides (stride of 5 for 5× 5 kernels from a stride of 2 for 3× 3 in the baseline model) 
leads to an accuracy drop of 0.58% . Reducing the number of output channels of the in-pixel convolution by 4× 
(8 channels from 32 channels in the baseline model), on the top of non-overlapping striding, reduces the test 
accuracy by 0.33% . Additionally, replacing the element-wise multiplication with the custom  P2M function in 
the convolution operation reduces the test accuracy by a total of 0.56% compared to the baseline model. Note 
that we can further compress the in-pixel output by either increasing the stride value (changing the kernel size 
proportionately for non-overlapping strides) or decreasing the number of channels. But both of these approaches 
reduce the VWW test accuracy significantly, as shown in Fig. 7b.

Comparison with prior works: Table 4 compares different in-sensor and near-sensor computing  works10–13 in 
the literature with our proposed  P2M approach. However, most of these comparisons are qualitative in nature. 
This is because almost all these works have used toy datasets like MNIST, while some have used low-resolution 
datasets like CIFAR-10. A fair evaluation of in-pixel computing must be done on high-resolution images captured 
by modern camera sensors. To the best of our knowledge, this is the first paper to show in-pixel computing on a 
high-resolution dataset, such as VWW, with associated hardware-algorithm co-design. Moreover, compared to 
prior-works we implement more complex compute operations including analog convolution, batch-norm, and 
ReLU inside the pixel array. Additionally, most of the prior works use older technology node (such as 180 nm). 
Thus, due to major discrepancy in the use of technology nodes, unrealistic datasets for in-pixel computing, and 
only a sub-set of computations being implemented in prior-works it is infeasible to do a fair quantitative com-
parison between the present work and previous works in the literature. Nevertheless, Table 4 enumerates the key 
differences and compares the highlights of each work, which can help develop a good comparative understanding 
of in-pixel compute ability of our work compared to previous works.

EDP estimation. We develop a circuit-algorithm co-simulation framework to characterize the energy and 
delay of our baseline and  P2M-implemented VWW models. The total energy consumption for both these models 
can be partitioned into three major components: sensor ( Esens ), sensor-to-SoC communication ( Ecom ), and SoC 
energy ( Esoc ). Sensor energy can be further decomposed to pixel read-out ( Epix ) and analog-to-digital conver-
sion (ADC) cost ( Eadc ). Esoc , on the other hand, is primarily composed of the MAdd operations ( Emac ) and 
parameter read ( Eread ) cost. Hence, the total energy can be approximated as:

Here, esens and ecom represents per-pixel sensing and communication energy, respectively. emac is the energy 
incurred in one MAC operation, eread represents a parameter’s read energy, and Npix denotes the number of pixels 
communicated from sensor to SoC. For a convolutional layer that takes an input I ∈ Rhi×wi×ci and weight tensor 
θ ∈ Rk×k×ci×co to produce output O ∈ Rho×wo×co , the Nmac

49 and Nread can be computed as,

The energy values we have used to evaluate Etot are presented in Table 5. While epix and eadc are obtained from 
our circuit simulations, ecom is obtained  from50. We ignore the value of Eread as it corresponds to only a small 
fraction ( < 10−4 ) of the total energy, similar  to51–54. Figure 8a shows the comparison of energy costs for standard 

(4)
Etot ≈ (epix + eadc) ∗ Npix

︸ ︷︷ ︸

Esens

+ ecom ∗ Npix
︸ ︷︷ ︸

Ecom

+ emac ∗ Nmac
︸ ︷︷ ︸

Emac

+ eread ∗ Nread
︸ ︷︷ ︸

Eread

.

(5)Nmac = ho ∗ wo ∗ k2 ∗ ci ∗ co

(6)Nread = k2 ∗ ci ∗ co

Table 4.  Comparison of  P2M with related in-sensor and near-sensor computing works.

Work Tech node Computation High resolution Dataset Supported Ops. Acc.(%)

P2M (ours) 22 nm Analog Yes VWW Conv, BN, ReLU 89.90

TCAS-I  202010 180 nm Analog No – Binary Conv. –

TCSVT  202213 180 nm Analog No CIFAR-10 Conv. 89.6

Nature  202011 – Analog No 3-class alphabet MLP 100

ECCV  202012 180 nm Digital No MNIST MLP 93.0

Table 5.  Energy estimates for different hardware components. The energy values are measured for designs in 
22 nm CMOS technology. Note, the sensing energy includes the analog convolution energy for  P2M as analog 
convolution is performed as a part of the sensing operation. For the emac , we convert the corresponding value 
in 45 nm to that of 22 nm by following standard scaling  strategy47.

Model type Sensing (pJ) ( epix) ADC (pJ) ( eadc) SoC comm. (pJ) ( ecom) MAdds (pJ) ( emac) Sensor output pixel ( Npix)

P2M (ours) 148 41.9

900 1.568

112× 112× 8

Baseline (C)
312 86.14 560× 560× 3

Baseline (NC)
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vs  P2M-implemented models. In particular,  P2M can yield an energy reduction of up to 7.81× . Moreover, the 
energy savings is larger when the feature map needs to be transferred from an edge device to the cloud for fur-
ther processing, due to the high communication costs. Note, here we assumed two baseline scenarios one with 
compression and one without compression. The first baseline is MobileNetV2 which aggressively down-samples 
the input similar to  P2M ( hi/wi : 560 −→ ho/wo : 112 ). For the second baseline model, we assumed standard 
first layer convolution kernels causing standard feature down-sampling ( hi/wi : 560 −→ ho/wo : 279).

To evaluate the delay of the models we assume sequential execution of the layer  operations48,55,56 and compute 
a single convolutional layer delay  as48

where the notations of the parameters and their values are shown in Table 6. Based on this sequential assumption, 
the approximate compute delay for a single forward pass for our  P2M model can be given by

Here, Tsens and Tadc correspond to the delay associated to the sensor read and ADC operation respectively. Tconv 
corresponds to the delay associated with all the convolutional layers where each layer’s delay is computed by 
Eq. (7). Figure 8b shows the comparison of delay between  P2M and the corresponding baselines where the total 
delay is computed with the sequential sensing and SoC operation assumption. In particular, the proposed  P2M 
approach can yield an improved delay of up to 2.15× . Thus the total EDP advantage of  P2M can be up to 16.76× . 
On the other hand, even with the conservative assumption of total delay is estimated as max(Tsens+Tadc , Tconv ), 
the EDP advantage can be up to ∼11×.

Since the channels are processed serially in our  P2M approach, the latency for the convolution operation 
increases linearly with the number of channels. With 64 output channels, the latency of the in-pixel convolu-
tion operation increases to 288.5 ms from 36.1 ms with 8 channels. On the other hand, the combined sensing 
and first layer convolution latency using classical approach increases only to 45.7 ms with 64 channels from 
44ms with 8 channels. This is because the convolution delay constitutes a very small fraction of the total delay 
(sensing+ADC+convolution) in the classical approach. The break-even (number of channels beyond which in-
pixel convolution is slower compared to classical convolution) happens at 10 channels. While the energy of the 

(7)tconv ≈ ⌈
(k)2cico

(BIO/BW )Nbank
⌉ ∗ tread + ⌈

(k)2cico

NMult
⌉ho ∗ wo ∗ tmult .

(8)Tdelay ≈ Tsens + Tadc + Tconv .

Table 6.  The description and values of the notations used for computation of delay. Note that we calculated 
the delay in 22 nm technology for 32-bit read and MAdd operations by applying standard technology scaling 
rules initial values in 65 nm  technology48. We directly evaluated the Tread and Tadc through circuit simulations 
in 22 nm technology node.

Notation Description Value

BIO I/O band-width 64

BW Weight representation bit-width 32

Nbank Number of memory banks 4

Nmult Number of multiplication units 175

Tsens Sensor read delay
35.84 ms  (P2M)

39.2 ms (baseline)

Tadc ADC operation delay
0.229 ms  (P2M)

4.58 ms (baseline)

tmult Time required to perform 1 mult. in SoC 5.48 ns

tread Time required to perform 1 read from SRAM in SoC 5.48 ns

Figure 8.  Comparison of normalized total, sensing, and SoC (a) energy cost and (b) delay between the  P2M, 
and baseline models architectures (compressed C, and non-compressed NC). Note, the normalization of each 
component was done by diving the corresponding energy (delay) value with the maximum total energy (delay) 
value of the three components.
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in-pixel convolution increases from 0.13 mJ with 8 channels to 1.0 mJ with 32 channels, the classical convolution 
energy increases from 1.31 mJ with 8 channels to 1.39 mJ with 64 channels. Hence, our proposed P2M approach 
consumes less energy than the classical approach even when the number of channels is increased to 64. That 
said, almost all of the state-of-the-art on-device computer vision architectures (e.g., MobileNet and its variants) 
with tight compute and memory budgets (typical for IoT applications) have no more than 8 output channels in 
the first  layer33,43, which is similar to our algorithmic findings.

Conclusions
With the increased availability of high-resolution image sensors, there has been a growing demand for energy-
efficient on-device AI solutions. To mitigate the large amount of data transmission between the sensor and the 
on-device AI accelerator/processor, we propose a novel paradigm called Processing-in-Pixel-in-Memory  (P2M) 
which leverages advanced CMOS technologies to enable the pixel array to perform a wider range of complex 
operations, including many operations required by modern convolutional neural networks (CNN) pipelines, 
such as multi-channel, multi-bit convolution, BN and ReLU activation. Consequently, only the compressed 
meaningful data, for example after the first few layers of custom CNN processing, is transmitted downstream to 
the AI processor, significantly reducing the power consumption associated with the sensor ADC and required 
data transmission bandwidth. Our experimental results yield reduction of data rates after the sensor ADCs by 
up to ∼21× compared to standard near-sensor processing solutions, significantly reducing the complexity of 
downstream processing. This, in fact, enables the use of relatively low-cost micro-controllers for many low-
power embedded vision applications and unlocks a wide range of visual TinyML applications that require high 
resolution images for accuracy, but are bounded by compute and memory usage. We can also leverage  P2M for 
even more complex applications, where downstream processing can be implemented using existing near-sensor 
computing techniques that leverage advanced 2.5 and 3D integration  technologies57.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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