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Multiobjective reconfiguration 
of unbalanced distribution 
networks using improved transient 
search optimization algorithm 
considering power quality 
and reliability metrics
Mohana Alanazi1*, Abdulaziz Alanazi2, Ahmad Almadhor3 & Zulfiqar Ali Memon4

This paper proposes a new intelligent algorithm named improved transient search optimization 
algorithm (ITSOA) integrated with multiobjective optimization for determining the optimal 
configuration of an unbalanced distribution network. The conventional transient search optimization 
algorithm (TSOA) is improved with opposition learning and nonlinearly decreasing strategies for 
enhancing the convergence to find the global solution and obtain a desirable balance between 
local and global search. The multiobjective function includes different objectives such as power 
loss reduction, enhancement of voltage sag and unbalance, and network energy not supplied 
minimization. The decision variables of the reconfiguration problem including opened switches 
or identification of optimal network configuration are determined using ITSOA and satisfying 
operational and radiality constraints. The proposed methodology is implemented on unbalanced 
13-bus and 118-bus networks. The results showed that the proposed ITSOA is capable to find the 
optimal network configuration for enhancing the different objectives in loading conditions. The results 
cleared the proposed methodology’s good effectiveness, especially in power quality and reliability 
enhancement, without compromising the different objectives. Comparing ITSOA to conventional 
TSOA, particle swarm optimization (PSO), gray wolf optimization (GWO), bat algorithm (BA), manta 
ray foraging optimization (MRFO), and ant lion Optimizer (ALO), and previous approaches, it is 
concluded that ITSOA in improving the different objectives.

Recently, A distribution network is the ending stage of an electrical power supply system. It is where electrical 
energy is distributed to consumers. During power distribution, it can be lost in the form of a heat transfer current. 
The total power loss of large networks is very  high1,2. Power losses directly affect the cost of operating a power 
system. Therefore, reducing losses and improving the distribution network characteristics is one of the most 
important tasks of distribution network operators. One of the least expensive ways to enhance the characteristics 
of the distribution network is  reconfiguration3,4. Improving the network voltage conditions, reliability, and power 
quality are the most important objectives related to the operation problems. Few studies have considered these 
indices simultaneously in solving the reconfiguration  problem1–3.

Moreover, in view of power quality, the study of voltage sag and unbalance, which is due to the increase 
in  faults5 in the distribution network and unbalance load, has great importance. Load balancing or line flow 
balancing must be considered in the network reconfiguration because the unbalance load has adverse effects 
on distribution systems’ performance. In the switching operation of optimal load balancing, unbalanced loads 
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are transferred from high load feeders or transformers to low load feeders or  transformers1,3. This increases the 
efficiency of network operation. On the other hand, achieving a better voltage profile changes the reconfiguration, 
network topology, and consequently, the values and load flow paths to prevent overload and losses due to long 
distribution lines. Moreover, another important objective of electricity distribution companies is to ensure the 
reliability of electricity delivered to customers as high as possible and provide electricity to customers entirely 
and without  interruption1.

Therefore, the objective is to implement reconfiguration methods to improve the issues related to the reliability 
and power quality of the network. The network reconfiguration is a cost-effective method without the need for 
extra devices. Thus, the flow of load in the network can be modified, and consequently, the losses in the network 
can be reduced. Network reconfiguration has been known for a long time as a helpful method to improve the 
distribution network  performance2. The distribution network is configured radially according to the operating 
advantages. Therefore, in the distribution network operation, the effect of reconfiguration on network indices 
such as losses, voltage, reliability, and power quality should be  examined1. An optimal reconfiguration of the 
network can be determined by incorporating the desired objectives and considering operational and network 
radiality constraints. Since the number of switches in the network is large, the problem of network reconfiguration 
based on opened and closed network switches is complex. Solving it requires a robust optimization  method5–9, 
with a high searching capability of the global solution. The use of classical and numerical methods is not logical 
due to the discrete nature of this problem and its constraints. In recent years it has been suggested to solve the 
reconfiguration problem using intelligent optimization  methods10,11.

Various studies are conducted on the operation of distribution networks based on reconfiguration. So far, 
heuristic methods and conventional programming have been used for reconfiguration solving. Intelligent algo-
rithms, such as iteration-based algorithms named artificial intelligence, have been widely welcomed to solve the 
reconfiguration  problem12,13.  In14, dynamic programming reduces network losses by considering load changes 
for solving the reconfiguration. It utilizes a genetic algorithm (GA) for reconfiguring the network to minimize 
 loss15.  In16, the network reconfiguration to reduce losses and voltage deviations is presented using a cuckoo search 
algorithm (CSA). The CSA ensures that network radiality is not affected during the reconfiguration process. The 
results confirmed the better performance of the CSA over the particle swarm optimization (PSO) method.  In17, 
the reconfiguration of the balanced network is presented to minimize the losses and voltage deviations of the 
distribution network using the improved PSO. The results showed that network losses are significantly reduced 
by reconfiguration, and the voltage profile has also been improved.  In18, balanced network reconfiguration is 
presented as a fuzzy multi-objective optimization with the objectives of the loss and voltage deviation minimiza-
tion subject to the current constraint of the branches.  In19, the balanced network reconfiguration is presented 
by minimizing the losses using the taboo search (TS) algorithm.  In20, the reconfiguration problem is developed 
with a single purpose for reduction of the losses, and the ant colony search algorithm (CSA) is introduced.  In21, 
a modified TS intelligent method is applied to solve the balanced network reconfiguration to minimize the active 
losses with the opening and closing of the network switches.  In22, single objective bacterial foraging optimization 
(BFO) is applied to configure a balanced network considering loss minimization. The optimization results showed 
that the proposed single-objective algorithm significantly reduces network losses.  In23, the optimization algorithm 
based on discrete teaching–learning based optimization (TLBO) has been applied to solve the reconfiguration 
problem integrated with distributed generations with minimizing losses and voltage profile enhancement.  In3, 
improving the network power quality indices as unbalanced considering single-objective optimization is pre-
sented with ant lion optimizer (ALO). The results showed that the ALO could optimally determine the network 
configuration and improve the power quality. Using an exchange market and wild goats algorithm  combination24, 
proposed a multi-objective optimization framework to optimize the configuration of a balanced network to 
reduce losses and improve reliability.  In25, the network reconfiguration is studied by considering the types of dis-
tributed generations using improved PSO. The results are compared with GA, which showed the better capability 
of the improved PSO.  In26, balanced network reconfiguration is investigated to reduce power/energy losses and 
minimize the network loading index using a combination of a heuristic method and GA.  In27, balanced network 
reconfiguration is implemented to reduce the losses and enhance the network reliability criteria using modified 
GA. Using the bat algorithm (BA)28, investigates balanced network reconfiguration to improve reliability by 
minimizing the number of outages, the duration of outages, and the amount of unmet energy supply.  In29, plant 
growth stimulation (PGS) is used to solve the combined problem of network reconfiguration and distributed 
generations for losses reduction and voltage profile enhancement.  In30, the balanced network reconfiguration 
is presented to improve the power quality and reduce the voltage harmonics using the differential evolutionary 
(DE) method.  In31, the unbalanced network reconfiguration is presented in terms of the effect on power quality 
and reduction of harmonics and unbalanced voltage distortion as single-objective optimization.

The research gap in the literature and the paper contributions are presented as follows:

• Based on the previous studies, it is evident that reconfiguration problems are more common in well-balanced 
distribution networks. In this paper an unbalanced distribution network is considered to configure the dis-
tribution network to achieve real-time and accurate operations.

• A literature review concluded that power quality, reliability, and power loss were not considered as part of 
a comprehensive reconfiguration study as a multi-objective optimization issue. Thus, in this paper multi-
objective method based on these metrics are considered to solve the reconfiguration problem.

• In order to study the effect of reconfiguration more comprehensively, multiobjective functions should be 
considered to cover different aspects of the distribution network comprehensively. A weight coefficients 
method was used in some literature to reach an optimal solution. However, this method is not appropriate 
for determining the optimal global solution because the weight coefficients should be selected optimally. 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13686  | https://doi.org/10.1038/s41598-022-17881-x

www.nature.com/scientificreports/

Nonetheless, in most studies, the results are based on trial and error. An idea has emerged as the multiob-
jective  optimization3,32,33, whereby different objectives can be considered together as an objective function. 
Therefore, this study aims at bringing together the different yet essential objectives in the reconfiguration 
problem. Evolutionary algorithms based on the Pareto front have been one of the desirable methods for 
solving multi-criteria optimization problems. These methods have proven performance in solving problems 
with 2 or 3 objectives. There is difficulty in adding new objectives due to the loss of selection pressure of 
Pareto optimization, testing high-dimensional space density, anti-convergence, and exponentially increasing 
computation complexity. Therefore, Pareto-based evolutionary algorithms are used for a maximum of three 
objectives in the general objective function. Consequently, in this paper a multi-objective reconfiguration 
method is proposed considering four different objectives.

• Existing intelligent algorithms may be trapped in local optimal since the dimension and complexity of the 
problem increase, and they may converge rapidly. Hence, in this paper an improved optimization method 
based on the transient response of switched electrical circuits is used to overcome these shortcomings and 
achieve more precise network reconfiguration.

In this paper, a multiobjective optimization framework of the reconfiguration problem for the unbalanced 
distribution is performed to minimize the losses, enhance the voltage sag and unbalance (power quality enhance-
ment) as well as reduce the network energy not supplied (reliability enhancement). A new intelligent algorithm 
named improved transient search optimization algorithm (ITSOA) is introduced to solve this challenging opti-
mization problem. The conventional transient search optimization algorithm (TSOA)34 is modeled based on 
the transient response of switched electrical circuits. The performance of the conventional TSOA is improved 
with opposition learning and nonlinearly decreasing strategies to enhance the balance between local and global 
search, avoid getting trapped in local optimal, and increase the convergence efficiency. The optimization variable 
is considered as network opened switches (tie-lines) that are determined optimally using ITSOA. The proposed 
methodology is implemented on 13-bus typical network and also the IEEE 118-bus distribution network. The 
best or optimal unbalanced network configuration is identified in view of open and close switches based on the 
proposed method that leads to the lowest power losses, the best reliability, and power quality using ITSOA. The 
simulation results, including losses, voltage sag, voltage unbalance, and reliability indices, are compared without 
and with the network configuration using the ITSOA. The capability of the ITSOA is analyzed in comparison 
with the conventional TSOA and some high-ability methods such as particle swarm optimization (PSO)35 and 
grey wolf optimizer (GWO)36, manta ray foraging optimization (MRFO)37, bat algorithm (BA)38 and ant lion 
optimizer (ALO)39.

The contributions of the paper are listed as follows:

• A multi-objective optimization method to identify the optimal network configuration
• Considering different objectives based on losses, power quality and reliability for network reconfiguration
• Using of an improved transient search optimization algorithm (ITSOA) to configure the distribution network
• Superior performance of the ITSOA compared with PSO, GWO, MRFO, BA and ALO
• Lower convergence tolerance and higher convergence accuracy of the ITSOA in comparison with the other 

methods.

The paper is presented as follows; the objective function, constraint, and multiobjective function are described 
in “Problem formulation” section. In “Proposed ITSOA” section, the new, improved transient search optimiza-
tion algorithm is described. In “Results and discussion” section, the results of the simulation and the findings 
are concluded in “Conclusion” section.

Problem formulation
Multiobjective reconfiguration for unbalanced networks is formulated via ITSOA. So, the objective function and 
also operational constraints are presented in this section.

Objective function. The objective function minimizes the losses, mitigates the voltage sag and voltage 
unbalance, and improves reliability by minimizing the ENS metric.

• Power loss
  Active power loss is calculated using the branches’ currents and  resistances25,32.

where �i and �j refers to the voltages among buses i and j, k is the line among the buses i and j, Rk , Xk and Ik 
are the resistance, reactance and kth line current, and n is the number of lines. The loss should be minimized 
in the proposed optimization problem.

• Voltage sag improvement

(1)Ploss =

n
∑

k=1

Rk(Ik)
2

(2)Ik =
�i − �j

Rk + jXk
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  The voltage sag is defined as decreased voltage in all network buses in the condition of voltage sag due to 
fault occurrence (0.5 cycles to 1 min). In this study, average voltage sag ( �sag .av ) is calculated as the remaining 
voltage of the network buses during the voltage sag condition as  follows31:

�
j
i refers to the voltage at bus i in fault conditions at bus j, n refers to the number of buses, and m indicates 

the possible faults number. The second objective function is considered as the minimization of voltage sag 
by minimizing 1/�sag .av.

• Voltage unbalance improvement
  The voltage unbalance happens because the distribution network is unbalanced, which can be measured 

using the average voltage imbalance among the network  buses31.

where, α1 = complex(−0.5, 0.866) and α2 = complex(−0.5,−0.866) . In this study, the voltage unbalance is 
considered to be minimized.

• Reliability Improvement
  The energy not supplied (ENS) is one of the critical indices of the reliability concept. In the event of a fault 

and the outage of the network lines, some network loads may be interrupted. The ENS is defined  by2

where Nbr indicates the number of network lines, Nl is interrupted loads number in a condition of the ith 
line outage, ORi is the failure rate per km in a year at line i, ψi defines the length of line i, Ti is the time dura-
tion of fault i and ODj is the amount of unmet load under the fault i. So, to improve the reliability, the ENS 
should be minimized.

Constraints. The multiobjective function is subjected to operational constraints to optimize the network 
configurations. The equality and inequality constraints are defined as  follows2,10,25,31.

• Power balance equality

• Voltage limits
  The voltage magnitude at each load bus should remain within allowable limits.

• Thermal limit
  The current of the network lines should not be more than the tolerable current.

• Unbalance voltage limit
  The bus’s voltage unbalance must not be more than the allowable value ( �max

unb ).

• Voltage sag limit
  The bus’s voltage sag should not be less than the standard value ( �min

sag ).

• Radiality constraint
  The network configuration should follow the radiality constraint in the reconfiguration solving 

( nα = n− 1 ). nα refers to the closed lines number. So, inequality (11) should be satisfied to maintain net-
work radiality in the reconfiguration process.

A refers to the bus incidence matrix in (11)25.

(3)�sag .av =
1

m

m
∑

j=1

1

n

n
∑

i=1

�
j
i

(4)�unb.av =
100

n

n
∑

i=1

c
∑

i=a

∣

∣�
a
i + α2�

b
i + α1�

c
i

∣

∣

∣

∣�
a
i + α1�

b
i + α2�

c
i

∣

∣

(5)ENS =

Nbr
∑

i=1

Nl
∑

j=1

(

ORi × ψi × Ti × ODj

)

(6)Pi + jQi = �aiI
∗
ai + �biI

∗
bi + �ciI

∗
ci; ∀i = 1, 2, . . . , n

(7)�
min ≤ �pi ≤ �

max; ∀p = a, b, c, ∀i = 1, 2, . . . , n

(8)Ipi ≤ Imax
pi ; ∀p = a, b, c, ∀i = 1, 2, . . . , n

(9)

∣

∣�Pos,i

∣

∣

∣

∣�Neg ,i

∣

∣

≤ �
max
unb ; ∀i = 1, 2, . . . , n

(10)�sag ,av ≥ �
min
sag

(11)
∑L

j=1

∣

∣A(i, j)
∣

∣ ≥ 1; ∀i = 1, 2, . . . , n
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Multiobjective optimization. This paper applies the fuzzy method to solve the optimization problem. The 
fuzzy decision is extracted by the intersection of fuzzy membership functions for different objectives. The Pareto 
front has been one of the desirable methods for solving multi-criteria optimization problems. This method has 
proven performance in solving problems with 2 or 3 objectives. Nevertheless, as reported  in33, increasing the 
number of objectives is challenging. For example, the loss of selection pressure from Pareto dominance, deter-
mining high-dimensional space density and estimating the anti-convergence phenomenon. Therefore, Pareto-
based evolutionary algorithms are used for a maximum of three objectives in the general objective function.

This paper develops a network reconfiguration model considering multiobjective optimization for four criti-
cal objectives in the general objective function. In this method, the first fuzzy membership function for each 
objective function (μ) should be defined to optimize the multiobjective problem. According to Fig. 1, the fuzzy 
membership functions for four objective functions are  defined2,32,33. These fuzzy membership functions are 
formulated as follows:

The minimum value of each objective is obtained using the network reconfiguration solving using the ITSOA. 
The maximum objective function value is found in the analysis of the base network. The nearest maximum value 

(12)µPloss =







1; Ploss ≤ Ploss_min
Ploss_min−Ploss

Ploss_max−Ploss_min
; Ploss_min ≤ Ploss ≤ Ploss_max

0; Ploss ≥ Ploss_max

(13)µ�sag =







1; �sag ≤ �sag_min
�sag_min−�sag

�sag_max−�sag_min
; �sag_min ≤ �sag ≤ �sag_max

0; �sag ≥ �sag_min

(14)µ�unb =







1; �unb ≤ �unb_min
�unb_min−�unb

�unb_max−�unb_min
; �unb_min ≤ �sag ≤ �unb_max

0; �unb ≥ �unb_min

(15)µENS =







1; �ENS ≤ �ENS_min
�ENS_min−�ENS

�ENS_max−�ENS_min
; �ENS_min ≤ �ENS ≤ �ENS_max

0; �ENS ≥ �ENS_min

Figure 1.  Fuzzy membership function applied for different objective functions (a) Ploss, (b) �sag , (c) �unb , (d) 
ENS.
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to the minimum value clears the higher importance degree of the objective. So, the nearest objective value to the 
maximum value is lower µ. At least one fuzzy index must be maximized to optimize the objective functions. In 
other words, the objective functions are minimized simultaneously, and all the objective functions are close to 
their minimum value. This method is formulated as  follows2,32,33

The membership values define the satisfaction degree for any objective function. The high objective func-
tion has a low membership value and vice versa. So, the multiobjective problem is modified to a maximization 
problem as follows:

The paper presents fuzzy membership functions for four objectives, as shown in Fig. 1.

Proposed ITSOA
The proposed optimization method to find the optimal configuration of the unbalanced networks is presented 
in the following.

Overview of transient search optimization algorithm (TSOA). The TSOA algorithm is an innova-
tive approach inspired by electrical phenomena, which integrates two energy-saving components. It is based 
on the transient response (TR) of switched electrical circuits (SECs). These elements are resistor, inductor and 
capacitor. The TSOA exploration capability inspires the response of the R-L-C circuit in under-damped tran-
sient conditions. So, the TSOA exploitation inspires the exponential decadence of the R-C circuit response in 
transient conditions. Hence, the response based voltage related to the capacitors in circuits of R-C and R-L-C are 
defined as  follows34:

R, L and C refer to resistance, inductor and capacitors, respectively.  v1(t) and  v2(t) are the response of R-C and 
R-L-C circuits, respectively. Also, fd refers to the damping frequency, and B1 and B2 indicate constant numbers.

So, the voltage response of the mentioned circuit in Eqs. (18) and (19) are applied for modeling the TSOA. 
In the TSOA model (Eq. (20)), the R, L and C (R1, R2, C1, C2, and L) in v1(t) and  v2(t) equations are converted 
to random numbers as U and α . This random characteristic is desirable for optimization methods. The decision 
variables in TSOA are considered as search agents XIT + 1 and XIT, which are equivalent to v(t) and v(0) variables 
in v1(t) and  v2(t) equations. Also, the X*ba is a variable that is introduced as the best agent and equivalent to v(∞). 
Moreover, in the equation of v2(t) , β1 = β2 =|XIT − W. XIT

*ba| is established where U random number is defined 
by U = k × rm2 × a + 1 that k refers to an actual number and a = 2 − 2 × IT/ITmax that ITmax indicates maximum 
iterations number and rm2 refers to a number randomly between zero and one. The r1 is applied for balancing 
the exploration and exploitation phases with rm1 ≥ 0.5 and rm1 < 0.5, respectively, in the  TSOA34.

where α = 2 × a × rm3 − a, and rm3 refer to real numbers randomly among zero and one., the pseudo-code of the 
TSOA is shown in Fig. 2.

Overview of improved TSOA (ITSOA). In this study, the opposition learning strategy (OLS)40 is applied to 
improve the convergence efficiency and balance the exploration and exploitation of the TSOA. These algorithms 

(16)µ(x) = min
(

µPloss (x),µ�sag (x),µ�unb
(x),µENS(x)

)

(17)max{µ(x)}

(18)v1(t) = v1(∞)+ (v1(0)− v1(∞))e
−t

R1C1

(19)v2(t) = e
−R2 t
2L (β1cos(2π fdt)+ β2sin(2π fdt))+ v2(∞); if (

R2

2L
)2 <

1

LC2

(20)XIT+1 =

{

X∗ba
IT +

(

XIT − U × X∗ba
IT

)

e−α; rm1 < 0.5

X∗ba
IT + e−α[cos(2πα)+ sin(2πα)]

∣

∣XIT − U × X∗ba
IT

∣

∣; rm1 ≥ 0.5

Figure 2.  Pseudo-code of the TSOA.
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may get stuck in local optimality due to the selection of the optimization variable randomly and lack of desirable 
knowledge of domain search and essential criteria. Also, these methods are time-consuming due to the differ-
ence between the initial and optimal solutions. Even if these algorithms reach the global optimal, they may not 
have a good convergence speed and accuracy. TSOA uses OLS to find an alternative to the current solution. This 
approach allows the optimal solution to be approached and reached more quickly. Consequently, the conver-
gence speed increases. Suppose X is in [η, �] . Then the opposite point is X = η + �− X. X = (X1,X2, . . . ,Xd) 
is a point in search space with d dimension, where X1,X2, . . . ,Xd ∈ R and Xi ∈ [ηi , �i]; ∀i ∈ {1, 2, . . . , d}. The 
opposite point based on its components is as follows:

So, the initial population is generated using the OLS.
Also, a nonlinearly decreasing strategy (NDS)41 is applied to improve the TSOA performance in global and 

local exploration and achieve a desirable balance between global convergence and convergent efficiency. Search 
performance can be improved with the changes in the coefficient of ∂NDS . The ∂NDS reduced nonlinearly from 
∂NDSmax  to ∂NDSmin  . The more significant value of ∂NDS helps better global search capability. Besides, the smaller ∂NDS 
enhances global search capability in the exploration phase. This strategy is modeled by

where, ∂NDSmax  and ∂NDSmin  refer to the upper and lower limit of coefficient ∂NDS , respectively.
So (22) is modified by

The ITSOA can have high global search capability in pre-search, and finally, its convergence rate is fast. The 
flowchart of the proposed ITSOA is shown in Fig. 3.

Comprehensive analysis of ITSOA. In this section, the capability of the ITSOA is investigated for some 
benchmark test functions that are  available42. The benchmark test functions are presented in Table 1, as uni-
modal (F1–F7), multi-modal (F8–F13) and fixed-dimension multimodal (F14–F23) in the prior studies. The 
uni-modal functions have only one global optimal, and the multi-modal functions have many local optimal. 
The ITSOA superiority is evaluated compared to the conventional TSOA and the results of Ref.42 obtained by 
the m-sine cosine algorithm (m-SCA). The ITSOA is achieved to the best value in all test functions with more 
substantial competitiveness compared with the TSOA and m-SCA. The mean and STD values of test func-
tions obtained using different algorithms are presented in Table 2. The obtained results showed that the ITSOA 
achieves better values of the test functions and is very competitive compared to the other algorithm. These fig-
ures proved the competitive performance of the ITSOA compared with the conventional TSOA.

Implementation of ITSOA. Friedman  test43,44 is performed to better show the performance of the ITSOA 
on the average value compared with m-SCA and the results are given in Table 3. Based on the results obtained, 
the ITSOA has effectively defeated the m-SCA, which indicates the strength of this algorithm.

The Wilcoxon test is also used to present the performance of the ITSOA compared to the m-SCA. Based on 
the results obtained in Table 4, the CVSO is decisively superior to the m-SCA and this proposed algorithm is 
more competitive.

The ITSOA is developed for solving the multiobjective optimal network reconfiguration. The ITSOA imple-
mentation is presented below to determine the optimum network configuration.

Step 1  The distribution network is radial in normal conditions. However, the network has tie-lines that are 
open in standard conditions and can insert into the network by maintaining the network radiality and 
observing the other constraints of the problem. Another line should be opened in order to maintain 
the network’s radiality.

Step 2  Typically, the lines (which should not be identical) are chosen at random. The opened lines (which 
should not be the same) are selected randomly. In this condition, the network radiality and operation 
constraints should be satisfied.

Step 3  The objective functions are calculated for opened lines satisfying the operational constraints.
Step 4  The ITSOA populations are updated.
Step 5  The objective function is calculated for new ITSOA populations. If the objective function value is lower 

than the ones obtained in Step 3, it should be replaced with the old value.
Step 6  If convergence criteria (running the maximum iterations of the ITSOA) are satisfied, go to Step 7; 

otherwise, go to step 4.
Step 7  The ITSOA is stopped.

(21)X = ηi + �i − Xi ,X =
(

X1,X2, . . . ,Xd

)

(22)∂NSD = ∂NDSmax −
IT ×

(

∂NDSmax − ∂NDSmin

)

ITmax × sin

(

IT × π

2× ITmax

)

(23)XIT+1 =

{

∂NSDX∗ba
IT +

(

XIT − UX∗ba
IT

)

e−α; rm1 < 0.5

∂NSDX∗ba
IT +

∣

∣XIT − UX∗ba
IT

∣

∣e−α(cos(2πα)+ sin(2πα)); rm1 ≥ 0.5
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Results and discussion
The unbalanced 13-bus Kodaband-Loo network and IEEE 118-bus distribution networks are used to validate 
the proposed methodology. The Kodaband-Loo distribution network has an active load of 10.536 kW and 5.992 
kvar, 63/20 kV. The unbalanced 13-bus Khodabandeh-loo network has five lines between the buses 13–4, 6–9, 
13–12, 12–10 and 9–10, lines 13 to 17 of the  network45. The 118-bus network also has 118 buses and 117 lines. 
The 118-bus network has 15 tie lines that these lines are Lines 118 to 132, respectively between buses 46–27, 
17–27, 8–24, 43–54, 62–49, 62–37, 9–40, 58–96, 91–73, 88–75, 77–99, 83–108, 86–105, 110–118, 25–3545. The 

Figure 3.  Flowchart of ITSOA.
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data of the 118-bus network is derived  from39. The configuration results via the ITSOA are given subjected to 
loading variations. The results of the ITSOA in the reconfiguration problem are compared with conventional 
TSOA and some well-known and powerful algorithms such as PSO, GWO, MRFO, ALO and BA. The algorithm 
population is considered 500, and also the iteration number is selected 300 based on the user experience and 
different running the simulations.

13-bus typical unbalanced network. Simulation results are presented for a multi-objective reconfigura-
tion to minimize loss, improve power quality, and increase the reliability of a typical feeder. The convergence 
process of the ITSOA in comparison with different algorithms is presented in Fig. 3. According to Fig. 4, the high 
convergence speed of ITSOA is proved in lower iteration and convergence tolerance also with the lowest objec-
tive function. In Table 5, the numerical results are demonstrated for the 13-bus network.

The obtained results showed that, according to Table 6, after optimal reconfiguration, the objectives of loss, 
power quality indices and reliability of the 13-bus network are enhanced. The value of network losses in the 
base case in nominal load is 175.58 kW, which after reconfiguration reached 116.687 kW. Switches 6, 7, 9, 12, 13 
are determined as opened switches by ITSOA. Also, the power quality indices and ENS values without network 
optimization are 0.980 p.u, 0.81% and 4.348 kWh, respectively, which decreased to 0.383 p.u, 0.4060%, and 2.603 
kWh after multiobjective reconfiguration, respectively.

Table 1.  The benchmark problems.

Test function Dimensions Range Fmin

F1(x) =
∑D

i=1x
2
i

30 [− 100, 100] 0

F2(x) =
∑D

i=1|xi | +
∏D

i=1|xi | 30 [− 10, 10] 0

F3(x) =
∑D

i=1

(

∑i
j=1xj

)2 30 [− 100, 100] 0

F4(x) = maxi{|xi |, 1 ≤ i ≤ D} 30 [− 100, 100] 0

F5(x) =
∑D−1

i=1

[

100(x2i − xi+1)
2 + (xi − 1)2

]

30 [− 30, 30] 0

F6(x) =
∑D

i=1([xi + 0.5])2 30 [− 100, 100] 0

F7(x) =
∑D

i=1ix
4
i + random( 0, 1) 30 [− 1.28, 1.28] 0

F8(x) =
∑D

i=1 − xisin
(√

|xi |
)

30 [− 500, 500] − 418.9829 × D

F9(x) =
∑n

i=1

[

x2i − 10cos(2πxi)+ 10
]

30 [− 5.12, 5.12] 0

F10(x) = −20exp(−0.2

√

D−1
∑D

i=1x
2
i )− exp

(

D−1
∑D

i−1cos(2πxi)
)

+ 20+ e 30 [− 32, 32] 0

F11(x) = 1
4000

∑D
i=1x

2
i −

∏D
i=1cos

xi√
i
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where yi = 1+ (xi + 1)/4, ɑ = 5, k = 100 and m = 4

30 [− 50, 50] 0
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F14(x) =

[

1
500

+
25
∑

j=1

1

j+
∑2

i=1(xi−aij)6

]−1

2 [− 65, 65] 0.998

F15(x) =
∑11

i=1

[

ai −
x1
(

b2i +bix2
)

b2i +bix3+x4

]2

4 [− 5, 5] 0.0003

F16(x) = 4x21 − 2.1x41 +
1
3
x91 + x1x2 − 4x22 + 4x42 2 [− 5, 5] − 1.0316

F17(x) =
(
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4π2 x
2
1 +

5
π
x1 − 6

)2

+ 10
(

1− 1
8π

)
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F18(x) =
[

1+ (x1 + x2 + 1)2
(

19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22
)]

×
[

30+ (2x1 − 3x2)
2 ×

(

18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22
)] 2 [− 2, 2] 3

F19(x) = −
∑4

i=1ciexp
(

−
∑3

j=1aij
(

xj − pij
)2
)

3 [1, 3] − 3.86

F20(x) = −
∑4

i=1ciexp
(

−
∑6

j=1aij
(

xj − pij
)2
)

6 [1, 3] − 3.32

F21(x) = −
∑5

i=1 (x − ai)(x − ai)
T + ci]

−1 4 [0, 10] − 10.1532

F22(x) = −
∑7

i=1 (x − ai)(x − ai)
T + ci]

−1 4 [0, 10] − 10.4028

F23(x) = −
∑10

i=1 (x − ai)(x − ai)
T + ci]

−1 4 [0, 10] − 10.5363
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Table 3.  Friedman ranks of ITSOA and m-SCA for all test functions.

Function m-SCA ITSOA

F1 2 1

F2 2 1

F3 2 1

F4 2 1

F5 2 1

F6 2 1

F7 2 1

F8 2 1

F9 2 1

F10 2 1

F11 2 1

F12 2 1

F13 2 1

F14 2 1

F15 2 1

F16 2 1

F17 2 1

F18 2 1

F19 2 1

F20 2 1

F21 2 1

F22 2 1

F23 2 1

AVG-Rank 2.00 1.00

Final Rank 2 1

Table 2.  The Mean and Std. values of test functions using ITSOA, and m-SCA42 with D = 30.

F

ITSOA m-SCA

Ave Std Ave Std

F1 4.12E−5 4.87E−4 5.70E−03 2.63E−02

F2 7.48E−6 6.06E−4 9.11E−04 1.90E−03

F3 8.17E + 2 4.15E+2 8.48E+02 5.49E+02

F4 6.98E−1 4.26E−1 7.07E−01 5.37E−01

F5 25.97E+00 8.51E+00 29.5658 2.43E+00

F6 1.06E+00 5.44E−1 1.24E+00 5.12E−01

F7 1.53E−02 6.82E−03 1.95E−02 6.87E−03

F8 − 4.18E+03 2.35E+02 − 4.26E+03 2.88E+02

F9 6.38E+01 4.90E+01 7.81E+01 5.21E+01

F10 4.309E−5 7.16E−04 3.36E−03 8.06E−03

F11 3.25E−2 5.92E−03 3.84E−02 7.15E−02

F12 1.34E−01 6.77E−02 1.45E−01 8.19E−02

F13 1.27E+00 3.13E−01 1.41E+00 3.94E−01

F14 1.01 E+00 0.00E+00 1.03E+00 1.81E−01

F15 5.03E−04 0.89E−04 5.10E−04 1.00E−04

F16 − 1.03E+00 0.00E+00 − 1.03E+00 0.00E+00

F17 3.98E−01 0.00E+00 3.98E−01 0.00E+00

F18 3.00E+00 6.76E−16 3.00E+00 1.00E−04

F19 − 3.86E+00 2.28E−15 − 3.86E+00 2.00E−04

F20 − 3.31E+00 0.48E−02 − 3.31E+00 0.51E−02

F21 − 9.98E+00 1.74E−01 − 9.94E+00 1.99E−01

F22 − 1.02E+01 2.05E−01 − 1.01E+01 2.10E−01

F23 − 1.03E+01 0.96E−01 − 1.03E+01 1.13E−01
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The superiority of the ITSOA in problem solution with achieving the lowest value of losses, power quality 
indices and ENS is illustrated compared with the other algorithms for the 13-bus network in Fig. 5. Also, the 
statistic test of different methods’ capability for multiobjective configuration of the unbalanced 13-bus network is 
given in Table 6. The results showed better optimization performance of ITSOA compared with the TSOA, PSO, 
BA, GWO, MRFO and ALO methods in obtaining a better objective function value with less STD. Moreover, the 
power quality indices of the 13-bus network are illustrated in Figs. 6 and 7, respectively. According to Figs. 6 and 
7, power quality is improved by determining optimal network configuration based on multiobjective functions.

The effect of load variation of the unbalanced 13-bus network is studied in the reconfiguration results. In 
Table 7, the results of changing the demand are presented. The results showed that increasing the network load 
causes increase in power loss, voltage sag, voltage unbalance and energy not supplied values. So it can be said that 
the reliability and power quality are also affected by network demand. The voltage profile of the 13-bus network 
is shown in Fig. 8 in different loading conditions. It can be seen that the network voltage deviation is reduced 
with load decreasing and vice versa.

118-bus unbalanced network. The simulation results for an unbalanced 118-bus distribution network 
are demonstrated. The base losses, voltage sag, ENS, and voltage unbalance are obtained at 1322.470 kW, 2.549 
p.u, 128.274 kWh and 23.098%. The convergence process of TSOA, PSO, GWO, MRFO, ALO, BA, and ITSOA 

Table 4.  The competitive results of Wilcoxon’s test.

Corresponding algorithm

ITSOA versus

p-values

m-SCA 9.7505e−9

Figure 4.  Convergence process of the algorithms in multiobjective reconfiguration solution, unbalanced 13-bus 
network.

Table 5.  Simulation results of multiobjective reconfiguration unbalanced 13-bus network.

Method Solution Loss (kW) � sag (p.u) � un (%) ENS (MWh/yr)

Initial 13, 14, 15, 16, 17 175.58 0.980 0.810 4.346

ITSOA 6, 7, 9, 12, 13 16.687 0.383 0.406 2.603

TSOA 6, 7, 9, 13, 15 16.905 0.394 0.4081 2.737

PSO 6, 7, 9, 13, 15 16.905 0.394 0.4060 2.737

BA 5, 7, 12, 13, 17 17.595 0.409 0.4133 2.817

GWO 6, 7, 9, 13, 15 16.905 0.394 0.4060 2.737

MRFO 6, 8, 9, 10, 13 17.051 0.399 0.4117 2.762

ALO 6, 7, 9, 13, 15 16.905 0.394 0.4060 2.737
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Table 6.  Statistic Analysis of methods for multiobjective problem of 13-bus unbalanced network.

Algorithms Best Mean Worst STD

ITSOA 0.50124 0.50139 0.50257 0.00045953

TSOA 0.50270 0.50198 0.50329 0.00083409

PSO 0.50270 0.50233 0.50464 0.0011035

BA 0.51652 0.53445 0.57564 0.026266

GWO 0.50270 0.50154 0.50277 0.00062865

MRFO 0.50630 0.51992 0.73949 0.060781

ALO 0.50270 0.50133 0.50270 0.0006085

Figure 6.  Voltage sag of 13-bus network via ITSOA with and without reconfiguration.

Figure 5.  The optimal objective values obtained with different algorithms for the unbalanced 13-bus network.
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is shown in Fig.  9. The results showed that the ITSOA is achieved to the best objective function value and 
converged with less tolerance than the other algorithms. The results showed that the better performance of the 
proposed method is in the reconfiguration of large networks. The optimization procedure in a large distribu-
tion network is complex, which can be a good test for evaluating the performance of the optimization methods.

In Table 8, the simulation results of multiobjective reconfiguration based on ITSOA for the nominal unbal-
anced 118-bus system demand are depicted. The switches of 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 
129, 130, 131, 132 are open in base condition. Best configuration of 118-bus network is with opened switched as 

Figure 7.  Voltage unbalance of 13-bus network via ITSOA with and without reconfiguration.

Figure 8.  Voltage profile of unbalanced 13-bus network in different loading using ITSOA after reconfiguration.

Table 7.  Effect of changing the demand for the multiobjective problem of the unbalanced 13-bus network via 
ITSOA.

Method Solution Loss (kW) � sag (p.u) � un (%) ENS (MWh/yr)

62.5% of the nominal load 6, 7, 9, 13, 15 65.858 0.246 0.2530 1.710

Initial 13, 14, 15, 16, 17 125.45 0.690 0.601 2.954

Nominal load 6, 7, 9, 12, 13 116.687 0.383 0.4060 2.603

Initial 13, 14, 15, 16, 17 175.58 0.980 0.810 4.346

125% of nominal load 6, 7, 9, 13, 15 152.117 0.493 0.5085 3.421

Initial 13, 14, 15, 16, 17 212.06 1.164 0.987 5.046
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14, 23, 33, 39, 43, 47, 71, 85, 87, 95, 107, 108, 121, 123, 128 determined optimally by ITSOA. The losses, power 
quality indices and ENS are 1050.481 kW, 2.0930 p.u, 16.934%, and 101.306 kWh, respectively. The superiority of 
the ITSOA in problem solutions with achieving better indices in comparison without reconfiguration is illustrated 
compared with the other algorithms for the 118-bus network in Fig. 10. Table 9 also gives a statistic test of meth-
ods capability for multiobjective reconfiguration of the 118-bus system. The results proved that the Best value of 
ITSOA is better than the other algorithm and also achieved less STD in comparison with the other algorithms.

Figures 11 and 12 show variations of power quality indices using ITSOA without many and with-objective 
problems for the 118-bus network. As shown in Figs. 11 and 12, the voltage sag and unbalance values are 
decreased along with the network buses. So achieving optimal configuration based on multiobjective optimiza-
tion. Moreover, the power loss and reliability of the power quality objectives are improved, too.

The effect of load variation of the 118-bus network is investigated in the optimization results. In Table 10, 
the results of these conditions are presented. The results, similar to the 33 and 69 bus networks, showed that the 
losses, voltage sag and unbalance and ENS are increased with increasing the demand, and vice versa. The power 
loss in light load (62.5% of nominal load), nominal load, and heavy load (125% of nominal load) is obtained at 
401.773, 1050.481 and 1843.952 kW. The voltage profile of the 118-bus network is demonstrated by changing 
the demand. According to Fig. 13, the voltage profile of the network is enhanced by decreasing the demand and 
vice versa.

Comparison of the results with the previous research. The superiority of the ITSOA-based recon-
figuration is compared with Ref.46 in Table 11, considering balanced and unbalanced networks.  In46, the recon-
figuration of the 118-bus balanced network is studied using PSO.  In47,48, the optimal configuration of the 118-bus 
balanced system is developed with the objective of the power loss reduction using improved tabu search (ITS) 
and refined genetic algorithm (RGA), respectively. The results showed that the ITSOA has fewer losses than the 
PSO, ITS and RGA in a balanced network state, which proves the better capability of the ITSOA-based recon-
figuration. Furthermore, the results showed that power loss was higher in unbalanced networks than in balanced 
networks.

Figure 9.  Convergence process of the algorithms in multiobjective reconfiguration solution, 118-bus network.

Table 8.  Simulation results of multiobjective reconfiguration 118-bus unbalanced network.

Method Solution Loss (kW) � sag (p.u) � un (%) ENS (MWh/yr)

Initial 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132 1322.47 2.549 23.098 128.274

ITSOA 14, 23, 33, 39, 43, 47, 71, 85, 87, 95, 107, 108, 121, 123, 128 1050.481 2.0930 16.934 101.306

TSOA 21, 25, 33, 39, 45, 48, 60, 68, 76, 109, 121, 125, 126, 129, 130 1137.017 2.261 19.624 103.480

PSO 15, 20, 33, 40, 43, 47, 70, 76, 85, 86, 95, 105, 109, 121, 123 1143.677 2.281 18.211 102.632

BA 8, 23, 26, 33, 41, 46, 48, 73, 76, 89, 102, 105, 123, 126, 129 1191.153 2.550 20.625 104.909

GWO 23, 26, 34, 39, 42, 53, 60, 71, 73, 95, 96, 109, 122, 129, 130 1116.241 2.276 17.894 101.313

MRFO 23, 27, 33, 41, 53,62, 71, 76, 123, 125, 126, 129, 130, 131, 132 1124.611 2.278 17.982 101.793

ALO 23, 24, 26, 39, 46, 48, 53, 57, 60, 67, 87, 96, 109, 129, 130 1107.106 2.246 17.126 101.607
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Conclusion
In this paper, a new, improved transient search optimization algorithm (ITSOA) integrated with a multiobjective 
function is proposed to identify the optimal configuration of the unbalanced distribution network considering 
different loading. The optimal configuration of the network status of opened switches is determined using ITSOA 
and satisfying the constraints. The ITSOA is implemented to solve the multiobjective reconfiguration problem 
on unbalanced 13 and 118-bus networks. Simulation results, including power loss, power quality indices and 
energy not supplied, are evaluated before and after reconfiguration. The results showed that the ITSOA-based 
gaussian mutation achieved a better fuzzy fitness than the conventional TSOA. In addition, the results showed 
that multiobjective reconfiguration provides satisfactory results, compromising the different parts of the objective 
function. Furthermore, the results demonstrated that the best improvement was obtained for the voltage unbal-
ance index, and the least improvement was observed for the reliability index. According to the load variation 
results, the increased demand weakened the power quality and reliability indices, and vice versa. The ITSOA 
was found to obtain better power quality and reliability indexes and with the lowest convergence tolerance with 
the highest speed and performance than conventional TSOA, PSO, GWO, BA, MRFO, and previous studies. 
Presenting a multi-objective optimization method based on a new improved algorithm and considering the 
compromise between multiple objectives to achieve the optimal configuration of distribution networks are the 
advantages of the proposed methodology compared to the existing network reconfiguration studies. The unbal-
anced network reconfiguration in conjunction with the allocation of renewable energy resources using a new 
hybrid optimization algorithm is suggested for future work.

Figure 10.  The optimal optimal objective values obtained with different algorithms for the unbalanced 118-bus 
network.

Table 9.  Statistic test of methods capability for multiobjective problem of unbalanced 118-bus network.

Method Best Mean Worst STD

ITSOA 0.9338 0.94501 0.95371 0.0029254

TSOA 0.9390 0.9485 0.95474 0.0035381

PSO 0.9418 0.9488 0.95891 0.003880

BA 0.9435 0.9512 0.96214 0.005566

GWO 0.9372 0.9483 0.95684 0.003159

MRFO 0.9389 0.9486 0.95706 0.003344

ALO 0.9365 0.9478 0.95592 0.003137
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Figure 11.  Voltage sag of 118-bus network via ITSOA with and without optimal configuration.

Figure 12.  Voltage unbalance of 118-bus network via ITSOA with and without optimal configuration.

Table 10.  Effect of changing the demand for the multiobjective problem of the unbalanced 118-bus network 
via ITSOA.

Method Solution Loss (kW) �sag (p.u) �un (%) ENS (MWh/yr)

62.5% of nominal load 14, 23, 33, 39, 43, 47, 71, 85, 87, 95, 107, 108, 121, 123, 
128 401.773 1.295 10.312 75.191

Initial 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 
130, 131, 132 501.593 1.571 12.678 80.171

Nominal load 14, 23, 33, 39, 43, 47, 71, 85, 87, 95, 107, 108, 121, 123, 
128 1050.481 2.0930 16.934 101.306

Initial 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 
130, 131, 132 1322.47 2.549 23.098 128.274

125% of nominal load 15, 22, 33, 35, 39, 41, 71, 85, 86, 95, 107, 108, 121, 123, 
128 1843.952 2.769 21.959 120.161

Initial 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 
130, 131, 132 2109.637 3.218 26.882 150.343
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Figure 13.  Voltage profile of 118-bus network with changing the demand via ITSOA with reconfiguration.
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