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Polyp segmentation 
with consistency training 
and continuous update 
of pseudo‑label
Hyun‑Cheol Park1, Sahadev Poudel1, Raman Ghimire1 & Sang‑Woong Lee2*

Polyp segmentation has accomplished massive triumph over the years in the field of supervised 
learning. However, obtaining a vast number of labeled datasets is commonly challenging in the 
medical domain. To solve this problem, we employ semi‑supervised methods and suitably take 
advantage of unlabeled data to improve the performance of polyp image segmentation. First, we 
propose an encoder‑decoder‑based method well suited for the polyp with varying shape, size, and 
scales. Second, we utilize the teacher‑student concept of training the model, where the teacher model 
is the student model’s exponential average. Third, to leverage the unlabeled dataset, we enforce 
a consistency technique and force the teacher model to generate a similar output on the different 
perturbed versions of the given input. Finally, we propose a method that upgrades the traditional 
pseudo‑label method by learning the model with continuous update of pseudo‑label. We show the 
efficacy of our proposed method on different polyp datasets, and hence attaining better results 
in semi‑supervised settings. Extensive experiments demonstrate that our proposed method can 
propagate the unlabeled dataset’s essential information to improve performance.

Colorectal cancer (CRC) is one of the most prevalent causes of cancer-related deaths globally. Most colorectal 
cancers start as polyps which could become threatening over time and even spread to adjacent organs. Hence, 
detecting polyps at an early stage can help in the timely treatment of colon  cancer1. Colonoscopy is the gold 
standard for detecting the location and appearance of polyp cells, which aids doctors in removing these before 
they develop into CRC. Thus, precise polyp segmentation is of great importance in clinical practice. It is, however, 
a very daunting task due to several reasons. The polyp cells have a wide variety of geometry and textures, each 
associated with the risk of advancing to the cancerous stage. Furthermore, the absence of adequate amount of 
the labeled dataset in the medical domain hinders the current research paradigm due to a high-cost annotation. 
A solution to this could be an approach that could leverage a vast amount of unlabeled datasets.

In recent years, artificial intelligence (AI) maneuvers in colonoscopy have achieved encouraging and promis-
ing results. Deep learning (DL) is among the widely accepted tools in the AI field and is also a subfield of machine 
learning (ML). In general, it is a method of extracting class-specific important features by stacking multiple 
nonlinear and linear blocks in deep layers, and the information is transferred between them. Especially convo-
lutional neural networks (CNNs), a category of deep learning algorithms, have become the center of attraction 
in analyzing medical images, including other computer vision tasks. The foremost reason is that it takes input as 
a raw image and modifies them; however, it preserves spatial relationships. In medical image analysis, preserving 
the spatial relationship is crucial since it shows the relationship and interconnection between normal and polyp 
regions. Therefore, it remarkably contributed to analyzing polyp regions and eventually helped medical experts 
to highlight and diagnose polyp  areas2. The utilization of such algorithms have improved polyp  localization3, 
 segmentation4, and  detection5 task assisted by several data augmentation techniques. Usually, all DL methods 
require a huge dataset to learn the class-specific features. In the case of supervised learning, the dataset should 
have ground-truth information. Alternately, semi-supervised learning uses both labeled and unlabeled datasets.

Recently, deep learning-based supervised methods such as  FCN6,7, U-Net8 and its variants: U-Net++9, ResU-
Net++10, A-DenseUNet11 have often achieved superior performance in polyp segmentation. The success of prior 
methods depends on a large number of labeled data and transfer learning. With this, they can obtain the precise 
segmentation result; however, the performance can still suffer when dealing with polyp varying in shape, scale, 
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and size. The presence of a massive number of the labeled dataset could solve this problem. Recently, Hyper-
Kvasir-SEG12, the largest image and video dataset containing a gastro-intestinal track, was released to provide a 
positive direction towards solving the data scarcity in the medical domain. However, it comes with an exorbitant 
amount of unlabeled dataset, and obtaining high-quality labeling data is very expensive in clinical settings. The 
semi-supervised learning (SSL) aims to solve the above problems by learning from the less labeled data and 
unlabeled data, which is highly demanding and can impact the medical imaging research community. The semi-
supervised methods have been widely studied and accepted over the years. Lee, D.-H. et al.13 introduced pseudo-
labeling approach for the deep learning methods. First, it trains the model with labeled training set, predicts the 
results on the unlabeled set and then use the same predicted results with the combination of original training sets 
to retrain the model. Berthelot, D. et al.14 proposed Mix-Match to generate more accurate pseudo labels by taking 
average predictions of augmented inputs. The same author proposed  Remixmatch15 by using more augmenta-
tion strategies and tackling the distribution alignment issue. Besides psdueo-labeling, current methods in SSL 
includes consistency  training16–18 , entropy  minimization19 and  bootstrapping20. π-model was proposed which 
encouraged consistent prediction over two perturbed version of same input  image17. Such technique thus works 
as a supervision for unlabeled set and can be easily integrated into training loss. SSL models based on generative 
adversarial networks have also received much attention these  days21,22. However, the research field involving SSL 
has been limited to classification tasks. Its application in image segmentation is also severely limited; especially 
polyp segmentation has not been explored much.

This paper proposes a semi-supervised method for polyp image segmentation based on the cross-consistency 
regularization method and continuous update of pseudo-label generated by the teacher-student model. Our main 
motive is to answer the complication of insufficient training data and exorbitant labeling cost in the medical 
world. We propose a powerful encoder-decoder architecture for the segmentation task that achieved benchmark 
performance in the Medico2020 Challenge, winning first prize. We apply the mean teacher-student model con-
cept leveraging the consistency regularization method. We randomly perturbed the unlabeled data and fed it to 
the teacher model, which is the student model’s exponential moving average weight. With the cross-consistency, 
the aftermath of cross-entropy loss of labeled data from the student model and the teacher model’s unsupervised 
loss is added to obtain a better model. To utilize the pseudo label, we propose to combine the continuous update 
of pseudo-label (CUPL) generated by the teacher-student model so that only the confident parts are used. This 
method can generate better pseudo-labels with the iterative optimization method and eventually achieve sig-
nificant performance gain in polyp image segmentation.

The main contribution of this paper are:

• We propose encoder-decoder method that is well suited for the polyp which have varying shape, size and 
scales.

• We present a new and robust semi-supervised method for medical image segmentation especially for polyp 
images that utilizes small number of labeled images and large number of unlabeled images.

• We propose an enhanced consistency regularization method to utilize unlabeled data and encourage the 
model to perform consistent predictions for the same input under different perturbations.

• We propose continuous update of pseudo-label generated by the average of teacher-student model to obtain 
confident pseudo-labels and finally improve the performance of polyp images.

• Extensive experiments demonstrate that the proposed method achieves a good performance and lead existing 
method by a large margin, on two challenging datasets.

Related work
CNN‑based polyp segmentation. Accurate polyp segmentation is crucial for the patient to reduce the 
overall death ratio caused by the cancer. U-Net8 have been widely accepted for myriads of medical segmenta-
tion tasks, which originally based on encoder-decoder architecture. Recently, various U-Net variants have been 
proposed to improve the segmentation  performance4,9,23–29.  HarDNet6829.For the automatic polyp segmentation 
task, several representative networks were also developed to improve the polyp segmentation perfor-mance from 
different aspects, including U-Net++9,  PraNet28 and HarDNet-MSEG29. ResU-Net applies residual blocks to 
supplement the location information of polyps, while HarDNet-MSEG consists of the encoder of  HarDNet6830 
and the decoder of Cascaded partial decoder with receptive field block to improve both accuracy and inference 
speed. Besides, PraNet adopted three reverse attention modules with a parallel partial decoder connection to 
strengthen the area-boundary constraint for polyp segmentation. However, these methods are based on fully-
supervised training strategies. Fully-supervised methods usually require sufficient labeled medical samples for 
training, but annotating medical data such as polyp images is often expensive and time consuming. In this 
regard, semi-supervised segmentation method is a better direction to achieve satisfying accuracy for polyp seg-
mentation from limited labeled images.

Semi‑supervised training. Due to the lack of labeled images for training, semi-supervised methods turn 
to leverage unlabeled data to obtain useful information. Prior semi-supervised methods mainly focus on hand-
crafted features to segment medical  images31–33. A semi-supervised method was proposed for automated clas-
sification of skin  cancer31. The authors employed deep belief neural net and support vector machine (SVM) to 
train the model accompained by labeled and unlabeled datasets. For the skin lesion segmentation task, Jaisakthi 
et al.33 proposed two stage methodology which includes preprocessing and segmentation stage. They determined 
the color of the skin lesion using histrogram and later K-means clustering is performed to segment the group of 
pixels of same color. Gu et al.32 proposed semi-supervised learning for biomedical image based on forest oriented 
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super pixels (voxels). However these methods relies on hand-crafted features, hence lacks strong representation 
capability.

Recent works includes deep learning based approach for semi-supervised segmentation task. Bai et al.34 
proposed a fully convolutional network for cardiac segmentation of MR images where network parameters 
and segmentation of unlabeled data is updated alternately. Similarly, pseudo labeling  method13 also success-
fully extracted useful information from the unlabeled data to enhance the model training. Li et al.21 proposed 
a semi-supervised network for the skin lesion segmentation task, which only used 15 % labeled images and 
obtained a similar performance of several fully-supervised methods. several representative adversarial learning 
 methods21,22,35 were also proposed to improve the performance of segmentation networks. Using the GAN, an 
extensive realistic fake images can be created by the generator and it helps discriminator to learn better feature 
representations accurately which eventually helps in pixel classification. Hung’s  method35 employed the out-
put of a fully convolutional discriminator as supervisory signals, which is combined with self-taught learning 
framework to provide more useful pseudo labeling information for semi-supervised training. Zhang, Y. et al.36 
proposed adversarial-based network that utilized unannotated dataset while training networks and generated 
better generalization results. Attention-based GAN approach was proposed to select the confident regions of 
the unlabeled dataset to train the segmentation  model37. A novel semi-supervised method was proposed for 
retina vessel segmentation where a GAN is used to integrate information leaking and traditional mean-teacher 
 frameworks38. Another state-of-the-art technique includes Mean-Teacher, a method where teacher model’s out-
put is calculated by using exponential weighted average of the student  model18,39–43. In this work, we explore the 
mean-teacher paradigm to improve the segmentation performance leveraging unlabeled data.

Methodology
Figure 1 shows our proposed method, which employs encoder-decoder-based efficient UNet based on teacher-
student model with consistency regularization method. Each modules are explained in “Related work”.

Semi‑supervised framework formulation. In semi-supervised learning, the training set consists of N 
inputs with X labeled sets and N-X (Z) unlabeled sets. We indicate the labeled set as X = {(x1, y1),(x2, y2).........
(xn, yn )} with its corresponding mask and the unlabeled set as Z = z1 . . . zn . The input 2D image is indicated by: 
xi ∈ RH∗W∗3 and ground-truth segmentation mask is yi ∈ 0, 1H∗W.

The key motivation behind utilizing the semi-supervised approach for the polyp segmentation is based on 
the smoothness assumption, i.e., data points identical to each other in the image space are more likely to share a 
similar  label17,46. These methods focus on regularization loss and different perturbations, which encourages the 
model to generate consistent output under different input data perturbations. By leveraging this idea, we design 
our networks by keeping different perturbations (random scaling, Gaussian noise, rotation) to give smooth out-
puts. As aforementioned, we employ a teacher-student learning mechanism for the semi-supervised task. We use 
cross-entropy loss function to train the student model so that it evaluates and corrects the network output on the 
labeled dataset X. We evaluate the teacher model on two predictions under different perturbations and take the 
average of all mean-squared errors. As the teacher and student model share the same network, we only train the 

Figure 1.  Our proposed method for semi-supervised medical image segmentation (we utilize Kvasir-SEG 
 data44 as an example). The weight of the teacher model is the exponential moving average (EMA) of the student 
weights. The total loss is a weighted combined loss of the cross-entropy on labeled data and mean-square error 
(MSE) on the unlabeled set. Note that we apply transformation-consistent approach on the unlabeled data 
during  perturbations45.
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student model and update the teacher model’s weight using the exponential moving average (EMA) of the stu-
dent model. Let us define the weight of the teacher and student model as θ ′ and θ ; then the weight is updated by:

where α is the smoothing coefficient hyperparameter, which defines how the teacher model relies on the student 
model. A high value of α indicates that the teacher model is relying on its last teacher model in last step. Other-
wise, the model relies on the parameters of current student model. According to the experimental settings  in18, 
keeping the value α = 0 is equivalent as a variation of π-model and performance is better when kept α = 0.999. 
Therefore, we also follow this experimental evidence and set aforementioned values for all experiments. For the 
supervised segmentation applied in the student model, we use a binary cross-entropy loss to train as follows:

L is the loss for prediction y′ consisting of j pixels at a specific network output. Similarly, for the consistency 
regularization, the teacher model predicts the two different label under different perturbations from the unlabeled 
dataset, and finally calculates the average of the mean-square error difference of each output. Let us suppose zy be 
an output of the teacher model from the unlabeled set and z′y , z′′y  , z′′′y  are outputs after applying different perturba-
tions such as random scaling, Gaussian noise, and rotation of input image, and the consistency loss is applied by:

We apply the transformation-consistent method to utilize the unlabeled data in the unsupervised  regularization45. 
The overall loss function is defined as:

Finally, we train the model by reducing the weighted combination of supervised cross-entropy loss and the 
unsupervised regularization loss. Significantly, the model’s generalization capacity will be increased, and make 
consistent prediction by minimizing equation 3 accordance with the smoothness assumption.

Encoder–decoder network overview. The architecture of our encoder-decoder-based UNet is shown 
in Fig. 2. We propose a powerful framework to enhance the strong feature representations for polyp segmenta-
tion. For the encoder path, we employ the pre-trained weight of  EfficientNet47. The combined components such 
as MobileNet inverted block (MB)48 and squeeze and excitation  network49 make EfficientNet as a better feature 
extractor. To deal with the presence of polyps of varying scales, we leverage the redesigned skip connections 
from the UNet++ that enables multi-scale feature fusion at the same  resolution9.

At different levels, each node concatenates the feature maps from its previous node of the same level and the 
upsampled feature maps of the next level, enabling aggregation of multi-scale features. Next, the concatenated 
features are passed through the channel-spatial  network50 at each node which restrains irrelevant features and 

(1)θ ′ = αθ ′t−1 + (1− α)θt

(2)L = −

j∑

i

yi(logy
′
i − (1− yi)log(1− y′i))

(3)Consistency Loss(CL) = Average(||zy − z′y||
2 + ||zy − z′′y ||

2 + ||zy − z′′′y ||2)

(4)Overall Loss = L+ �(CL)

Figure 2.  Overview of the encoder-decoder-based EfficientUnet method.
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allows only useful spatial details. The addition of deep supervision enables significantly better performance and 
faster convergence.

On the decoder side, a transposed convolution is used for upsampling the feature maps. Similarly, we upscale 
the outputs of the decoder block at different level and apply a 1x1 convolution with 1 kernel and a sigmoid 
function. Then, all the outputs (after deep supervision) are averaged and a final result is generated. With this, 
the model can aggregate the multi-scale semantic features and eventually increase the segmentation accuracy.

Continuous update of pseudo‑label. Pseudo-labeling is a crucial step in semi-supervised learning. This 
step is an improvement over our baseline model which eventually helps in generating better output masks. Ini-
tially, we train the semi-supervised method until it converges on the provided labeled X and unlabeled set Z. 
Then, we generate the pseudo-labels from the teacher model. We then take an average between current gener-
ated pseudo-labels with the last epoch pseudo-labels and finally add them with the original labeled datasets. We 
used this technique continuously to improve the segmentation accuracy on unlabeled dataset. We employ the 
labeled dataset X (x, y) and the unlabeled set Z as training set to the network. For the training, we denote unla-
beled input 2D image by: zi ∈ RH∗W∗3 and ground-truth segmentation mask by ui ∈ 0, 1H∗W . While generating 
pseudo-labels, only those images were taken and performed averaging whose outputs have the low MSE error 
difference between the teacher and student model so that only the confident part can be used for the ground-
truth generation. The main difference with the traditional pseudo-label technique was that we keep updating the 
pseudo-labels by taking averages of current and last pseudo-labels in regular interval.

The loss functions after combining the labeled data and pseudo-labels of unlabeled data is as follows :

We obtain more accurate and smooth pseudo labels after continuous iterations. The whole process of semi-
supervised polyp image segmentation method based on CL and CUPL is shown in Algorithm 1.

Experiments
Datasets and baselines. We perform experiments on two different polyp datasets: Kvasir-SEG44, and 
CVC-ClinicDB/CVC-61251. The Kvasir-SEG and CVC-ClinicDB/CVC-612 dataset includes a total of 1000 polyp 
and 612 polyp images with their corresponding ground truth respectively. We compare our proposed method 
with different medical image segmentation methods in semi-supervised settings. In the experiments, we utilize 
different portions of the dataset for comparison. For the Kvasir-SEG dataset, we utilize 50, 200, and 400 sets of 
labeled data. Similarly, 1/8,1/4, and 1/2 portions of labeled data were used for training in the case of the CVC-
612 dataset. Further, we also perform experiments on different volume of label and unlabel data to evaluate the 
performance when introducing more unlabel data. All the experiments reported on the table are averaged for 
three trials.

Implementation details. We split the dataset into training, testing, and validation set with a ratio of 
80:10:10 percent, respectively for both datasets. All the images are resized to 256 × 256 to reduce the computa-
tional cost and balance the segmentation performance. We implement our model in Pytorch and conduct our 
experiments on NVIDIA TITAN RTX GPU. As mentioned above, we employ pre-trained network EfficientNet 

(5)Combined Loss =
1

|X|
(L)+

1

|Z|



−

j�

i

ui(logu
′
i − (1− ui)log(1− u′i))







6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14626  | https://doi.org/10.1038/s41598-022-17843-3

www.nature.com/scientificreports/

as an encoder backbone; therefore we use Adam optimizer with a small learning rate of 0.00001 for all the 
experiments. Setting the high learning rate may cause undesirable divergent behavior in the loss function espe-
cially when using pretrained networks. We train both supervised and semi-supervised approach for 200 epochs. 
Meanwhile, we use a batch size of 40 for both supervised and semi-supervised settings. To propagate the unla-
beled information using the CUPL approach, we update the pseudo-labels at every 10 epochs.

Experiments on Kvasir‑SEG dataset. Quantitative results with different labeled/unlabeled data. We 
present the quantitative and qualitative performance of the proposed method which is trained in different semi-
supervised data distribution. The different labeled and unlabeled sets are randomly selected from the dataset. 
Table 1 presents the experimental results of different labeled and unlabeled distribution sets of training data with 
the baseline supervised method, Consistency loss (CL), and Continuous update of a pseudo label (CUPL) on 
the testing subset.

We apply the same network backbone while performing experiments. We use the cross-entropy loss function 
for the supervised training on the 50/100/200/400 sets. Further, the proposed method (combination of baseline, 
CL, and CUPL) is trained semi-supervised with the combined loss function as stated in Eq. (5). From Table 1, we 
can observe that our proposed method achieves higher segmentation accuracy in terms of all evaluation metrics 
with a good marginal lead over the baseline supervised model. It can be seen that baseline supervised model with 
the addition of CL and CUPL method increases the overall segmentation accuracy. The continuous improve-
ments of “Baseline + CL ” and “Baseline + CL + CUPL” in Table 1 indicate that consistency loss and updating 
the pseudo-labels in a certain interval of time is also an effective way to increase accuracy. Figure 3 presents the 
pseudo-labels generated by each modules including the proposed method (Baseline + CL + CUPL). Figure 4a 
shows the qualitative results of different methods. Compared to the baseline supervised method, “Baseline + 
CL” and the proposed method generate an output that fits closely with the ground truth. Similarly, Fig. 4b shows 
the Dice coefficient score of the “Baseline”, “Baseline + CL” and the proposed method trained with different sets 
of labeled and unlabeled images. We can observe that the proposed method consistently improves the perfor-
mance in different settings and demonstrates that the proposed method utilizes the unlabeled data effectively. 
As anticipated, the baseline supervised model’s performance is increased with an increasing number of labeled 

Table 1.  Segmentation accuracy (Jaccard, Dice coefficient, Accuracy, Recall and Precision) comparison of CL 
and CUPL in our method on Kvasir-SEG dataset.

Label/Unlabel Methods Dice Jaccard Accuracy Recall Precision

50/750

Baseline 0.817 0.717 0.946 0.851 0.979

Baseline + CL 0.822 0.725 0.943 0.852 0.975

Baseline + CL + CUPL (proposed) 0.845 0.749 0.951 0.891 0.961

100/700

Baseline 0.818 0.716 0.945 0.900 0.959

Baseline + CL 0.820 0.728 0.947 0.886 0.966

Baseline + CL + CUPL (proposed) 0.846 0.744 0.942 0.921 0.944

200/600

Baseline 0.842 0.750 0.955 0.910 0.964

Baseline + CL 0.849 0.762 0.957 0.892 0.972

Baseline + CL + CUPL (proposed) 0.858 0.787 0.959 0.923 0.964

400/400

Baseline 0.861 0.772 0.961 0.920 0.970

Baseline + CL 0.867 0.786 0.962 0.915 0.974

Baseline + CL + CUPL (proposed) 0.868 0.793 0.967 0.926 0.958

Figure 3.  Some pseudo-labels of polyp segmentation obtained by CL and the CUPL on the validation subset.
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datasets. Also, the accuracy of the semi-supervised methods is increased with more labeled images (see Table 1). 
However, the margin gap between the baseline supervised and the proposed method decreases when the number 
of labeled datasets increases, indicating that the proposed method behaves well and achieves high performance 
when the number of labeled data is small. The improvement in accuracy indicates that consistency loss applied 
also acts as a regularization to the labeled dataset and encourages the model to learn the features more efficiently.

Effectiveness of different augmentation strategies. To show the effectiveness of the different augmentation strate-
gies in consistency regularization, we performed ablation studies on the Kvasir-SEG as shown in Table 2. The 
experiments were performed on 50 labeled and 750 unlabeled images and inference on the testing dataset. In the 
supervised settings, we trained the model on only 50 images. In Table 2, “Baseline” indicates the normal super-
vised learning, whereas “Baseline + CL” indicates the adoption of consistency regularization loss in training. As 
shown in the table, different data augmentation techniques such as random scaling, Gaussian noise and rotation 
contribute to the increase in performance. However, combining all three techniques enhanced the performance 
compared to independent ones.

Results under different number of unlabeled data. We also perform an experiment to evaluate the model’s per-
formance when introducing more unlabeled data. We draw the Dice coefficient score and Jaccard index in Fig. 5 
of both datasets. Note that the experiments were performed on the fixed number of labeled images 50 and 64 for 
Kvasir-SEG and CVC-612, respectively. Similarly, a varying number of unlabeled images (450, 550, 650, 750 for 
Kvasir-SEG) and (128, 256, 384, 448 for CVC-612) were used for the experiments. We can observe the significant 
performance gain when increasing the number of unlabeled images, demonstrating that the proposed method 
utilizes the unlabeled data information effectively.

Experiments of CVC‑612 dataset. We show the performance of the proposed method on CVC-612 data-
sets to demonstrate the effectiveness of our semi-supervised method in Table 3. We split the training images as 
aforementioned and used the small portion of the dataset for the training purpose in semi-supervised settings. 
Usually, we set 64/128, 128/385/ 256/256 distributions and perform training under the same settings as the 

Figure 4.  The Dice coefficient score under different distribution of labeled/unlabeled sets in (a) Kvasir-SEG and 
(b) CVC-612 dataset.

Table 2.  Ablation of semi-supervised method (50 labeled / 750 unlabeled) on the testing set of Kvasir-SEG 
dataset. RS  random scaling, GN  Gaussian noise, R  rotation of an image.

Methods Dice Jaccard Accuracy Recall Precision

Baseline 0.817 0.717 0.946 0.851 0.979

Baseline + CL (RS) 0.819 0.718 0.932 0.861 0.958

Baseline + CL (GN) 0.816 0.712 0.931 0.850 0.973

Baseline + CL (R) 0.821 0.719 0.949 0.856 0.976

Baseline + CL (RS + GN) 0.821 0.720 0.952 0.859 0.967

Baseline + CL (RS + R) 0.822 0.722 0.949 0.854 0.961

Baseline + CL (GN + R) 0.822 0.721 0.953 0.862 0.942

Baseline + CL (RS + GN + R) 0.822 0.725 0.943 0.852 0.975



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14626  | https://doi.org/10.1038/s41598-022-17843-3

www.nature.com/scientificreports/

Kvasir-SEG dataset. We employ the Dice coefficient score, Jaccard index, accuracy, recall, and precision for the 
evaluation. We present the quantitative results in Table under different labeled/unlabeled sets. We can observe 
that the proposed method achieves good performance in all settings with a 2–3%  improvement in dice coef-
ficient score.

Comparison with other semi‑supervised segmentation approaches. We compare the proposed 
method with different semi-supervised segmentation methods adopted in medical  domain34–36,45 and present in 
Table 4. Note that the Mean-Teacher  method18 is similar to our method “Baseline supervised + CL”; however, 
consistency loss is not included, and only the exponential average weight of the model is used for the prediction. 
We implement all methods mentioned above with their original settings and evaluate them on Kvasir-SEG and 
CVC-612 datasets. For the Kvasir-SEG dataset, we utilize 50 labeled and 750 unlabeled images. Similarly, we use 
64 labeled images and 448 unlabeled images for CVC-612 images. Table 3 shows the dice coefficient score on 

Figure 5.  Results on the testing subset of both Kvasir-SEG and CVC-612 dataset with fixed number of labeled 
and different number of unlabeled images.

Table 3.  Segmentation accuracy (Jaccard, Dice coefficient, Accuracy, Recall and Precision) comparison of CR 
and CUPL in our method on CVC-612 dataset.

Label/Unlabel Methods Dice Jaccard Accuracy Recall Precision

64/448

Baseline 0.794 0.751 0.918 0.874 0.956

Baseline + CL 0.808 0.773 0.935 0.897 0.942

Baseline + CL + CUPL (proposed) 0.836 0.789 0.939 0.916 0.948

128/384

Baseline 0.823 0.764 0.921 0.925 0.962

Baseline + CL 0.841 0.779 0.934 0.924 0.967

Baseline + CL + CUPL (proposed) 0.852 0.796 0.933 0.923 0.958

256/256

Baseline 0.859 0.785 0.943 0.912 0.973

Baseline + CL 0.863 0.803 0.958 0.898 0.957

Baseline + CL + CUPL (proposed) 0.871 0.814 0.960 0.918 0.968

Table 4.  Comparison of different semi-supervised methods performance in Dice coefficient score.

Methods

Kvasir-SEG CVC-612

Dice Improvement Dice Improvement

Baseline supervised 0.817 – 0.794 –

Mean  Teacher18 0.819 0.002 0.797 0.003

DAN36 0.826 0.009 0.805 0.011

GAN35 0.834 0.017 0.816 0.022

Self-training34 0.837 0.002 0.819 0.025

TCSMV245 0.841 0.024 0.828 0.034

Proposed Method 0.845 0.028 0.836 0.042
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different methods on the testing set. Compared to prior methods, the proposed method achieves the highest dice 
coefficient score under the settings mentioned above. The evaluation shows the effectiveness of the proposed 
method in comparison to prior semi-supervised methods.

Discussion
In the medical image domain, supervised learning has been proven effective for many tasks such as classifica-
tion, detection, and segmentation. However, obtaining a good performance depends on the amount of dataset 
availability. Therefore, suggesting new methods that require limited ground-truth data will benefit the clinical 
world. In this manuscript, we propose a semi-supervised-based deep learning framework that takes advantage 
of the unlabeled dataset and efficiently reduces the annotation effort of large-scale datasets. The primary insight 
of our proposed method is the adoption of consistency training with continuous updates of pseudo-labels.

In Tables 1 and  3, we display experimental results of the segmentation performance of the proposed method 
on two datasets. As observed in the table, the addition of unlabeled data in CL and CUPL increases the segmenta-
tion accuracy in terms of the Dice coefficient and Jaccard index. It is also evident that even with a few numbers of 
the labeled dataset, such as 50 in Kvasir-SEG, the model achieves higher segmentation accuracy than the baseline 
(200 labeled set). Similar results were also found in Table 3. Further, we also witness performance increment 
when introducing the varying number of unlabeled images while keeping fixed labeled images. As the model was 
trained with the combination of supervised and unsupervised losses, our method takes advantage by leverag-
ing the unlabeled data and propagating the unlabeled data information to the labeled data using a consistency 
training approach. With this, the model forces a consistent prediction under different augmentation strategies, 
which eventually helps in better generalization even when the amount of labeled datasets is low. Hence, it proves 
that the proposed method also works better when the labeled dataset is less.

To further test the method’s efficiency, we visualize the output of CL and CUPL, as shown in Fig. 6. It is 
expected that the segmentation performance is affected by the few labeled datasets. However, we improved the 
segmentation results on both datasets after adding the unlabeled set into the training dataset by applying the 
consistency regularization method. These results suggest that both modules improve segmentation accuracy, and 
the proposed method can generate satisfactory outputs. We also visualize the pseudo-labels in different epochs 
during optimization for comparison (see Fig. 7). With the semi-supervised settings, the models are constantly 
updating the outputs to generate better pseudo-labels.

The limitation of the proposed method is the assumption of the same data distribution for the labeled and 
unlabeled sets. However, obtaining similar distribution might not be possible in real-time clinical applications. 
When the unlabeled set comes from the different distributions, there is a high possibility of generating false posi-
tives, degrading the overall performance. It is necessary to investigate more trustworthy solutions to mitigate or 
solve the problems in future work. Similarly, strong data augmentation techniques can be applied in consistency 
training. However, it may not guarantee success in increasing performance; hence requires more research. Despite 
having a good frame per second (FPS) of 42 by the proposed method, leveraging a large amount of unlabeled data 
by applying pseudo-label techniques increases the training time and cost, which may not be efficient sometimes.

Figure 6.  Some pseudo-labels of polyp segmentation obtained by baseline supervised model, Baseline + CL and 
the baseline + CL + CUPL (Proposed) on the testing subset. Note that the labeled/unlabeled images used for the 
training was 50/750. Further, (a–e) denotes original image, output of “Baseline”, “Baseline + CL”, “Baseline + CL 
+ CUPL (Proposed) ”, and ground truth respectively.

Figure 7.  Some pseudo-labels of polyp segmentation obtained by CUPL method in different epochs.
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Conclusion
This paper proposes a segmentation method for accurate polyp segmentation in a semi-supervised manner. To 
increase the polyp segmentation generalization, which has a varying shape, size, and scale, we propose a powerful 
encoder–decoder-based architecture that obtains better segmentation accuracy than prior architectures. Further, 
to leverage the unlabeled data and propagate its meaningful hidden information to the model, we utilize the 
consistency regularization approach and train the network on teacher-student strategy by adding supervised 
and unsupervised loss. We also upgrade a traditional pseudo-labeling scheme by a continuous update of pseudo-
labels to generate better outputs. Extensive experiments demonstrate that the proposed method can remarkably 
increase the segmentation accuracy in the absence of fewer labeled data. It shows the practical importance in 
clinical settings and can be applied to other domains.

Data availability
The datasets generated and/or analysed during the current study are available in https:// datas ets. simula. no/ 
kvasir- seg/.
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