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Self‑reconfigurable robot vision 
pipeline for safer adaptation 
to varying pavements width 
and surface conditions
Lim Yi1, Braulio Félix Gómez1, Balakrishnan Ramalingam1*, Madan Mohan Rayguru2, 
Mohan Rajesh Elara1 & Abdullah Aamir Hayat1

This work presents the vision pipeline for our in‑house developed autonomous reconfigurable 
pavement sweeping robot named Panthera. As the goal of Panthera is to be an autonomous self‑
reconfigurable robot, it has to understand the type of pavement it is moving in so that it can adapt 
smoothly to changing pavement width and perform cleaning operations more efficiently and safely. 
deep learning (DL) based vision pipeline is proposed for the Panthera robot to recognize pavement 
features, including pavement type identification, pavement surface condition prediction, and 
pavement width estimation. The DeepLabv3+ semantic segmentation algorithm was customized 
to identify the pavement type classification, an eight‑layer CNN was proposed for pavement 
surface condition prediction. Furthermore, pavement width estimation was computed by fusing 
the segmented pavement region on the depth map. In the end, the fuzzy inference system was 
implemented by taking input as the pavement width and its conditions detected and output as 
the safe operational speed. The vision pipeline was trained using the DL provided with the custom 
pavement images dataset. The performance was evaluated using offline test and real‑time field trial 
images captured through the reconfigurable robot Panthera stereo vision sensor. In the experimental 
analysis, the DL‑based vision pipeline components scored 88.02% and 93.22% accuracy for pavement 
segmentation and pavement surface condition assessment, respectively, and took approximately 
10 ms computation time to process the single image frame from the vision sensor using the onboard 
computer.

With urbanization, more infrastructure and pavements will be developed around the world. Due to this increase 
in pavements, more types of pavement are developed. These pavements generally vary in their properties, like 
surface condition, texture, and wet or waterlogged material, among others. In addition to the increasing number 
of pavement types, more pavements are required to be maintained daily to ensure a hygienic environment for 
social activities to occur. In Singapore, 200 km of sheltered pavements have recently been built, and it is expected 
to have more in the  future1. A lot of manual labor and resources go into keeping these pavements clean for usage. 
With the rise of Industry 4.0 and automation, robots are researched extensively to reduce the amount of manual 
labor required for repetitive tasks, including the pavement cleaning industry.

In recent years many autonomous  robots2,3 and cleaning  vehicles4 were proposed for sweeping pavement 
tasks. However, those platforms have a lot of limitations, and is inefficient in covering the width of pavement, 
and are hard to use in the narrow pavements region. As a result, limited efficiency is achieved during the pave-
ment cleaning tasks. Reconfigurable  robots5 are becoming a viable alternative for fixed morphology robots. These 
robots are developed with an inherent capability to autonomously change their kinematics to overcome difficul-
ties in handling a given task and traversing the environment. Purposes of shape reconfiguration varies such as 
to perform another motion such as  climbing6,  rolling7,  flying8 and  floating9. By considering the advantage of the 
reconfigurable mechanism, the pavement cleaning robot  Panthera10,11, as seen in Fig. 1, was developed with the 
reconfigurable mechanism. The robot moves through pavements with dynamically changing widths through a 
reconfigurable mechanism and performs efficient cleaning. To push the development of reconfigurable robot 
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Panthera towards self-configurable capability and safe autonomous locomotion with the instantaneous center of 
 rotation12, the kinematic control part of  Panthera13 needs a high-level vision pipeline that should have the capa-
bility to provide the information about changing pavement width, pavement types, and condition of the surface.

To our best of knowledge, Deep learning (DL) based vision pipeline for reconfigurable pavement cleaning 
robots is a new approach as it is not widely studied yet. This work proposed a DL-enabled vision pipeline for the 
Panthera robot, which provides essential information such as pavement type, pavement condition, and varying 
pavement width information for safe and efficient operation. The vision pipeline is built with Deep Convolutional 
Neural Networks (DCNN) based semantic segmentation algorithm and image classifier module. The DCNN 
modules are trained with large-sized pavement image datasets, collected from the pavements in Singapore and 
tested with offline and real-time environments.

Related work. This section describe the existing study related to our work and its short summery is given 
in Table 1. Machine learning (ML)14 and deep learning (DL)15 are emerging techniques which are widely used 
for many indoor and outdoor  robots16, autonomous vehicle perceptual system design in recent years. These 
perceptual system vision pipelines data are widely used  for17, path  planning18, controlling , safe  navigation19 and 
efficient  operation20. In ML techniques, support vector machine (SVM), K-nearest  neighbors21, Bayes classifier, 
and neural network (NN) are commonly used algorithms and perform surface condition assessment or classify 
the surface type from images or various sensors data.

In Khan et al.  work22, the authors proposed a terrain classification algorithm for mobile robot applications. 
The features extracted from the mobile robot collected images are used to classify terrain type using the Random 
Forest (RF) algorithm and scored 99.2% terrain classification accuracy. Omer et al.23 investigate the feasibility 
of classifying winter road surface conditions as bare road, snowy road, and tracks. The authors use the support 
vector machine (SVM) algorithm, trained using 400 images each class collected through a vision system mounted 
on regular vehicles and have a classification accuracy of over 80%. Kawai et al.24 propose a distinction method 
for road surface conditions at night. The author uses the differences in image features of dry, wet, and snowy 
roads under different light sources and combines the three features with color, brightness, and texture of road to 
classify the road surface condition. K-nearest neighbor algorithm is used for classification and reported 96.1%, 
89.4%, and 95.6% classification accuracy, respectively.

In contrast with the ML technique, the DL scheme has a lot of advantages in perceptual system design, which 
has automatically extracted and learned the features from the bulk image datasets and performs classification 
and detection accuracy better than ML techniques. In literature, there are many DL based image classifica-
tion framework such as  ResNet25,  SqueezeNet26, MobileNet and  VGG1627 which were trained and used for 
autonomous vehicle road pavement classification and condition detection task.  In28 Ramon et al. assess Neural 
Network’s (NN) performance, ML, and DL for terrain classification and slip estimation. The authors performed 
the terrain classification estimation in the mobile robot Fitorobot and reported that deep learning models are 
optimal for solving terrain and ground robotics problems. In another study, Liang et al.29 used the road sur-
face status recognition system using a deep semantic segmentation framework. The author uses the D-UNet 
encoder–decoder framework for detecting the slippery road statuses caused by water, ice, and snow in the win-
tertime. Deep Convolutional Neural NetworK-based road friction estimation was proposed by Marcus et al.30. 
Here, the author trained and evaluated two pre-trained models, ResNet50 and  InceptionV331, and reported that 
ResNet50 outperforms InceptionV3 for road friction estimation and classification tasks. Suryamurthy et al.32 
adopt the deep convolutional encoder–decoder framework in CENTAURO Robot for safe reconfiguration of 
leg joints and path planning application where the semantic segmentation framework “SegNet” was trained for 
terrain segmentation and roughness estimation task and obtained 64% classification accuracy.

The previous  work33, an RGB-D camera is used to estimate the vision feedback algorithm parameters for 
Panthera locomotion and reconfiguration using VGG16 semantic segmentation. Semantic segmentation used 
 in33 was unable to classify different pavement types in Singapore accurately. The parameters derived through 
the method directly go into Panthera kinematic  control13 and do not take into account the pavement types, 
conditions, and magnitude of the vision feedback algorithm parameters for safety. As pre-trained model VGG-
16 pavement segmentation cannot perform accurately in Singapore pavements, safety of pavement users and 
the self-reconfigurable robot is compromised as it might make the robot move into non-pavements. On top of 
that, there is little or no work that is performed on a speed regulation on a self-reconfigurable robot based on 
pavement width changes and pavement conditions.

Taking into account the above facts, the following objectives of the present paper as:

Table 1.  Summary of related work.

Related work Algorithm Application Advantage Limitation

Liang et al.29 D-UNet Road surface condition prediction Highest classification performance 
compared to ML algorithm

Due to pre-trained CNN classification, 
capacity is limited

Marcus et al.30 ResNet50 and InceptionV3 Road friction estimation Classify six types of surface Misclassification of wet asphalt and dirt 
as asphalt

Suryamurthy et al.32 Segnet Terrain segmentation and roughness 
estimation Real-time Bias between flat surface and smooth 

boundaries
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• Vision pipeline for semantic segmentation with pavement type classification (concrete, road, and paver block) 
and condition (bad, moderate, and good) and estimation of pavement width in Singapore.

• A fuzzy-based controller for safer adaptation based on pavement type condition classification and vision 
feedback control parameters.

The remaining of this paper is structured as follows. In “Panthera overview” section describe the proposed Pan-
thera system and overview. In “Vision pipeline” section discuss the vision pipeline and its modules. In “Fuzzy 
inference system” section Section will discuss the fuzzy logic control system part. In “Experimental results” 
section will discuss the experimental results. In “Conclusions” section concludes the paper.

Panthera overview
Figure 1 shows the overview of the reconfigurable pavement sweeping robot Panthera. It was designed to recon-
figure in shape during locomotion to adapt smoothly with respect to changing pavement  widths10,33–35. The tax-
onomy of reconfigurable systems and its classification along with the sensor fusion are detailed in the respective 
 works5,36. The detail of the mechanical system overview and control system architecture is briefly described next.

Mechanical overview. The Panthera core frame is made of an aluminum scissors mechanism, and the 
entire body is supported by four steering units attached to the aluminum frames. These four steering units are 
independent differential drives and consist of two wheels each. In total, Panthera has eight wheels with eight-
wheel motors for locomotion. The mechanism responsible for the reconfiguration is the scissors mechanism 
that connects the central beam to two side beams. A double-threaded lead screw is connected to a motor which 
will drive the scissors mechanism to move as seen in Fig. 1d. The movement of the scissors mechanism enables 
the robot to expand and contract. As the steering units are connected to the aluminum scissors mechanism side 
beam as seen in 1c, the lead screw motor and steering units have to work in synchronization so that reconfigura-
tion can be performed smoothly. Panthera core frame supports the robot’s electronics, including the batteries, 
micro-controllers, relays, perspective sensors, and the industrial computer. The hardware and sensor compo-
nents are sheltered by Panthera’s two external aluminum covers, which are mounted on the two side beams of 
Panthera. The two external aluminum covers are connected by an artificial leather bellow, water resistance, and 
protect the internal electronics components from water and other foreign objects. The kinematics of Panthera 
can be found in our previous  work33.

Control system architecture. The Panthera central control system is built on an industrial computer with 
the operating system Ubuntu 16.04 and uses the middle-ware robot operating system (ROS) Kinetic version. 
ROS is capable of parallel information transfer between ROS nodes. It is used to publish and subscribe data 
within Panthera functional components. Figure 2 shows the hardware components of control system architec-
ture. The industrial computer has a GPU, 8CPU core, and 16 GB RAM, performing high-level tasks including 
running ROS master, vision pipeline task, etc. The 24-V traction battery is used in the Panthera. The 24 V battery 
unit powers all of Panthera’s motors, including eight-wheel motors, one lead screw motor, two brush motors, and 
a vacuum motor. It also powers the sensors and other low-level controllers in Panthera. The Panthera has been 

a) Compressed state b) Expanded state

c) Chassis/frame used for reconfigura�on

d) Single rota�on of the lead screw enable the 
expand and collapse of the frame using Le� and 
Right handed ACME threads

Steering unit

Figure 1.  Self-reconfigurable pavement sweeping robot Panthera.
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built with three key sensors for safe locomotion operation: Digital Absolute Encoders, US Digital Incremental 
Encoders, and the RealSense D435 camera. The RealSense D435 camera is mounted at 95 cm in front of Pan-
thera. The RealSense D435 RGB-D sensor (called perspective nodes) connects with the industrial PC through a 
USB 3.0 interface. It publishes RGB images and depth images in two topics as a sensor_msgs/Image message and 
is subscribed by the vision processing node. After subscribing to the information from the perspective nodes, the 
vision pipeline node will execute the pavement segmentation, pavement classification, surface condition predic-
tion, and pavement width detection task.

Based on the type of pavement classified, surface condition predicted, and pavement width detection, the 
processing node will then publish three parameters: Pavement classification K factor, beta left, and beta right 
in a topic. These three parameters will be subscribed by the locomotion and reconfiguration node via a geom-
etry_msgs/Twist message. Furthermore, the US Digital Absolute Encoders provide steering angle feedback for 
steering angle, while the US Digital Incremental Encoder provides the velocity feedback for the wheel’s speed. 
Both steering angle feedback and velocity feedback are important for Panthera’s control during locomotion and 
reconfiguration. The encoder module published geometry_msgs/Twist message and locomotion and recon-
figuration node subscribed this topic for locomotion and reconfiguration operation. The inverse kinematics 
will determine the speed of the leadscrew motor and the wheel motors for reconfiguration during locomotion.

Vision pipeline
The vision pipeline module executes three tasks: pavement type classification, pavement surface condition pre-
diction, and pavement width estimation. The Fig. 3 shows the functional component of the vision pipeline. It 
comprises a DeepLabv3+ semantic segmentation framework, eight-layer CNN for pavement surface condition 
prediction, and pavement width estimation module. Here, the DeepLabv3+ is a critical component of the vision 
pipeline. The other two modules are built on top of the DeepLabv3+ framework. The vision pipeline ends with 
the output of the speed safety factor and the reconfiguration  parameters33 for Panthera locomotion. The details 
of each component and its integration are described in the subsections.
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Brush Motor
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Figure 2.  Hardware components and electrical layout.
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DeepLabv3+. Figure 4 shows the overview of the DeepLabv3+ semantic segmentation architecture. It com-
prised of the encoder–decoder function where the encoder function generates the feature map from the input 
images and decoder function gradually predict the object detail and spatial dimension of the objects.

Encoder. In DeepLabv3+, the encoder part consists of the backbone network, atrous separable convolution 
function, and atrous Spatial Pyramid Pooling (ASPP). In this work, MobileNetv3+ is configured as a backbone 
network. The layer detail of MobileNetV3+ is given in Table 2. In DeepLabv3+, the last convolution layer of 
MobileNetV3+ is replaced by an atrous separable convolution function to obtain the enlarged receptive field. 
Then, Atrous Spatial Pyramid Pooling (ASPP) function is applied on generated feature map, which applies four 
parallel convolution operations in feature map, including 1× 1 convolution and three 3× 3 convolutions dila-
tion rates (6,12,18). In addition, ASPP applies Global Average Pooling (GAP) to the output features, a map from 
the last atrous block to obtained image-level features. In the end, the elements from all the branches are com-

3x3
Batch Normaliza�on
Non linearity

1x1
Batch Normaliza�on
Non linearity

1x1
Batch Normaliza�on
Non linearity

1x1
Global Pooling

1x1
Global 
Pooling

1x1
Fully 
Connected 
Layer

1x1
ReLU

1x1
Fully 
Connected 
Layer

1x1
Sigmoid

Output

Squeeze And Excite

Figure 4.  DeepLabv3+ semantic segmentation architecture.

Table 2.  Specifications of MobileNetV3-Large.

C Input Operator exp size #out Squeeze-And-Excite Non-Linearity Stride

224
2
× 3 conv2d – 16 No h-swish 2

112
2
× 16 bneck, 3 × 3 16 16 No ReLU 1

112
2
× 16 bneck, 3 × 3 64 24 No ReLU 2

56
2
× 24 bneck, 3 × 3 72 24 No ReLU 1

56
2
× 24 bneck, 5 × 5 72 24 Yes ReLU 2

28
2
× 40 bneck, 5 × 5 120 40 Yes ReLU 1

28
2
× 40 bneck, 5 × 5 120 40 Yes ReLU 1

28
2
× 40 bneck, 3 × 3 240 80 No h-swish 2

14
2
× 80 bneck, 3 × 3 200 80 No h-swish 1

14
2
× 80 bneck, 3 × 3 184 80 No h-swish 1

14
2
× 80 bneck, 3 × 3 184 80 No h-swish 1

14
2
× 80 bneck, 3 × 3 480 112 Yes h-swish 1

14
2
× 112 bneck, 3 × 3 672 112 Yes h-swish 1

14
2
× 112 bneck, 5 × 5 672 160 Yes h-swish 2

7
2
× 160 bneck, 5 × 5 960 160 Yes h-swish 1

7
2
× 160 bneck, 5 × 5 960 160 Yes h-swish 1

7
2
× 160 conv2d, 1 × 1 – 960 No h-swish 1

7
2
× 960 pool, 7 × 7 – – No – 1

1
2
× 960 conv2d, 1 × 1, No Batch Normalisation – 1280 No h-swish 1

1
2
× 1280 conv2d, 1 × 1, No Batch Normalisation – k No – 1
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bined into a single vector via concatenation. This output is then convoluted with another 1× 1 kernel—using 
Batch Normalization (BN) and 256 filters.

Decoder. The decoder module applies the upsampling function to retain the details (specifically object bounda-
ries) from the low dimension feature map. In the decoder side, the multi-scale feature map (extracted from 
ASPP) is bilinearly upsampled by a factor of 4 and then concatenated with the corresponding low-level feature 
map obtained from MobileNetV3+ last convolution layer. Before concatenation, 1× 1 convolution is applied on 
a low-level feature map to reduce the number of channels. After the concatenation, a few 3× 3 convolutions are 
applied to refine the features, followed by another simple bilinear upsampling of 4.

Pavement surface condition prediction. The pavement surface condition is computed by CNN based 
classifier algorithm. It was cascaded with pavement segmentation framework through preprocessing function 
and took the segmented pavement region (200  ×  200  ×  3 ) as input. The classifier comprises of eight CNN 
layers, flatten layer, and two fully connected layers. At the end of each convolutional layer, the ReLU activation 
function and max pooling function are applied, where the max-pooling function reduces the dimensional of the 
feature map at each stage. The last three layers of the classifier frameworks are the flatten layers and two fully 
connected layers. The flatten layer converts the multi-dimension tensor data into a single dimension tensor and 
feeds into two fully connected (FC) layers. In FC layers, the ReLU activation function is applied on the first layer, 
and the SoftMax function is used on the second layer, which generates the probabilities output of pavement 
condition, K, which is used to drive the fuzzy inference system (FIS).

Pavement width estimation. The pavement width was estimated from the segmented pavement region. 
It was computed for each frame captured from the Realsense RGB-D sensor. The segmented pavement region 
from DeepLabv3+ is used as an input to pavement width estimation function. The width estimation function 
uses the left and right fences of the segmented pavement region and corresponding point cloud data to measure 
the width of the pavement. The distance between the leftmost and rightmost point of the pavement 3D point 
cloud data x-axis, y-axis, and z-axis data were used to compute the pavement width. Finally, the euclidean 3D 
distance function was applied to each leftmost and rightmost point to compute the width of the pavement. After 
estimating the pavement width, it will derive vision feedback parameters for Panthera to perform reconfigura-
tion as seen in Fig. 5a. The derivation of the vision feedback parameters βl and βr and the reduction of noise due 
to robot vibrations through filtering can be found in the works  of37 and is visualized in Fig. 5b. The output K, 
and βl , and βr , which are the target heading angles of Panthera’s wheels, will be passed on to the FIS to control 
Panthera speed safety factor, w.
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Figure 5.  Pavement width estimation using vision feedback for reconfiguration parameters.
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Fuzzy inference system
Figure 6 presents the overall control architecture. Here, the fuzzy inference system (FIS) is a part of the Panthera 
control system. It receives the input from the vision pipeline, including pavement condition, K and locomotion 
and reconfiguration parameters, βl , and βr37 to give the desired steering change for the wheels on the left and 
right side, respectively. Based on these factors, fuzzy logic is used to determine the safety factor, w, to apply to 
the robot speed without explicitly calculating the error variables. Given the desired headings, the conventional 
PID controllers control the steering. The robot’s speed safety factor, w, depends on all three parameters, and a 
fuzzy controller is proposed to modulate the speed. The fuzzy logic inference engine works with a simple rule 
base and input variables, which are fuzzy in nature. It aims to exploit the fuzzy sets and fuzzy inference method 
to incorporate safety into the Panthera robot.

Fuzzy Controller: The controller exploits a Mamdani fuzzy inference engine. The pavement condition data 
received from the vision module is modeled as three Gaussian membership functions; bad (mf1), moderate 
(mf2), and good (mf3). The steering requirement is calculated from the pavement width data. The bigger steering 
requirement between βl and βr is taken as another input and modeled in the same manner as small, moderate, 
and large angles. The speed safety factor, w, is captured using a similar approach. The details of the membership 
functions and the set of nine rules are presented in Fig. 7 and Table 3 respectively.

Experimental results
This section describes the experimental setup procedure and outcome of the proposed vision pipeline system. 
The experimental setup procedure includes collecting the dataset image and labeling, training the model with 
labeled images, and evaluating the trained model using test images and real-time video stream.

Dataset preparation. Panthera is developed for pavement sweeping tasks in public pavement spaces. 
Hence, the dataset images are collected from public pavement spaces in Singapore, including national parks, 
park connectors, residential parks, and school parks. The collected datasets are categorized into three classes 
such as concrete pavement, paver block pavement (a stone, brick, or block used for paving a surface), and roads 
to train the segmentation model. Furthermore, to train the pavement surface condition algorithm, the data-
set were labelled into three category which include bad, moderate, and good as shown in Figs. 26, 27 and 28 

βl , βr

K, Max(βl , βr )

Wheel Steering

βl , βr : Desired 
steering for 
le� and right 
sides
K: Pavement 
Condi	on
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feature 
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Wheel Speeds
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controllers
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Figure 6.  Controller architecture.

mf1 mf2 mf3

pavcond

1

0.5

10.5

mf1 mf2 mf3
output

1

0.5

10.5

mf1 mf2 mf3

max_beta

1

0.5

1.57

a) Pavement Condi�on Membership 
Func�on

b) Max Beta Membership 
Func�on

c) Output Membership 
Func�on

Figure 7.  Membership functions.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14557  | https://doi.org/10.1038/s41598-022-17858-w

www.nature.com/scientificreports/

respectively. Intel RealSense D435 stereo vision sensor was used to collect dataset images. It was mounted on a 
bicycle to collect the images from different public pavement spaces at 95 cm height to get the same field of view 
as Panthera. After collecting the initial set of images of the three pavement types, the data augmentation process 
is applied to the ordered dataset, which involves adjusting the image orientation, varying brightness, adjusting 
the scale of the images, etc. This process will help control the over-fitting issue and make the model more robust. 
Then, the labeled image data were randomly divided into the train and test dataset according to the hierarchical 
sampling method.

Training. Transfer learning techniques were adopted to train the DeepLabv3+ pavement segmentation 
model, where cityscapes pre-trained weights files were used to fine-tune the model. The framework was trained 
with 2000 images in each class and used the following training parameter learning rate: 0.001, weight decay: 
0.0005, momentum: 0.9, and batch size: 10. The eight-layer CNN framework was trained from scratch with 
Adam optimizer and used the segmented pavement region as a training dataset. The weight was initialized with 
the uniform method and applied the learning rate: 0.001, weight decay: 0.0005, momentum: 0.9, and batch size: 
64. Both models were trained on NVIDIA RTX 3080 graphic processing unit enabled workstation and trained 
on GPU mode.

Offline and real‑time evaluation test. After training, the segmentation and detection framework per-
formance was assessed through test images and real-time video streams. Totally 200 images were used for each 
class in test image dataset and its segmentation and classification accuracy was estimated through statistical 
measure parameter. To carry out the evaluation test, the trained model was loaded into NVIDIA RTX 3080 
graphic processing unit enabled workstation and tested with collected pavement images. Figures 8, 9, 10, 11, 
12, 13, 14, 15 and 16 shows the segmentation and classification results of test image dataset. Figures 17, 18, 
19, 20, 21, 22, 23, 24 and 25 shows the online experimental results of pavement segmentation model. In all the 
Figures, (a) represents the Red Green Blue (RGB) image, (b) represents the segmented image and (c) represents 
the segmented masked image. The color schemed for paver block, concrete and road in (b) and (c) is consist-

Table 3.  Fuzzy rules.

Rule pavcond max_beta speed safety factor

1 Bad High Slow

2 Bad Medium Slow

3 Bad Small Slow

4 Moderate High Slow

5 Moderate Medium Normal

6 Moderate Small Normal

7 Good Small High

8 Good High Normal

9 Good Medium High

Figure 8.  Offline results: paver block.

Figure 9.  Offline results: paver block.
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ent throughout the paper. Table 4 indicates the performance analysis report for offline and online test. In real 
time field trial , concrete, paver block and road pavement video streams are taken as the online input data to the 
model. In each class, a 100 m pavement was captured from Panthera robot perspective using RealSense D435 
Camera. The image resolution of the RealSense D435 used is 640× 480 where the processing node runs at about 
20 frames per second.

Figure 10.  Offline results: paver block.

Figure 11.  Offline results: concrete.

Figure 12.  Offline results: concrete.

Figure 13.  Offline results: concrete.

Figure 14.  Offline results: road.
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The experiment results indicate that the segmentation algorithm accurately segmented the pavement and 
its boundary region and scored an average of 89.25% pixel classification accuracy for the test image dataset and 
86.79% pixel classification accuracy for real-time collected pavement streaming video input which took approxi-
mately 10 ms to segment and classify each image. This analysis shows that the pixel classification accuracy for a 
real-time field trial is lower than the test image dataset. It is due to various environmental factors, such as jerks 
in locomotion, shadows, lighting conditions, etc.

Figure 15.  Offline results: road.

Figure 16.  Offline results: road.

Figure 17.  Online results: concrete.

Figure 18.  Online results: concrete.

Figure 19.  Online results: concrete.
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Pavement surface condition and width estimation. The Fig. 26, 27 and 28 shows the pavement sur-
face condition prediction result computed from segmented pavement region and Table 5 shows the statistical 
measures results for pavement surface condition model computed through confusion matrix parameters. In this 
experimental analysis, it observed that the surface condition classification model obtained average classification 
accuracy of 92.93%, and its prediction confidence score range is 87–94% respectively. Moderate class precision 

Figure 20.  Online results: paver block.

Figure 21.  Online results: paver block.

Figure 22.  Online results: paver block.

Figure 23.  Online results: road.

Figure 24.  Online results: road.
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Figure 25.  Online results: road.

Table 4.  Performance analysis for pavement segmentation.

Test model Pixel accuracy (Average) mean-IOU Dice score

Offline test 89.25 88.22 88.27

Online test 86.79 85.54 86.12

Figure 26.  Pavement condition: bad.

Figure 27.  Pavement condition: moderate.

Figure 28.  Pavement condition: good.

Table 5.  Statistical measures analysis for pavement’s surface condition.

Class Precision Recall F1 Accuracy

Good 93.44 92.89 92.65 93.17

Moderate 92.12 90.31 93.23 91.89

Poor 94.12 93.32 92.97 93.74
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and accuracy is slightly lower than Good and Poor class as it has two boundaries for the classification whereas 
Good and Poor class only have one boundary.

Figure 29 shows the pavement width estimation results computed from segmented pavement region part and 
Fig. 30 shows the pavement width graph for two different pavements computed for 1 km. To predict a one-meter 
pavement’s width, 100 frames results were considered, computed based on robot operation speed of 700 m per 
hour. At the end of the vision pipeline, the generated surface condition and pavement width information are 
passed to the FIS to output the speed safety factor of the robot.

Fuzzy controller output. Based on the membership function and rules, the output of the fuzzy controller 
is shown in a surface plot given in Fig. 31. Speed of Panthera is multiplied by the output of the fuzzy controller 
speed safety factor, w, to consider the vision pipeline parameters K, βl , βr where K is assigned based on the pave-
ment classification. It can be observed that the robot’s speed is maximum only when pavement condition is good 
and steering requirement is less. If the steering requirement is high, the speed is always minimum irrespective of 
pavement condition. This feature also suits the dynamic reconfiguration while avoiding various obstacles during 
motion. Similarly, the speed is minimum when the pavement condition is bad, irrespective of steering require-
ment. Panthera speed is adjusted for safety during bad pavement conditions and large steering requirements 
through the fuzzy controller.

Comparison analysis. The DeepLabv3+ semantic Segmentation model was compared with the UNET 
Segmentation model. Here, the UNET model was trained with the same dataset till convergence and uses pixel 
classification accuracy and inference time as evaluation metrics. Figures 32, 33, 34, 35, 36 and 37 shows the seg-
mentation result of DeepLabv3+ and UNET framework.

The comparison analysis indicates that DeepLabv3+ outperforms UNET in terms of segmentation accu-
racy and inference time. In UNET, the segmentation performance was relatively poor for night mode collected 
images and water puddles in the driveway. In this comparison analysis, DeepLabv3+ scored 92% classification 
accuracy and took 10 ms inference time. On the other hand, UNET scored 87% classification and took 22 ms 
for inference one image.

Figure 29.  Offline results: pavement width estimation from pavement segmented region.

Figure 30.  Pavement width estimation.
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A short summary of the advantages and limitations for the proposed algorithm are as follows:

• The advantages:

– Safer autonomous pavement sweeping self-reconfigurable robots which changes speed based on a speed 
safety factor, w, that adapts to varying reconfiguration parameters and pavement conditions.

– High level of accuracy of pavement segmentation allows self-reconfigurable robot to more accurately 
identify the reconfiguration parameters βl and βr.

– Inference time of the vision pipeline is low.

Figure 31.  Surface plot for output speed safety factor.

Figure 32.  DeepLabv3+ segmentation results.

Figure 33.  Unet segmentation results.

Figure 34.  DeepLabv3+ segmentation results: pavement with night mode.
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• The limitations:

– Models need to be retrained for different pavement types such as wood.
– Accuracy might be affected by environmental changes such as heavy rain due to lack of visibility
– Proposed algorithm focuses heavily on pavement segmentation and condition classification. Addition 

of other classes such as people, animals and vehicles might reduce the model accuracy.

Conclusions
This work proposed the deep learning-based vision pipeline for the reconfigurable pavement sweeping robot 
Panthera. Through a vision pipeline, the robot has been able to identify the pavement type, pavement condition, 
reconfiguration parameters to allow the robot to adapt to pavements of changing width with a safety factor based 
on fuzzy control. The efficiency of the deep learning-based vision pipeline was evaluated with a real pavement 
testbed, and its detection accuracy was estimated with standard performance metrics. The experimental results 
indicate that the vision pipeline classifies pavement segmentation and surface condition with 88% and 93% 
pixel-level classification accuracy. Furthermore, the proposed system was tested in varying lighting conditions 
and pavement types in Singapore and ensured that the model segmentation and detection accuracy were more 
stable with various pavement conditions. From the high level of accuracy in the vision pipeline, reconfiguration 
parameters and safety factors can be derived accurately for the safer operation of the Self-reconfigurable robot 
Panthera.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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