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Factorization by quantum 
annealing using superconducting 
flux qubits implementing 
a multiplier Hamiltonian
Daisuke Saida1,2*, Mutsuo Hidaka1, Kentaro Imafuku1 & Yuki Yamanashi3

Prime factorization (P = M × N) is a promising application for quantum computing. Shor’s algorithm 
is a key concept for breaking the limit for analyzing P, which cannot be effectively solved by classical 
computation; however, the algorithm requires error-correctable logical qubits. Here, we describe a 
quantum annealing method for solving prime factorization. A superconducting quantum circuit with 
native implementation of the multiplier Hamiltonian provides combinations of M and N as a solution 
for number P after annealing. This circuit is robust and can be expanded easily to scale up the analysis. 
We present an experimental and theoretical exploration of the multiplier unit. We demonstrate the 
2-bit factorization in a circuit simulation and experimentally at 10 mK. We also explain how the current 
conditions can be used to obtain high success probability and all candidate factorized elements.

Quantum computing is a computational method that provides an alternative route to solving problems that clas-
sical computing cannot solve  effectively1. Experimental demonstrations of quantum computing, using nuclear 
magnetic  resonance2, trapped  ions3,4,  photons5, and superconducting  qubits6–8, have been reported. A simpler 
architecture for quantum computation is quantum annealing (QA), which provides a more practical approach 
in the near-term9–18. QA uses a Hamiltonian that expresses the problems to be solved with a time-dependent 
term for initializing the ground state. At the end of the evolution, the ground state represents the lowest energy 
configuration for the problem Hamiltonian, and thus a solution to the optimization  problem14,19–26. We have pro-
posed QA with native implementation of the Hamiltonian in a superconducting quantum  circuit24. The problem 
Hamiltonian, which has a set of ground states consistent with a given truth table, is implemented for the circuit 
with no redundant qubits. This direct implementation of the original Hamiltonian is vital for obtaining solu-
tions with high success probability because the original energy relationship in the Hamiltonian is  preserved24,25.

Prime factorization (P = M × N) is a promising application for quantum  computing20,27,28. The development 
of Shor’s algorithm stimulated intense interest in quantum  computing29. However, error-correctable qubits are 
required to implement the  algorithm6–8,30. For accurate error corrections, the fabrication of millions to billions 
of qubits is challenging. Another candidate method uses QA, where the prime factorization is treated as an 
optimization problem with solutions as the global minimum of the  Hamiltonian20. However, in this method, 
classical computation is required to calculate the Gröbner basis, which helps to reduce the cost function. We 
have proposed an alternative method that can solve the prime factorization by QA directly. The method uses a 
superconducting quantum circuit of a multiplier, which provides combinations of M and N as a solution after 
QA when number P is set  initially24–26. Basic idea is based on use of a classical n-bit  multiplier31,32. We define 
“n-bit” corresponds to the length of bit string P. Figure 1a shows the classical 4-bit multiplier. The element of 
the multiplier; named as a multiplier unit (MU), is built from the function of AND processing and the full 
adder gate (surrounded by dotted rectangle). The 4-bit multiplier is composed of four  MUij (i = 0–1, j = 0–1). 
The  MUij consists of Xij and Yij for inputs, Zij for sum-in, Dij for carry-in, Cij for carry-out, and Sij for summation. 
Production of this multiplier can be described as P = (P4 P3 P2 P1)(2) =  (C11  S11  S10  S00)(2). Inputs are represented 
as M = (X2 X1)(2) =  (X01  X00)(2) and N = (Y2 Y1)(2) =  (Y11  Y01)(2), respectively. Here, a binary number representation 
is utilized. The input of D01 can be fixed to 0, since D01 is 0 regardless of X1 and Y1. The MU shown in Fig. 1a is 
flexible enough to adapt both inputs of fixed 0 and digit up from the previous step. Using the ground state spin 
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 logic33, the classical MU can be expressed as a Hamiltonian shown in Fig. 1b 24,25. The Hamiltonian of the MU 
consists of six superconducting flux qubits. Qubit-1 and -2 corresponds to the inputs. Qubit-3 and -4 are carry-
in. Qubit-5 and -6 behaves carry-out and summation, respectively. Our unique method is direct implementation 
of the Hamiltonian to the superconducting quantum circuit using static magnetic coupling shown in Fig. 1c. 
Figure 1d shows description of the Hamiltonian of the 4-bit multiplier. Transportations of carries in the classical 
multiplier corresponds to interaction between qubits in the superconducting quantum circuit. Four qubits of  C11, 
 S11,  S10,  S00 are components of the product P in the multiplications (green circles shown in Fig. 1d). Pairs of two 
qubits  (X01 &  X00,  Y11 &  Y01) corresponds to the inputs (represented as orange circles for M and purple circles for 
N in Fig. 1d). Note that this circuit does not calculate each MU step by step with taking account of carry flow like 
classical multiplier. Combinations of qubit sates that has minimum energy, corresponding to the ground states of 
the Hamiltonian, occur after the QA. To take advantage of this property, we design the superconducting circuit 

Figure 1.  Scalable factorization circuit and its key component, the multiplier unit. (a) Schematic of classical 
4-bit multiplier. This consists of four multiplier unit (MU) indicated by dotted rectangle. (b) Energy of each 
state in the MU. Jij terms of the Hamiltonian are implemented by tuning the overlapping area between qubits 
i and j. After quantum annealing, each qubit state takes combinations to reach the Hamiltonian minimum 
energy. (c) A superconducting quantum circuit for the MU consisting of six superconducting flux qubits with 
all-to-all connectivity. The qubit state is detected by a readout circuit composed of a quantum flux parametron 
(QFP) and a dc superconducting quantum interference device (SQUID). (d) Description of Hamiltonian in the 
4-bit multiplier. Production can be described as P = (P4 P3 P2 P1)(2) =  (C11  S11  S10  S00)(2). Inputs are represented 
as M = (X2 X1)(2) =  (X01  X00)(2) and N = (Y2 Y1)(2) =  (Y11  Y01)(2), respectively. Superconducting quantum circuit 
embedding this Hamiltonian can provide function of 4-bit prime factorization in QA.
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where the ground states are aligned with the desired truth table. This circuit has function of an invertible  logic34 
with the multiplication and the factorization. The superconducting quantum circuit for the prime factorization 
could be extended easily by increasing the number of MUs. In this letter and a related study, we examine the MU 
composed of six superconducting flux qubits. We demonstrate an MU prototype in Ref.24; however, this letter 
focuses on the theoretical and experimental behavior of the MU by considering the qubit configurations. We 
investigate a method that can improve the accuracy of solutions and obtain all candidate factorized elements. 
We also demonstrate the robustness of the operating bias conditions in the MU and the promise of scaling for 
prime factorization.

Results
Ideal behavior in the MU. The Hamiltonian in Fig. 1b is directly implemented in the MU (Fig. 1c). Our 
designed instances are MUs composed of the six qubits with all-to-all connectivity at critical currents (Ic) of 
6.25 μA (MU1) and 3.75 μA (MU2). The sample configuration is described in the “Methods” section. Sixteen 
combinations of (X, Y, Z, D, C, S), which correspond to logic components in the MU, take the minimum energy. 
These combinations appear at a degeneracy point after QA. Theoretically, considering the MU Hamiltonian, the 
degeneracy point is expressed as

where Ihi (i = 1–6) is the external bias of qubit i, Mi (i = 1–6) is the mutual inductance between qubit i and the 
external bias line, and Mij (i = 1–6, j = 1–6) is the mutual inductance between qubits i and j. The elicitation process 
of Eq. (1) is described in the “Supplementary Methods”. The inductances of qubits and mutual inductances are 
extracted from the MU layout (see “Methods”). The degeneracy points of MU1 and MU2 are estimated as (Ih1, 
Ih2, Ih3, Ih4, Ih5, Ih6) = (− 0.4, − 0.4, − 0.8, − 0.8, 1.6, 0.8) and (− 0.3, − 0.3, − 0.6, − 0.6, 1.2, 0.6) [μA], respectively. 
We can produce a desirable logic component by applying an appropriate offset current, α, against the degeneracy 
point. For example, multiplication of (X, Y, Z, D) = (1, 1, 0, 0), where carry-ins are fixed as 0, can be considered 
by applying the external flux bias of (Ih1′, Ih2′, Ih3′, Ih4′, Ih5′, Ih6′) = (Ih1 + α, Ih2 + α, Ih3 − α, Ih4 − α, Ih5, Ih6). After QA, 
each qubit state takes combinations to reach the minimum energy in the Hamiltonian. Biasing one of the qubits 
by adopting α in the initial condition restricts the state of the other qubit because the qubits interact with each 
other to minimize the energy after QA. In the multiplication of (X, Y, Z, D) = (1, 1, 0, 0), qubit-5 (C) and qubit-6 
(S) probably adopt the 0 and 1 states, respectively, because the combinations of qubits (X, Y, Z, D, C, S) = (1, 1, 
0, 0, 0, 1) produces the minimum energy. Based on the theoretically evaluated degeneracy point, we examine 
the multiplication with a Josephson integrated circuit simulation (JSIM)35 (see “Methods” section). Figure 2a 
shows all candidate multiplications of each logic component in the simulation. The 16 combinations of qubits 
(X, Y, Z, D, C, S), corresponding to the logic components in the MU, are all reproduced. Except from (X, Y, Z, 
D, C, S) = (1, 1, 0, 1, 1, 0) and (1, 1, 1, 0, 1, 0), the success probabilities are above 80%. Multiplications are also 
simulated using the degeneracy points, which are obtained experimentally. Although the elements with low suc-
cess probabilities varies, all components of the multiplication are reproduced. In the factorization process, α is 
assigned to qubits (C, S). The MU covers the numbers  3(10) = (1,1)(2),  2(10) = (1,0)(2),  1(10) = (0,1)(2),  0(10) = (0,0)(2). For 
example, factorization of  2(10) is performed by applying the external flux bias of (Ih1′, Ih2′, Ih3′, Ih4′, Ih5′, Ih6′) = (Ih1, 
Ih2, Ih3, Ih4, Ih5 + α, Ih6 − α). Due to the global minima restriction in the Hamiltonian, combinations of qubit states 
probably produce five candidates, which are (X, Y, Z, D, C, S) = (0, 0, 1, 1, 1, 0), (0, 1, 1, 1, 1, 0), (1, 0, 1, 1, 1, 0), (1, 
1, 0, 1, 1, 0), and (1, 1, 1, 0, 1, 0). Figure 2b represents the JSIM analysis of the factorization using the theoretical 
degeneracy point. The success probabilities in the factorization of number  1(10) and  0(10) increase as α increases, 
later slightly decreases. In contrast, the factorization of numbers  2(10) and  3(10) show different behavior, where 
the success probability obviously decreases above α of 1.3 and 2.5 μA, respectively. This indicates that there is an 
optimum value of α, and the highest success probability is obtained with α of 1.3 μA.

Hamiltonian implementation. Direct implementation of the Hamiltonian produces a ground state in 
the superconducting quantum circuit at the minimum energy. We should satisfy two requirements for direct 
implementation, based on the relationships of the qubit-to-qubit interactions (corresponding to Mij) and qubit-
to-local current path interactions (corresponding to mutual inductances Mi). The elicitation process is described 
in the “Supplementary Methods”. The designs of MU1 and MU2 generally satisfy the two requirements, as shown 
in Supplementary Tables S1 and S2.

Degeneracy point. The superconducting quantum circuits are cooled to 10 mK in a dilution refrigera-
tor. Under these conditions, the energy in the potential of an rf superconducting quantum interference device 
(SQUID) at the qubit is four orders of magnitude higher than that of the thermal energy. Disturbance due to 
the thermal energy is neglectable in our experiment. The electric noise is sufficiently suppressed so that we can 
evaluate a switching current of 0.28 μA in a single Josephson junction, which is much less than Ic of the qubit in 
this work (see Supplementary Fig. S1c). Based on the experiment described in “Experimental configurations” 
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of the “Supplementary Methods”, the experimental degeneracy points of MU1 and MU2 are found at (Ih1, Ih2, 
Ih3, Ih4, Ih5, Ih6) of (− 0.28, − 0.23, − 0.45, − 0.6, 0.37, 0.42) and (− 0.3, − 0.3, − 0.4, − 0.4, 0.5, 0.4) [μA], respectively 
(see Supplementary Fig. S2). For convenience, we define these current conditions as OP1 and OP2, respectively. 
OP1 and OP2 are different from the theoretically estimated current conditions. Annealing time (Ta) dependence 
appears, especially in frequently generated elements and minor elements. The frequency of occurrence of each 
element in MU2 is more uniform than that in MU1. The similarity in the trends in the frequency of other ele-
ments (error response) and in frequently generated elements are because configuration of the superconducting 
quantum circuits are the same in MU1 and MU2. The frequency of the minor elements in MU2 is improved 
compared with that in MU1. Although the theoretical and experimental degeneracy points are different, we can 
use these conditions to generate the logic components in the multiplication and factorization with α. A typi-
cal response of the multiplication in MU1 based on OP1 is reported in Ref.24. Supplementary Fig. S3 shows an 
example of the multiplication using OP2. All 16 elements in Fig. 1b are reproduced, and the multiplication of 
(X, Y, Z, D) = (1, 1, 1, 1) (Supplementary Fig. S3a) shows that there is an appropriate α value for generating states 
with high accuracy.

Factorization. Figure 3 shows JSIM analysis of the α dependence of the factorization in MU2 based on 
the theoretical degeneracy point. The factorization of (0,0)(2), (0,1)(2), (1,0)(2), and (1,1)(2) represents 3, 7, 5, and 
1 types of candidate solution, respectively. Here, we focus on the factorization of (1,0)(2). The frequency in the 
element (X, Y, Z, D, C, S) = (0, 1, 1, 1, 1, 0) and (1, 0, 1, 1, 1, 0) varies dynamically as α increases, and the error 
response increases with α. These trends correspond to the decrease of the success probability at α > 1.3 in Fig. 2b. 
The error components consist chiefly of different combinations from the 16 components that minimize the 

Figure 2.  Demonstration of the multiplication and the factorization. (a) Success probabilities of the 
multiplication calculated by JSIM analysis based on two kinds of degeneracy points in MU2. The theoretical 
degeneracy point is the current conditions numerically estimated using Eq. (1). The experimental degeneracy 
point is the current conditions where all 16 logic components are observed. An offset current α of 1.3 μA is 
used. All candidate logic components are reproduced in both analyses; however, the probability is affected 
by the applied degeneracy point. (b) α dependence of success probabilities of the factorization calculated by 
JSIM analysis in MU2. Factorizations of (1,0)(2) and (1,1)(2) are not stable with respect to the increase of α. α 
dependence of the experimental success probabilities of the factorization in (c) (0,0)(2), (d) (0,1)(2), (e) (1,0)(2), 
and (f) (1,1)(2). Longer annealing time (Ta) increases the success probability.
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energy in the Hamiltonian. These results indicate that the energy diagram for the factorization of (1,0)(2) is not 
stable as α increases, but has a sparse distribution of low energy states that correspond to factorization elements. 
Figure 4 shows the experimental α dependence of the factorization at Ta = 100 μs. All candidate elements are 
observed in each factorization, indicating that the response is better than that in MU1 reported in Ref.24. The fre-
quency distributions of the factorized components at Ta = 1 and 15 μs are summarized in Supplementary Fig. S4. 
There is a different α dependence between Ta = 1 and 100 μs, probably related to the trend in Supplementary 
Fig. S2b, which reflects the sparse distribution of low energy states. In the factorization of (0,1)(2), all candidate 
components are identified with α less than 4. The variation of the components in the factorization is improved 
in MU2 compared with that in MU1. The response of the component (X, Y, Z, D, C, S) = (0, 0, 0, 0, 0, 0) in the 
factorization of (0,0)(2) indicates that there is an optimum value of α for accurate factorization. Figure 2c–f show 
the experimental α dependence of the success probability. The success probability reaches a maximum at α of 
about 2. This α dependence is consistent with the trends discussed so far. In addition, a slight decrease in the 
success probability after the peak in Fig. 2b is observed.

Discussion
Here, we discuss why the theoretical and experimental degeneracy points are different. The theoretically esti-
mated degeneracy point is consistent with that evaluated using JSIM, which means that the superconducting 
quantum circuit shows theoretical behavior if the Hamiltonian is precisely implemented. However, we focus on 
the difference between the experimental results and the JSIM analysis. There is an offset magnetic flux generated 
by a surrounding circuit and qubits in experiment. We can identify the effect of the offset flux from the trend in 
the state-1 probability (see Supplementary Fig. S5). In the experiment, it is necessary to calibrate the effect of the 
offset flux. However, the calibrated degeneracy point is still different from the theoretical degeneracy point. Here, 
improving the uniformity of component generation and the variety of factorized components in MU2 compared 
with those in MU1 may indicate an important design issue. The undesirable local minima of MU1 is suppressed 
in MU2 (Supplementary Fig. S6). In the fabrication of MU2, heat treatment at 220 °C is applied, which controls 
Ic; however, we should consider whether treatment causes an irreversible change in the characteristics of the 
Josephson junctions. The boundary condition of the irreversible change is probably between 220 and 230 °C 
(Supplementary Fig. S7). Supplementary Fig. S5 shows the state-1 probability of each qubit consisting of MU2. 
For the state-1 probability in qubit-5 (C), the transition direction is unstable around a probability of 0.5. This 
behavior is not observed in the same qubit in MU1. The state-1 probability indicates that the irreversible change 
in the characteristics in the Josephson junctions does not occur uniformly around 220 °C. These results indicate 

Figure 3.  JSIM analysis of the factorization. Frequency distribution of the factorized elements for (a) (0,0)(2), 
(b) (0,1)(2), (c) (1,0)(2), and (d) (1,1)(2). In (1,0)(2), the wrong response increases as α increases; however, every 
candidate element is still identified.
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that the characteristics of the Josephson junction were degraded by the thermal treatment in MU2, and this is 
main reason for the difference between the theoretical and experimental degeneracy points.

It is possible to obtain the intended logic component by using α, even if it is far from the degeneracy point. 
However, we should take care to select an appropriate value of α. Supplementary Fig. S8 shows the factorizations 
in MU2 performed using OP1 (where several elements of 16 candidate do not occur as shown in Supplemen-
tary Fig. S9b). Factorization based on the theoretical degeneracy point is also investigated (see Supplementary 
Figs. S10 and S11). The success probabilities were above 80% with α of around 1. The variation of the probability 
with α is larger in Supplementary Fig. S11 than in Fig. 2c. Although the success probability is high, the compo-
nents in the factorization are biased. These results indicate that the energy potential has a sparse distribution of 
global minima. Consistent experimental and theoretical degeneracy points are obtained by the following changes. 
The first is revising the variation of L between qubits. This is mainly due to the design of qubit-5 (C), which has 
large rings for qubit interactions. The second is decreasing Ic by reducing the size of the Josephson junctions. 
Because we mainly use Josephson junctions with sizes of 1–7 μm2, the amount of damage from the fabrication 
process, especially ion-beam etching, is expected to be small. We will control the size of the junction and its Ic 
evaluation on the submicrometer squared scale. In future work, the target Ic in the qubit will be 1–3 μA.

As similarly in the classical  multiplier32, our proposed method for the prime factorization can be scaled up 
by adding MUs (see “Concept of scalable factorization circuit” in the “Supplementary Note”). Supplementary 
Fig. S12 shows JSIM analysis in a case of factorization of “6” with the 4-bit factorization circuit, where the Hamil-
tonian shown in Fig. 1d is implemented. Two candidates in true combinations of M = (X2 X1)(2) and N = (Y2 Y1)(2) 
are obtained with success probability above 80%. Note that this result corresponds to success probability in the 
MU solely as shown in Fig. 2c–f. This suggests that a scalable factorization system could be built.

We have fabricated an MU with a success probability above 80% for factorization. The MU is robust for 
factorization because we can tune the conditions via the offset current. The functionality is easily expandable 
by adding extra MUs. We believe that these results contribute to conventional computing as well as quantum 
computing because our approach provides an alternative method for solving prime factorization.

Methods
Superconducting flux qubit. The qubits used in this experiment are superconducting compound Joseph-
son junction rf-SQUID flux qubits, which is a similar configuration to that described by Harris et al.17,18. We 
fabricate a QA circuit using a process that creates four Nb layers and a Josephson junction with a critical current 
density of 1 μA/μm2. Though single Josephson junction with size of 0.3 μm2 is fabricated, size controllability has 
not been established. In order to create a stable structure for the qubit, we adopted the Josephson junction with 

Figure 4.  Factorization in experiment. Frequency distribution of factorized elements for (a) (0,0)(2), (b) (0,1)(2), 
(c) (1,0)(2), and (d) (1,1)(2) in MU2 at Ta of 100 μs. The frequency is modulated by offset current α. We can 
identify every candidate element for quantum annealing with α of less than 4.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13669  | https://doi.org/10.1038/s41598-022-17867-9

www.nature.com/scientificreports/

size of 6.25 μm2 for the superconducting quantum circuit. In MU2, heat treatment at 220 °C is applied after the 
fabrication to reduce Ic of the Josephson junction. Because the qubit is composed of two superconducting loops, 
consisting of a large loop and an inserted small loop with the Josephson junctions, there are two flux degrees 
of freedom, which are controlled by eternal flux biases Φ2 and Φ1. The rf-SQUID has two bistable states with 
persistent current flowing clockwise or counterclockwise through the large loop when Φ1 of Φ0/2 (Φ0 is the flux 
quantum) is applied. These two states correspond to logical 1 and 0 states in the qubit. Measurement details are 
described in “Experimental configuration” of the “Supplementary Methods”.

Design of the MU. Inductances (L) and mutual inductances (M) are extracted from the layout of the 
superconducting quantum circuit using  InductEX36. In the qubit, a bistable energy state can be achieved by 
coordinating the value of a dimensionless factor, βL = 2πLIc/Φ0. MU is composed of six superconducting flux 
qubits, which have all-to-all connectivity. The two types of MU consist of the same superconducting circuits 
(L = 287.2 ± 8.0 pH) with different Ic, depending on whether they are thermally annealed at 220 °C.

JSIM analysis. The MU circuit model is constructed and analyzed by a  JSIM35. L and M parameters extracted 
from the MU layout are used in the circuit model. Owing to the time constraint, Ta settled in 1 μs. The noise 
current, which reproduces the probability of the qubit state transition in the 10 mK experiment at Ta = 100 μs, is 
used. Each multiplication and factorization performed by individual α is performed with 100 iterations.
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