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Influence of root distribution 
patterns on soil dynamic 
characteristics
Shusen Liu1,2, Jun Li1,2*, Xiaodong Ji1,2 & Yi Fang3

Slopes along the highway and railway routes are subjected to not only static loads but also dynamic 
loads generated by vehicles and trains. The induced excessive deformation potentially poses a threat 
to slope stability. In terms of the extensive application of ecological slope protection, plants play a 
critical role in slope stability, as the roots can enhance the shear strength of the soil. This study aims 
to investigate the influence of different root distribution patterns on the dynamic characteristics 
induced by cyclic loading. By conducting a group of dynamic triaxial tests, the results indicate that the 
root system can significantly enhance the liquefaction resistance of the soil when the soil is subjected 
to lower dynamic loads, and the cross arrangement has a better-reinforced effect than the mixed 
arrangement. The reinforced effect was not obvious when the soil was subjected to a dynamic load 
with a larger stress amplitude. In addition, based on the validation of the seed model, a new pore 
water pressure development model was proposed according to the test results. Overall, the research 
provides a new model and some innovative observations to better understand the dynamic behavior 
of root-reinforced soil.

The continuous expansion of the road and railroad network in China has induced a large amount of artificial 
slope construction along the route. As slopes suffer from complex loads, such as gravity, rainfall, underground 
water, and traffic loads, the induced deformation may lead to slope instability, threatening the normal operation 
of people’s lives and resulting in serious property damage and casualties1,2. Compared with traditional engineering 
slope protection, ecological slope protection technology, which has been widely used, has superior protection 
effects on stabilizing shallow soil, preventing shallow landslides, and beautifying the environment3–7.

Slope bioengineering has a significant protective effect on the ecological environment, and vegetation has a 
complex effect on the stability of slopes. Numerous studies have proposed that plant roots can strengthen the 
soil body mainly through the reinforcing effect of fine roots8 and the anchoring effect of thick roots9. In the 
shallow soil layer, the fine roots evenly penetrated the soil body and tightly entwined with the soil body to play 
a reinforcing role, enhancing the shear strength of the slope soil. By contrast, thicker and deeper roots penetrate 
the soil body as anchors to improve friction with the soil body, thus strengthening the soil body and enhancing 
its ability to resist damage10–13. For fine roots, taking root-reinforced soils as one kind of composite material can 
provide access to a breakthrough for the study of the reinforcement effect of roots on slope soil. The shear strength 
occupies a dominant position to reveal the root reinforcement mechanism. With the improvement of the shear 
strength test method, many meaningful results about the root reinforcement effect have been proposed. First, 
direct shear tests, as one kind of traditional strength test, have been widely used to investigate the reinforcement 
effect of different plant roots, and the results showed that the shear strength of root-reinforced soil has improved 
compared with that of plain soil by root enhancing the soil cohesion14,15. Data obtained by subsequent research-
ers through direct shear tests showed that root geometry16–19 (root diameter and root length) and distribution 
characteristics20,21 (root density and root distribution angle) had a significant effect on the shear strength of the 
soil. Second, triaxial compression tests are also commonly conducted to study the properties of root-reinforced 
soils. Compared with direct shear tests, triaxial compression tests can provide more complex loading modes 
and better reflect the true stress–strain relationship of the specimen22,23. Regarding the study of root distribu-
tion properties, Zhang et al.22 and Lian et al.23 investigated the effects of three analytical distributions, vertical, 
horizontal, and cross, on the shear strength of root-soil complexes by triaxial compression tests and suggested 
that the enhancement effect of cross root distribution was optimal. Wang et al.24 tested four types of herbaceous 
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root systems: vertical, inclined, herringbone (crossed), and zigzag (crossed plus vertical) distribution and found 
that the zigzag root system method of distribution had the best enhancement of shear strength of the root-soil 
complex. In summary, plant roots have an obvious reinforcement effect on the soil, and the effect is significantly 
affected by the physical properties and spatial distribution of the root system. Nevertheless, most of the research is 
limited to static loading but ignores complex loads, such as dynamic loading, which can also induce deformation 
of the slope. It is essential to study the dynamic response of root reinforced soil, especially for the deformation 
behavior, to provide a theoretical foundation for slope deformation control.

The long-term cyclic load has the potential to cause deformation or damage to slope soil structures, resulting 
in slope instability25–27. Current research on the dynamic characteristics of soil under cyclic loading is mainly 
carried out with homogeneous mass soil. Tang et al.28 and Li et al.29 investigated the dynamic properties of pow-
dered clay soils under cyclic triaxial tests, and some critical influence factors, such as the loading frequency and 
the dynamic stress amplitude, were taken into consideration. The results demonstrated that the dynamic elastic 
modulus of the soil decreased with increasing dynamic stress amplitude and increased with increasing loading 
frequency. Similarly, Luo and Miao30 conducted a prediction study on the dynamic creep strain and settlement of 
soft soil under the subway by simulating the subway vibration load. In addition, more influencing factors (number 
of loading cycles, initial static flexural stress, confining pressure, initial static shear stress, stress path, and soil 
density) were also considered for further research on the soil strain behavior and the accumulated pore water 
pressure31,34,35. Based on numerical simulation of traffic loads, some scholars have established the cumulative 
deformation model and hysteresis curve model of soil under cyclic loading by considering the dynamic stress 
amplitude, vibration frequency, dynamic partial stress, and other influencing factors32,33. Not just focusing on 
homogeneous soil, some scholars have studied geosynthetic-reinforced soil to verify that reinforced soil has a 
reinforcing effect on the soil under cyclic loading36–38. However, BS39 employed train-controlled cyclic simple 
shear tests to investigate the effects of fiber content, length, and relative density on the effectiveness of sand soil 
improvement and concluded that fiber inclusion increases the resistance of the soil to liquefaction. The study 
concept of composite materials applied to the reinforcement effect is also suitable for root reinforced soil. At 
present, research on soil under cyclic loading mainly focuses on homogeneous soil and geosynthetic-reinforced 
soil, while research on root-reinforced soil is still in the initial stage and lacks relevant research.

In this paper, a common species of slope protection plant (Pennisetum alopecuroides (Linn.) Spreng) in north-
ern China was selected as the reinforcement material. Through dynamic triaxial tests, the influence of root 
distribution patterns on the dynamic characteristics of root-reinforced soil under cyclic loading was studied by 
controlling the dynamic stress amplitude and root distribution patterns. The stress–strain relationship, dynamic 
strength, and pore pressure change law of root-reinforced soil were also discussed in the paper. A new air pres-
sure model is proposed.

Material and test method
Test material.  The soil samples were obtained from the slope of national highway G101 in the Huairou 
district (40° 19′ 42′ N, 116° 41′ 45ʺ E) of Beijing. The regional climate is warm-temperate and semihumid. The 
average annual temperature ranges from 9 to 13 °C, and the average annual precipitation ranges from 600 to 
700 mm, mainly concentrated in June to August. As the liquid limit of this soil is 31%, the plastic limit is 17%, 
and the plasticity index is 14, the type of this soil is identified to be silty clay according to the GB50007—2002 
specification. Pictures of the original soil samples are shown in Fig. 1. Other physical and mechanical properties 
of the soil sample are illustrated in Table 1. Geotechnical parameter testing is strictly conducted in accordance 
with the Geotechnical Test Method Standard (GBT50123-1999).

Figure 1.   Raw soil extraction process.

Table 1.   Physical and mechanical properties of the soil sample.

Indicator items Density (g/m3)
Dry Density 
(g/m3)

Specific gravity of soil 
particle Water content (%)

Optimum water 
content (%)

Maximum dry 
density

Porosity ratio 
(g/m3) Saturation (%)

– 1.66 1.41 2.72 15.5 1.69 1.72 0.93 81
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A representative common herb, fountain grass (Pennisetum alopecuroides (Linn.) Spreng.), was selected as 
the reinforced material for the experiments. The root collection method was performed following Boehm’s 
"Root Parameters and Their Measurement"40. The plant roots were de-impurities treated, the morphological 
indexes were measured by the plant Analysis system (WinRHIZO), and the mean value was calculated as the 
morphological data of the root system19,41. The total root content of the plant was 8.79 g in the 0–50 cm soil layer. 
More specifically, in the 0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm, and 40–50 cm soil layers, the corresponding 
root contents were 1.57 g, 1.72 g, 1.94 g, 1.81 g, and 1.75 g, respectively. The average root diameter was 0.7 mm.

Specimen preparation.  For the purpose of controlling the root distribution patterns, the samples for the 
tests are remolded soil. The sample preparation process was as follows: First, the soil taken from the site was 
dried in an incubator at a temperature of 105–110 °C for 8 h. Second, the dried soil sample was sieved and mixed 
with water. Finally, the prepared soil sample was put into a sealed bag and allowed to stand for 24 h. To acquire 
better vacuum saturation of the sample, according to the calculation results of the saturation formula and the 
conventional physical and mechanical properties of the actual soil, the dry density of the sample soil is set to 
Pd = 1.42 g/cm3 , and the moisture content is set to ω = 18% . The mass of the soil sample required for each 
specimen was determined by the dry density and moisture content. According to the formula m = Pd(1+ ω)v , 
the soil mass required for each sample was calculated. Based on the root scanning data, the average diameter was 
approximately 0.7 mm. To ensure uniform consistency across all specimens, a selected root of approximately 
0.7 mm in diameter and 10 mm in length was added to each specimen.

Generally, the most frequently used root arrangement patterns for the current research are vertical, hori-
zontal, crossed, and mixed arrangements. There is a consensus that crossed and mixed arrangement patterns 
have a better reinforcement effect than vertical and horizontal distribution patterns20,21. On this basis, we chose 
crossed arrangement and mixed arrangement, which are more closely matched to the actual distribution, for 
the study comparison. As shown in Fig. 2, three specimen types, plain soil, mixed reinforced soil, and crossed 
reinforced soil, were designed for the experiments to investigate the effect of root distribution on the deforma-
tion characteristics under cyclic loading. More specifically, for the mixed arrangement, without considering the 
distribution angle of the root system in the soil, all the roots added to the samples were mixed evenly and then 
divided equally into 5 layers. For each layer, the thickness of the compacted soil was approximately 20 mm as the 
total sample height was 100 mm. By contrast, for the crossed arrangement specimens, the root distribution angle 
was strictly limited to 0° and 90°. That is, as the total sample was divided into 5 layers, in each layer, the roots 
were kept in the vertical and horizontal directions with the same root amount. After that, the roots intersected 
at right angles, which are considered to be crossed distribution patterns.

Test apparatus and test scheme.  As the research is based on the root reinforcement of slopes along 
the expressway, the impact of traffic loading needs more attention. Because the traffic load is a cyclic load with 
a long period, low frequency, and large influence range, which has been generally accepted42, our study uses a 
sinusoidal wave cyclic load to simulate the traffic loads, as shown in Fig. 343. The cyclic triaxial tests were carried 
out on the HCA-100 dynamic hollow cylinder-TSH testing system (HCA-100) manufactured by GCTS Instru-
ments (GCTS, USA). The height of the cylindrical specimens is 100 mm, while the diameter is 50 mm. Three 
main influencing factors, confining pressure, loading frequency, and dynamic stress amplitude, were considered 
to explore the dynamic behavior of the root-reinforced soil under cyclic loading. Based on the field monitor, 
the corresponding influence depth of the roadbed is 1.28–2.45  m43–45. Therefore, the confining pressure was 
set to 50 kPa. In terms of the railway and highway network, the traffic load frequency range is approximately 
0.4–2.6 Hz, and thus the load frequency was set to 1 Hz. To study the influence of the dynamic stress amplitude, 

Figure 2.   Three root distribution patterns. (a) Plain soil, (b) mixed reinforced soil, and (c) crossed reinforced 
soil.
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the stress values were set to 15 kPa, 20 kPa, and 25  kPa46. The tests stopped when the axial strain was larger 
than 15% or the sample reached the complete liquefaction state. There are 9 groups of consolidated-undrained 
dynamic triaxial tests, as shown in Table 2.

Considering the complex loading applied on the slope soil, the dynamic loading should not be neglected, 
which may induce excessive deformation. More comprehensive research on the root reinforcement effect needs to 
consider different kinds of loading types, as conventional root-reinforced soil tests mainly pay attention to static 
loads. The purpose of this research is to reveal the dynamic properties of root-reinforced soils under dynamic 
loading. Through the test data obtained from the above test scheme, the dynamic strength, hysteresis curve, 
damping ratio, and pore water pressure variation law of the root-reinforced soil when liquefaction occurs under 
dynamic loading are derived. The results can provide a theoretical foundation for slope deformation control and 
slope stability considering the influence of dynamic loading.

Data analysis methods
Definition of soil liquefaction.  Applying the dynamic load, the increase in pore water pressure and axial 
strain is accompanied by a reduction in the soil strength, and there is a corresponding residual strength related 
to different dynamic stresses. The point where the pore water pressure equals the lateral consolidation pressure 
and the corresponding dynamic strain expands significantly marks a visible loss of the residual strength of the 
soil. When the deformation is fully developed, the dynamic stress acting on the soil has only a very small fluctua-
tion change, indicating that the soil is no longer able to withstand the action of dynamic stress, which is usually 
called the liquefaction phenomenon. The pore water pressure rises when liquefaction occurs in the soil as a result 
of the combined effect of the vibration generating pore pressure and drainage dissipating pore water pressure.

Definition of dynamic strength.  To date, there is no unique standard to define the dynamic strength of 
soils, which is variable under different test conditions. The current definition of dynamic strength can be divided 
into the following three categories: the first is the liquefaction criterion, i.e., the strength is determined when 
the pore water pressure is equal to the confining pressure; the second is the strain criterion, i.e., the strength 
related to the axial strain reaches 2.5%, 5%, and 10%; and the third is the limiting equilibrium criterion, i.e., the 
strength when the strain rate reaches its maximum value47,48. This test studies the effect of root reinforcement on 
the dynamic characteristics of soil, and the specimens all presented a liquefied state in the test, so the first type of 

Figure 3.   Single-stage cyclic loading diagram-typical sinusoidal cyclic loading.

Table 2.   Dynamic triaxial test scheme.

Soil sample Dynamic stress amplitude (kPa) Root content (g) Number of vibrations

Plain soil

15 0 197

20 0 84

25 0 19

Mixed reinforced soil

15 1.5 816

20 1.5 131

25 1.5 25

Crossed reinforced soil

15 1.5 1569

20 1.5 215

25 1.5 36
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liquefaction criterion is chosen. The dynamic strength curve demonstrates the relationship between the corre-
sponding damage vibration number N and the applied dynamic stress σd . When the dynamic pore pressure uf  is 
equal to the consolidation lateral pressure, the state is considered to be a liquefaction state. Considering different 
dynamic stress magnitudes, the relationship between the damage vibration number N and stress amplitude σd is 
commonly called the dynamic strength curve for liquefaction resistance.

Damping ratio calculation method.  The damping ratio is a significant parameter for demonstrating the 
dynamic properties of soil, which indicates the decay form of soil vibration after excitation by describing the 
energy dissipation of soil during vibration. Derived from the test results, the damping ratios of different samples 
were calculated. This paper selects the Kumar method49 for the damping ratio calculation, as shown in Fig. 4 with 
formula 1. In formula 1, WS1 , WS2 , and WS3 are the components of elastic strain energy stored in one cycle, and 
WS = WS1 +WS2 +WS3 and WD are the strain energy consumed in a cycle. Point O to point A is the positive 
loading stage, point A to point E is the positive unloading stage, point E to point C is the reverse loading stage, 
and point C to point D is the reverse unloading stage.

Pore water pressure model.  The development of pore water pressure under dynamic loading is an impor-
tant aspect closely related to the change in deformation characteristics, and the study of the occurrence, devel-
opment, and dissipation of dynamic pore water pressure is meaningful to better understand the liquefaction 
mechanism. Seed53 presented the following model (2) based on the dynamic triaxial test of saturated sandy soil 
with isotropic consolidation and without drainage. The formula as follows relates to the dynamic pore water 
pressure and the applied dynamic stress.

where u is the pore water pressure, σ0 is the initial effective stress, N is the number of vibrations, NL is the cor-
responding vibration number reaching the liquefaction state, a is the test constant, depending on the soil type 
and test conditions, and in most cases, a = 0.7.

In this paper, based on the test results, the seed model is validated, and a new pore water pressure model is 
proposed with a validation criterion of R2 . The goodness-of-fit R2 was introduced as a criterion to evaluate the 
effectiveness of the fit of the formula. Goodness-of-fit tests are statistical tests aiming to determine whether a 
set of observed values matches those expected under the applicable model. A larger R2 indicates a better fit of 
the data points and the model, so a larger R2 means a better fit.

Plant handling statement.  We strictly adhere to the IUCN Policy Statement on Research Involving 
Endangered Species and the Convention on Trade in Endangered Species of Wild Fauna and Flora. The plant 
selected for this study is fountain grass (Pennisetum alopecuroides (Linn.) Spreng.), which is a common slope 

(1)� =
1

4π
×

WD

WS
=

1

4π
×

WD

0.25(WS1 +WS2 +WS3)

(2)u

σ0
=

2

π
arcsin

(

N

NL

)
1
2a

Figure 4.   Diagram of the Kumar method principle50.
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protection plant in China. It is not a protected species, and our collection and research are in full compliance 
with national laws and international regulations.

Results
Dynamic strength.  Figure  5 shows the dynamic strength curves of the three specimens under three 
dynamic stress amplitudes (15  kPa, 20  kPa, 25  kPa) with the same confining pressure (50  kPa) and loading 
frequency (1 Hz). There were a total of nine spots related to the nine groups of tests. From Fig. 5, the number of 
cyclic vibrations reaching liquefaction for plain soils with three dynamic loads is 197, 84, and 19. By contrast, the 
vibration number for the mixed arrangement soil is 816, 131, and 25, and the number is 1569, 215, and 36 for 
crossed arrangement soil. The number of cyclic vibrations required to reach the liquefaction state of reinforced 
soil is significantly larger than that of plain soil. Based on this, it is known that the root system has remarkably 
increased the soil dynamic strength, which represents the liquefaction resistance ability. The soil with the crossed 
distribution pattern possesses better dynamic strength than the soil with the mixed arrangement. Considering 
the dynamic stress amplitude, the root reinforced effects are diverse. More specifically, the effect of root rein-
forcement is quite obvious when subjected to a 15 kPa load, as the vibration number, which represents the lique-
faction resistance for root mixed arrangement and cross arrangement soil, increased 314% and 696% compared 
to plain soil, respectively. When the dynamic stress amplitude reaches 20 kPa, the effect gradually decreases as 
the data points get closer. The vibration numbers of the mixed arrangement and crossed arrangement soils only 
grow by 56% and 156%, respectively. Until the amplitude of 25 kPa, the difference between normal soil and root 
reinforced soil is not significant, as the increased percentage is 31% and 89%, respectively. In summary, the root 
reinforcement effect is much better with a lower dynamic stress amplitude. In addition, for the two kinds of root 
reinforced soil, the number of vibrations in a logarithmic form has a clear linear relationship with the dynamic 
stress amplitude.

Hysteresis curves.  To investigate the influence of plant roots on the hysteresis behavior of soil, the hyster-
esis curves under 20 kPa dynamic stress amplitude are demonstrated in Fig. 6. Due to the remarkably different 
total number of cycle cycles in the three cases, it was not possible to select the same cycle interval. Thus, the cycle 
intervals were selected according to the specimen strains corresponding to 1%, 2%, 4%, 6%, 8%, and 10% axial 
strain. The areas of the hysteresis curves for the tenth cycle in Fig. 6a–c are 13.2, 10.6, and 9.2, respectively. When 
the axial strain reaches 2%, the area growth rates of the hysteresis curves are 176%, 182%, and 189%. When the 
axial strain reaches 4%, the growth rate of the hysteresis curve area is 107%, 102%, and 101%, respectively. The 
growth rate of the hysteresis curve area decreases at 6%, 8%, and 10%. As the deformation process gradually 
proceeds, the growth rate of the hysteresis curve area will show a trend of first increasing and then decreasing. 
Figure 6 shows that the position and shape of the hysteresis curve change considerably when the axial strain 
exceeds 2%. It is due to the structural rearrangement of the soil at this stage that the deformation of the specimen 
is not fully recovered, and with the gradual increase in the deformation, the specimen has irrecoverable plastic 
deformation.

In Fig. 6, when the number of vibrations increases, the positive shear strain value in the soil is smaller than the 
negative shear strain value, which is caused by the dilation strain being larger than the shear contraction strain. 
The reason for this is that the liquefaction effect of the soil grows continuously as the vibration load continues 
to increase into the soil, and the soil gradually changes from elastomeric to elastoplastic and finally to plastic in 
the process of this change. Therefore, it is impossible to return to the initial state at the beginning of liquefaction, 
which leads to shear expansion rather than shear contraction in the cycle.

According to formula 1, the representative damping ratio vs dynamic strain relationship curves of the root-
reinforced soil and the plain soil are shown in Fig. 7. The damping ratios of all three specimens increase at first 
and then tend to be stable at last. This is because, with the development of dynamic strain, the dissipation of 

Figure 5.   Dynamic strength curve-dynamic stress amplitude vs number of vibrations.
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Figure 6.   Hysteresis curves of the three different root distribution patterns of soils: (a) plain soil hysteresis 
curve, (b) crossed reinforced soil hysteresis curves, and (c) mixed reinforced soil hysteresis curves.

Figure 7.   Curves of damping ratio veruss axial strain.
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energy inside the soil gradually accumulates, and the damping ratio of the soil increases. However, the dissipation 
of energy will become increasingly difficult with the development of dynamic strain, so the increase in damping 
ratio decreases and gradually tends to the maximum damping ratio. The damping ratio of the root-reinforced 
soil is significantly larger than that of the plain soil. The crossed reinforced soil has the largest damping ratio, 
followed by the mixed reinforced soil and plain soil. This indicates that suffering from the dynamic load, the 
plant roots in the soil can absorb energy, increase the damping ratio of the soil and enhance the ability of the 
soil to resist the cyclic load.

Development pattern of dynamic pore pressure.  As mentioned above, the load frequency is set to 
1 Hz, and the applied axial dynamic stress is 15 kPa, 20 kPa, and 25 kPa. According to the dynamic triaxial test 
data, the pore water pressure change process of the sample during liquefaction is sorted out, as shown in Fig. 8. 
The time-course curves of the pore water pressure ratio with the number of vibrations for samples with different 
root distribution patterns are shown in Fig. 8. The pore water pressure ratio ( ru ) is defined as the ratio of excess 
pore water pressure to effective confining pressure. The soil loses strength and liquefies when ru = 1 . From 
Fig. 8, the pore pressure ratios of the soil samples under different dynamic stress conditions grow rapidly at first 
and then gradually tend to be stable. The pore pressure ratios of the plain soil increase most rapidly, followed by 
the mixed reinforced soil and the crossed reinforced soil. That is, under the same dynamic loading, plain soil is 
more prone to liquefication than root-reinforced soil. Specifically, the permeability of the soil in the test affects 
the effect of soil liquefaction; the smaller the permeability coefficient is, the less likely the soil is to undergo 
liquefaction51,52. Roots in the soil lead to greater cohesion in the soil21–23, reducing the permeability of the soil 
and making the soil less susceptible to liquefaction. This suggests that the root system can slow down the growth 
rate of soil pore water pressure and has better resistance to liquefaction by cross arrangement.

Figure 8.   Pore water pressure ratio versus number of vibrations: (a) dynamic stress amplitude of 15 kPa, (b) 
dynamic stress amplitude of 20 kPa, and (c) dynamic stress amplitude of 25 kPa.
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Pore water pressure models.  Based on the test data obtained from the dynamic triaxial tests for plain and 
root-reinforced soils with formula 2, the goodness-of-fit R2 and the test constant a of the model were calculated 
as shown in Table 3. It can be seen that the R2 of the seed model in this test is approximately 0.52, which stands 
for the relatively low fit degree. The average value of parameter a is 1.98, with a varied range of 0.83–3.71, which 
is far from the recommended value of 0.7 in the Seed model. The fitting curves are shown in Fig. 9. To narrow 
the range of parameter a for different specimens, the formula is modified as shown in (3), that is, b = 1/2a . Thus, 
the average value of parameter b is 0.46, and the range of parameter b variation is 0.13–1.1, narrowing the range 
of parameter variation and increasing the regularity of the parameter.

Because the goodness of fit of the seed model is not acceptable, according to the test results, a new pore 
water pressure development model is proposed, as shown in (4), where c and d are constant parameters and 
c + d = 1 because when the vibration ratio is equal to 1, the pore water pressure ratio should also be equal to 
1. As shown in Table 3, the model is more suitable for root-reinforced soil with relatively high R2 . The average 
values of parameter c and parameter d are 0.55 and 0.45, respectively, and the range of variation is not large. The 
fitting curve is shown in Fig. 10.

As shown in Table 3, the model proposed above has a better fitting effect than the Seed model. The value of the 
test constants in the three formulas will influence the shape and the growth rate of the curve. In the Seed model 
and the new proposed model (4), larger test constants a and c will induce a faster curve growth rate. A larger b 
in formula (3) will be accompanied by a lower curve growth rate. Under the same load, the root arrangement 
has a significant effect on the growth rate of the curve. The values of a and c in formula (2) and formula (4) for 
different soil samples are plain soil > mixed arrangement > crossed arrangement. The growth rate of the plain 
soil curve is the largest, while that of the crossed reinforced is the smallest. For the same specimen, the critical 
constant that will affect the curve shape and the growth rate have diverse change rules under loads with high and 
low dynamic amplitudes. According to Table 3, from low to high loads, the parameters a in formula (2) and c in 
formula (4) both experience an increasing and then decreasing process, which indicates an increase and then a 
decrease in the curve growth rate. As shown in Fig. 10a,b, with the increase in the dynamic load amplitude from 
15 to 20 kPa, the curve slope grows obviously, which demonstrates the acceleration of the pore pressure increase. 
When applying a load with a higher dynamic load amplitude of 25 kPa, the change in the curve slope does not 
increase with the load as before but decreases to an extent as shown in Fig. 10c. In summary, root reinforcement 
can reduce the rate change of pore pressure growth in the soil during liquefaction and make the pore pressure 
growth rate more stable. With increasing load, the change in the pore pressure growth rate in the liquefaction 
process will show a trend of increasing first and then decreasing. The test constants in the model depend on the 
soil type and test conditions. The test constant c in the new model has a smaller range of variation compared to 
the sed model test constant a, indicating that the new model is more stable in this test. Moreover, the new model 
(4) has a better fit than the seed model, so the new model is more suitable for root-reinforced soils.
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=

N

NL

/(

c
N

NL
+ d

)

– Dynamic stress R
2

a R
2

b R2 c d

Plain soil

15 kPa 0.6191 2.073 0.6191 0.314 0.9991 0.7256 0.2744

20 kPa 0.256 3.712 0.256 0.1347 0.9961 0.8603 0.1397

25 kPa 0.5562 1.558 0.5562 0.3209 0.9956 0.5037 0.4963

Mixed arrangement

15 kPa 0.55 1.924 0.55 0.2414 0.9972 0.5965 0.4035

20 kPa 0.3505 2.768 0.8898 0.7228 0.997 0.7851 0.2149

25 kPa 0.6433 1.086 0.6433 0.4604 0.9921 0.2304 0.7696

Crossed arrangement

15 kPa 0.5211 1.598 0.5211 0.2596 0.9924 0.5568 0.4432

20 kPa 0.4611 2.381 0.9687 1.1571 0.9985 0.6757 0.3243

25 kPa 0.7337 0.8261 0.7337 0.6053 0.9913 − 0.0079 1.0079

Mean value – 0.5212 1.982 0.6375 0.4684 0.9955 0.5473 0.4527
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Discussion
From previous studies, it is well accepted that the root distribution has a strong influence on the strength of the 
root reinforcement23, which has been verified by the test results and analysis in this paper. Regarding the effect 
of different root distributions on the strength of the soil, the main difference lies in the root direction. Lian, B’s 
study shows that the individual horizontal and vertical arrangement is not as effective as the crossed arrangement 
because it is reinforced in only one direction compared to the crossed arrangement. Moreover, the reinforcement 
effect of vertical roots is better than that of horizontal arrangement24. In this paper, the diameters and lengths of 
the root systems added in the experiments were selected according to uniform criteria, and the basic difference 
between the two root distribution patterns was the proportion of roots in different directions. The proportion of 
both vertically and horizontally distributed root systems was close to 50% in the cross arrangement. The vertical 
root system plays a dominant role in resisting deformation. Therefore, the angle of inclination and the relative 
number of root systems are key factors to be considered when analyzing the reinforcement effect of root distribu-
tion. In contrast, the root distribution in the mixed arrangement was random, and the proportion of vertically 
distributed roots was relatively smaller. Meanwhile, when cyclic loading is applied during the dynamic triaxial 
test, there is a pressure release process for the specimens, and the root system may rebound during the process. It 
can be inferred that the crossed arrangement is better than the mixed arrangement for soil reinforcement under 
cyclic loading because of the different proportions of roots in the vertical direction. However, the development of 
root stress in root-reinforced soils is complex; only two root distribution patterns were considered in this study, 
and the quantitative measurements of root distribution were different from those in other studies. Determining 
how best to select and measure the key characteristic parameters of root distribution is a major challenge that 
must be overcome in further studies.

In addition to the above test results and analysis, there are certain limitations of this test. As far as soil con-
ditions are concerned, soil saturation, soil type, and soil water content have significant effects on the dynamic 

Figure 9.   Relationship between pore pressure ratio and vibration ratio computed by Seed model: (a) dynamic 
stress amplitude of 15 kPa, (b) dynamic stress amplitude of 20 kPa, and (c) dynamic stress amplitude of 25 kPa.
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properties of root-reinforced soils. Sloping soils in northern China are unsaturated, and current studies of 
unsaturated soils need to consider the effect of gases in the pores, which is quite a complex situation. In the cur-
rent mechanical study of unsaturated soils, researchers mainly focus on the water–air interface, and the matric 
suction in the soil needs to be measured54–56. Although most of the soils in nature are unsaturated, for the sake 
of the convenience of engineering research, the perfect soil, i.e. saturated soil, is usually chosen. Considering the 
worst case in nature, saturated soil has lower strength and is prone to reach liquefaction than unsaturated soil. 
Therefore, the traditional triaxial strength test and dynamic triaxial test of soil must be conducted in saturated 
conditions57,58. In practice, when slope soil is subjected to extreme conditions such as rainfall, it will reach satura-
tion, and the strength of the soil is the lowest at this time. We chose saturated soil to conduct the test under the 
most unfavorable condition of the soil. At present, with the limitation of test equipment, it is more common to 
study saturated soils instead of unsaturated soils for dynamic triaxial tests of soils under conventional dynamic 
loads28–30,59. Regarding the effects of different soil types. Firstly, different soil types exhibit different dynamic 
properties under the same test conditions, for example, soils with higher cohesion and density such as silty clay 
and loess are not susceptible to liquefaction, while soils with low cohesion such as sandy soils are susceptible 
to liquefaction29,39,60. Second, whether the reinforcement effect of roots in soils proposed in this paper can be 
applied to other soil types. Earlier researchers have verified that the root system has the same reinforcement 
effect in different soil types under static loads16,21,22. There are few studies on root reinforcement in soils under 
dynamic loads, but studies on soil reinforcement with fibers and geomaterials have shown the versatility of 
suitable reinforcing materials for soil reinforcement37,57. Therefore, the conclusions drawn in this paper should 
be generalized to different soil types. Soil moisture content has a significant effect on the shear strength of root-
reinforced soils under static loading. There exists an optimum soil moisture content that gives the strongest 
shear strength of root-reinforced soils. Once this value is exceeded, the shear strength decreases as the soil water 

Figure 10.   Relationship between pore pressure ratio and vibration ratio computed by proposed model: (a) 
dynamic stress amplitude of 15 kPa, (b) dynamic stress amplitude of 20 kPa, and (c) dynamic stress amplitude of 
25 kPa.
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content increases13. The soil moisture content under dynamic loading affects the elastic–plastic deformation 
and damping ratio of the soil under dynamic loading61,62, and the effect on this paper is mainly reflected in the 
liquefaction state. In this paper, the specimens were saturated with the maximum water content in the soil pores 
in the context of extreme conditions such as rainfall.

Currently, there is a lack of studies related to unsaturated soils, different soil types, and soil moisture content, 
which are of great research value in the study of the dynamic properties of root-reinforced soils. This study is 
a preliminary study of the dynamic behavior of root-reinforced soils. The purpose is to study the changes in 
dynamic properties of root-reinforced soils under dynamic loads. So we first want to reveal the effect of root 
distribution on the pattern. The results of the study may vary with soil saturation, soil type, and moisture content. 
In future research, we will consider some tests on unsaturated soils to be closer to the engineering reality. Also, 
soil type and soil moisture content should be taken into consideration, and we will supplement the experiments 
in the next study for further discussion. In addition, considering the test control parameters, in this test, only 
the dynamic characteristics of the soil at a dynamic load loading frequency of 1 Hz were considered, and the 
dynamic characteristics of the slope soil at different loading frequencies were not explored. Subsequently, we 
will continue the research on the effect of load frequency on the dynamic characteristics of the soil. Finally, 
due to the limitation of specimen preparation, the root arrangement in the root-adding soil still cannot fully 
simulate the actual root growth distribution, which is also a difficult point to overcome in the field of studying 
root-adding soil. This is a difficult point to overcome in the field of root-adding soil research. Further research 
will be conducted to simulate the root distribution in a more realistic way.

Conclusions
In this study, the effects of different roots in different rows on the deformation characteristics of root–soil com-
plexes were investigated by testing different roots in different rows with different loading forms, and the results 
obtained were discussed. The following conclusions can be drawn.

1.	 Under liquefaction conditions, the root system can enhance the dynamic strength of the soil, the enhance-
ment is obvious at low dynamic stress amplitudes, and the crossed arrangement is more effective than the 
mixed arrangement in enhancing the dynamic strength.

2.	 By applying cyclic loading, plant roots can improve the damping ratio of the soil and enhance the ability 
of the soil to resist cyclic loading, and the cross arrangement has a greater damping ratio than the mixed 
arrangement.

3.	 A new pore pressure model is proposed, which can more accurately fit the development pattern of pore 
pressure.

4.	 The root system significantly enhances the soil liquefaction resistance when suffering a lower dynamic load, 
and the reinforced effect of the crossed arrangement is better than that of the mixed arrangement. With a 
larger load, the reinforced effect of the root system weakened.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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