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Image thresholding segmentation 
based on weighted Parzen‑window 
and linear programming techniques
Fusong Xiong1,2*, Zhiqiang Zhang1,2, Yun Ling1,2 & Jian Zhang1,3*

Image segmentation by thresholding is an important and fundamental task in image processing 
and computer vision. In this paper, a new bi-level thresholding approach based on weighted Parzen-
window and linear programming techniques is proposed to use in image thresholding segmentation. 
First, by proposing a weighted Parzen-window to describe the gray level distribution status, we 
obtain the boundaries for the foreground and background of the image. Then the image thresholding 
problem can be transformed into the problem of solving a linear programming problem for computing 
the coefficient values of weighted Parzen-window. The results of testing on synthetic, NDT and a set 
of benchmark images indicate that the proposed method can achieve a higher segmentation accuracy 
and robustness in comparison to some classical thresholding methods, such as inter class variance 
method (OTSU), Kapur’s entropy-based method (KSW), and some state-of-art methods that consider 
spatial information, such as CHPSO, GLLV histogram method and GABOR histogram method.

Image segmentation technology has been widely applied in industry, agriculture, military fields, etc. Among all 
the image segmentation methods, thresholding is one of the most widely used, because it is simple and ease to 
implement. Image thresholding methods are divided into two categories, one is bi-level thresholding methods 
and the other is multi-level methods. The bi-level methods that involve the fundamental assumption that the 
foregrounds and backgrounds of the image have different gray level distributions, segment the image to fore-
grounds and backgrounds. The multi-level methods can be generalized by the bi-level methods that segment the 
image to multiple non-overlapping regions1. So far, many successful thresholding methods have been developed 
and applied in many fields, such as infrared nondestructive testing, magnetic resonance imaging, etc.2. In this 
paper, we focus on bi-level thresholding methods.

In the process of bi-level thresholding, it is assumed that there exists an optimal threshold value separating 
the gray levels. The segmentation task can be implemented by classifying pixels whose gray level is less than the 
threshold as backgrounds and pixels whose gray level is greater than the threshold as foregrounds, or vice versa. 
For decades, some classical bi-level thresholding algorithms have been proposed, such as the inter-class vari-
ance method (OTSU)3, minimum error bi-level thresholding method (MET)4, the entropic bi-level thresholding 
method based on one-dimensional histogram (1D KSW)5, Renyi’s entropic bi-level thresholding method6 and 
Tsallis’s entropic bi-level thresholding method7 etc. In addition, these classical methods have been modified or 
combined with other techniques to develop numerous successful bi-level or multi-level thresholding methods. As 
typical examples, relative entropy theory and 3D histogram were combined with MET for an optimal threshold 
discriminant8. The ant colony optimization approach was combined with the inter-class variance method for fast 
find out multiple thresholds of the images9. The hybrid whale optimization approach was combined with the 1D 
KSW method for multi-level thresholding segmentation10,11. The meta-heuristics approach was combined with 
Renyi’s entropy-based method for multi-level thresholding segmentation12. The particle swarm optimization 
approach was combined with the Tsallis entropy-based method for multi-level thresholding segmentation13. 
The convergence heterogeneous particle swarm optimization algorithm, was utilized to find the optimal bi-level 
and multi-level thresholds14. The coyote optimization algorithm, which takes Ostu and fuzzy entropy as objec-
tive functions, was used to multi-level thresholds selection15. Although many thresholding methods have been 
developed, the entropy-based methods remain the most popular. Many extensions of the entropy-based method, 
which are based on 1D histogram, have been proposed in recent years. For examples, Cheng proposed a new bi-
level thresholding method by implementing fuzzy segmentation based on two-dimensional (2D) histograms16. 
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Xiao proposed two new entropic bi-level thresholding methods. The first method employs gray level spatial 
correlation (GLSC) histogram17. In contrast to the 2D histogram, the GLSC histogram is obtained using the 
gray level of the pixels and their neighbors with similar gray level. The second method employs gray level and 
gradient magnitude (GLGM) histogram18. The GLGM histogram clearly captures the occurrence probability 
and spatial distribution features of gray level at the same time, and considers spatial information. Utilizing the 
orientation histogram of a gradient image to calculate the local edge property, a new bi-level thresholding method 
employing 2D-D histogram was proposed by Yimit19. A new thresholding method based on a GLLV histogram 
was proposed by Zheng20 using the gray level information of pixels and its local variance in a neighborhood. A 
new thresholding method based on a GABOR histogram was proposed by Yi21. Recently, Xiong et al. proposed 
a new image thresholding method combining Kapur’s entropy with Parzen-window estimation22.

In general, the improved 2D histogram methods outperform 1D histogram methods. However, the 2D 
entropic thresholding methods still have some limitations, such as, not a generic method for image threshold-
ing, and lack of robustness or stability etc.

In this paper, we try to propose a new bi-level thresholding method, which is based on the boundaries for the 
foreground and background by using a weighted Parzen-window to describe the gray level distribution status 
rather than gray level probability density distributions (1D or 2D histogram) for the foreground and back-
ground in an image. Subsequently, image thresholding was successfully transformed into a linear programming 
problem. We used the simplex method to solve the linear programming problem. In the experimental section, 
the proposed method is compared with the classic and state-of-art methods to demonstrate its accuracy and 
robustness. The novel contribution of this study is the construction of a new data distribution description method 
based on the weighted Parzen-window technique, which can be regarded as a linear programming problem. This 
process is illustrated in Fig. 1.

The rest parts of this paper is organized as follows. In section "The proposed method", we briefly introduce 
the Parzen-window technology, and provide a new bi-level thresholding method based on the weighted Parzen-
window and linear programming. In section "Experimental results", the results of the experiments and a discus-
sion are presented. Finally, section "Conclusions" gives the conclusion.

The proposed method
Parzen‑window technique and its use in image estimation.  For a gray image 
F =
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Figure 1.   Process of the proposed thresholding method.
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Traditional thresholding methods are first used to compute the probability of each gray level distribution. 
Then, the optimal threshold value was computed by optimizing an appropriate objective function, which was 
designed using the gray level distribution or other properties.

As we known well, the Parzen-window estimation is an effective non-parametric estimation with solid theo-
retical foundation, which can better describe the distributions of data23–25. The basic idea is to estimate the pdf  
using the mean value of the densities of each point within a certain range. If we want to estimate the pdf  at point 
X , we can place a window of size h at X and see how many observations of Xi fall into this window. The value 
of pdf  is the average of the observations falling into this window. The Parzen-window estimate Pn(X) can be 
expressed as:

where Vn is the volume of the d-D hypercube with edge length hn , Vn = hdn , hn = c√
n
 is called window width. c 

is a constant parameter that always takes the value of 1. K(·) is the d-D kernel function (window function), and:

The most commonly used kernel function is the Gaussian kernel function (normal distribution), defined as:

Following the Parzen-window estimation, for the 2-D image F , the sample 
(
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 can be estimated by Eqs. (5) and (6).

where Cl is the number of pixels in ωl , p(ωl) can be approximated by a histogram, given by:
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However, probability density estimation itself is an ill-posed problem. Moreover, the estimation of the prob-
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the boundaries for the foregrounds and backgrounds in an image by using a weighted Parzen-window, to obtain a 
good description of the gray level distribution status, the thresholding problem can be converted to the problem 
of solving a linear programming problem for determining the coefficient values of the weighted Parzen-window.

Weighted Parzen‑window combines linear programming for image thresholding.  Here, we 
propose the weighted Parzen-window method, which is an improvement of the Parzen-window method. By 
combining the proposed weighted Parzen-window method and a linear programming technique, we provide a 
new image thresholding method.

As is well know, thresholding segmentation assumes that the pixels are divided into two classes O and B . If 
we can choose an suitable ρ to divide {ωl , l ∈ G,G = {1, 2, . . . , .L− 1}} into two classes, such as {ωO ,O ∈ G} , 
{ωB,B ∈ G} , ωO

⋂
ωB = φ,ωO

⋃
ωB = G , and satisfying:

Then, Eq. (13) can be seen as the boundary of foregrounds and backgrounds:

According to the boundary, it is easy to divide the gray level into two classes. However, this approach is not 
always effective, because the Parzen-window technique does not provide a method for choosing an appropriate 
ρ . Thus, the Parzen-window technique must be modified so that it can better describe the boundary of the data 
distribution and obtain the appropriate ρ . We now provide a solution strategy.

Suppose that a d-D pattern space with N samples is as follows:

where I denotes the coordinate set. Now, let’s consider the following linear programming (LP).

where ϕ(·) denotes the kernel function. Because the kernel function ϕ(·) and coefficient ai are non-negative, 
the implicit constraint is ρ ≥ 0 . The solution of the above LP and the kernel function together constitute a new 
description of the data distribution:

where I ′ = {i|i ∈ Iandai > 0} . The solution of Eq. (15) is guaranteed by the following theorem.

Theorem 1  The solution of Eq. (15) is absolute existence.

Proof  According to the constraints in Eq. (15), we have:

It is easy to know that Eq. (15) is a feasible solution.

Thus, Eq. (15) exist in the solution domain. It can be concluded from the optimization theory that the solu-
tion of Eq. (15) is an absolute existence. Proof end.

If ϕ
(
Xj ,Xi

)
 is regarded as a measure of the similarity between samples j and i , Eq. (15) provides a strategy 

for selecting ρ . The constraints of Eq. (15) make the inter-class similarity as large as possible. Therefore, the 
boundaries of the data distribution can be better delineated. Simultaneously, p̂(X) is not the probability density 
estimation, instead, focus on describing the boundaries of data distribution, and:

The simplex method26 is the most commonly used method to solve the LP problem, thus, we chose it for 
this study.
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A gray image is regarded as a two-dimensional sample space. This can be easily mapped to linear program-
ming. For example, a 2-dimensional space X is replaced by 

{
f
(
x, y

)
|x ∈ {1, 2, 3, . . . ,m}, y ∈ {1, 2, 3, . . . , n}

}
 , the 

index coordinate I is replaced by the pixel coordinate set ω , kernel function ϕ(·) is the same as in Eq. (9). Thus, 
we can classify all gray levels into two classes using the proposed weighted Parzen-window and linear program-
ming based image thresholding (WPWLPT) method.

Procedure WPWLPT.
BEGIN

Step 1:
Input an image of size × , compute = { , = 0,1,2, … , − 1} , 
, = 0,1,2, … , − 1 and Gaussian kernel function in Equation (9);

Step 2:
Solve Equation (15) using Simplex method, obtain the solution: { ∗, ∈ }

and ρ∗;

Step 3:

By substituting { ∗, ∈ } and ρ∗ to the Equation (16), then create the 
connection matrix according to the following principles:

=
1, ∀ = + − , 0 ≤ ≤ 1, ̂( ) ≥ ρ∗

0, ℎ

Step 4:

Repeat search the matrix until all the samples be classified;
if = 1:

classify and  into the class or ;
else:

classify and into the class or ;

Step 5: Output thresholding image according and .

END

Experimental results
In this section, we present the experimental results, obtained by using some classic methods (such as OTSU3 
and KSW5), some state-of-art methods (such as CHPSO14, GLLV19 and GABOR20, and all the parameters being 
set to the default values during the experiments) and our proposed method (we call it as WPWLPT from now). 
Li et al.14 proposed the CHPSO method, which can be used for both bi-level and multi-level thresholding (they 
provide equations for both the bi-level and multi-level cases). It uses OTSU and KAPUR as objective functions, 
which we denote CHPSO_otsu and CHPSO_ksw, respectively.

In order to assess the effectiveness of the proposed method, we qualitatively and quantitatively assessed on 
lots of images. For brevity, we only reported 22 representative thresholding results, which included two synthetic, 
eight nondestructive testing (NDT) and a set of benchmark images. These images had different sizes and histo-
gram types. We designed two synthetic images. The NDT images were obtained from2. The benchmark images 
belong to the Image Processing Standard Database (http://​www.​image​proce​ssing​place.​com/​root_​files_​V3/​image_​
datab​ases.​htm) and the USC-SIPI Image Database (http://​sipi.​usc.​edu/​datab​ase/), which are well-known and 
widely used in the image thresholding literatures.

Currently, there are several measurements2,21,27–29,32 to quantitatively evaluate the quality of the image thresh-
olding method. We used the misclassification error ( ME)2, region nonuniformity ( NU)2, feature similarity ( FSIM
)29 and mean intersection over union ( mIoU)32 to quantitatively assess the different thresholding methods.

ME measurement reflects the incorrect classification of foregrounds pixels to the backgrounds or vice versa2. 
For the bi-level image thresholding problem, ME can be taken as:

where Bo and Fo denote the backgrounds and foregrounds of the optimal thresholded image, BT and FT denote 
the backgrounds and foregrounds region pixels of the original image, and |∗| denotes the cardinality of the set ∗ . 
Obviously, ME equals to 1 for the worst case and 0 for the best case. ME is the easiest and most effective method 
for the discrepancy measure30.

NU  measures the intrinsic quality of the segmented regions, is defined as:

(20)ME = 1−
|Bo ∩ BT | + |Fo ∩ FT |

|Bo| + |Fo|

(21)NU =
|FT |

|BT + FT |
σf

2

σ 2

http://www.imageprocessingplace.com/root_files_V3/image_databases.htm
http://www.imageprocessingplace.com/root_files_V3/image_databases.htm
http://sipi.usc.edu/database/
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where σ 2 denotes the variance of the image, and σf 2 denotes the variance of the foregrounds. BT and FT denote the 
backgrounds and foregrounds region pixels of the original image. Obviously, NU closes to 0 for a well-segmented 
image and equals to 1 for the worst-segmented image.

FSIM calculates the similarity of two images, is defined as:

where

where T1 and T2 denote constants. Here, T1 = 0.85,T2 = 160 . � is the whole space of image. G is the gradient 
of image, defined as:

PC represents the phase consistency, defined as:

where An(x) denotes n order amplitude, E(X) represents n order response vector level at position X . ε represents 
a small positive constant. Obviously, FSIM closes to 1 for a well-segmented result and equals to 0 for the worst-
segmented result.

Experiments on synthetic images.  Synthetic images are perfect for testing the image thresholding algo-
rithm because their optimal threshold values can be obtained manually31. Figure 2 shows two original synthetic 
images with 256× 256 pixels, which named as “Circles” and “Squares” [Fig. 2a,e], respectively. In Fig. 2a, we 
place some circles (their gray level is 150) on a darker background (gray level is 50). Figure 2b shows a noisy 

(22)FSIM =
∑

X∈�SL(X) · PCm(X)∑
X∈�PCm(X)

(23)SL(X) = SPC(X) · SG(X)

(24)SPC(X) =
2PC1(X) · PC2(X)+ T1

PC2
1(X)+ PC2

2(X)+ T1

(25)SG(X) =
2G1(X) · G2(X)+ T2

G2
1(X)+ G2

2(X)+ T2

(26)G =
√

G2
x + G2

y

(27)PC(X) =
E(X)

ε +
∑

n An(x)

Figure 2.   Two examples of synthetic images. (a) “Circles” image. (b) Noised “Circles” image. (c) Histogram 
of the noised “Circles” image. (d) Ground-truth image of noised “Circles”. (e) “Squares” image. (f) Noised 
“Squares” image. (g) Histogram of the noised “Squares” image. (h) Ground-truth image of noised “Squares”.
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image of Fig. 2a with Gaussian noise, and Fig. 2c shows the histogram of Fig. 2b. Figure 2d shows the ground-
truth image of Fig. 2b. In Fig. 2e, we place some squares (their gray level is 225) on a darker background (gray 
level is 75). Figure 2f shows a noisy image of Fig. 2e with Gaussian noise, and Fig. 2g shows the histogram of 
Fig. 2f. Figure 2h shows the ground-truth image of Fig. 2f.

For the synthetic “Circles” image, the optimal threshold value, which was calculated manually based on the 
ground-truth image, is 108. The threshold values, MEs , NUs and FSIMs obatined using the seven thresholding 
methods are listed in Table 1. The best values in terms of MEs , NUs and FSIMs are highlighted in bold. Among 
the seven thresholding methods, the threshold value obtained by WPWLPT is the closest to the optimal threshold 
value. It equals 110, and that the ME , NU  and FSIM are equal to 0.0049, 0.0837 and 0.8103, respectively. The 
threshold value obtained using the OTSU method is 102. Its ME , NU  and FSIM are equal to 0.0120, 0.1025 and 
0.7998, respectively. The threshold value obtained using the KSW method is 82. Its ME , NU and FSIM are equal 
to 0.2650, 0.2208 and 0.6425, respectively. The threshold value obtained using the CHPSO_otsu method is 102. 
Its ME , NU  and FSIM are equal to 0.0120, 0.1025 and 0.7998, respectively. The threshold value obtained using 
the CHPSO_ksw method is 84. Its ME , NU  and FSIM are equal to 0.2595, 0.2172 and 0.6652, respectively. The 
threshold value obtained using the GLLV method is 101. Its ME , NU  and FSIM are equal to 0.0156, 0.1368 and 
0.7921, respectively. And the threshold value obtained using the GABOR method is 105. Its ME , NU  and FSIM 
are equal to 0.0098, 0.1027 and 0.8024, respectively.

For the synthetic “Squares” image, the optimal threshold value, which was calculated manually based on the 
ground-truth image, is 153. The threshold values, MEs , NUs and FSIMs obatined using the seven thresholding 
methods are listed in Table 2. The best values in terms of ME , NU  and FSIM are highlighted in bold. Among 
the seven thresholding methods, the threshold value obtained by WPWLPT was also the closest to the optimal 
threshold value. It equals 152, and that the ME , NU and FSIM are equal to 0.0018, 0.0386 and 0.8198, respectively. 
The threshold value obtained using the OTSU method is 147. Its ME , NU  and FSIM are equal to 0.0020, 0.0405 
and 0.8002, respectively. The threshold value obtained using the KSW method is 108. Its ME , NU  and FSIM are 
equal to 0.0606, 0.1982 and 0.6512, respectively. The threshold value obtained using the CHPSO_otsu method 
is 148. Its ME , NU  and FSIM are equal to 0.0019, 0.0401 and 0.8076, respectively. The threshold value obtained 
using the CHPSO_ksw method is 110. Its ME , NU and FSIM are equal to 0.0618, 0.1884 and 0.6725, respectively. 
The threshold value obtained using the GLLV method is 150. Its ME , NU  and FSIM are equal to 0.0018, 0.0398 
and 0.8178, respectively. And the threshold value obtained using the GABOR method is 146. Its ME , NU  and 
FSIM are equal to 0.0021, 0.0403 and 0.8104, respectively.

As can be seen from the results of the threshold values, MEs , NUs and FSIMs , it is clear that:
For the synthetic “Circles” image, the threshold values of KSW and CHPSO_ksw are 82 and 84, respectively. 

They are almost worthless threshold values, because of them far from the optimal threshold (108). In contrast, the 
threshold values of OTSU, CHPSO_otsu, GLLV, GABOR and WPWLPT are 102, 102, 101, 105, 110, respectively, 
which are reasonable threshold values due to their near to the optimal value. Especially, the threshold value of 
our WPWLPT is only 2 larger than the optimal threshold. The results in terms of MEs , NUs and FSIMs also reveal 
that our WPWLPT yields the best results. The MEs and NUs provided by the KSW and CHPSO_ksw methods 
were so higher, and the FSIMs were so lower than other methods. While OTSU, CHPSO_otsu, GLLV, GABOR 
and WPWLPT can obtain reasonable results, especially our WPWLPT method which obtains the minimum 
ME , NU  and the maximum FSIM values.

For the synthetic “Squares” image, the threshold values of KSW and CHPSO_ksw are 108 and 110, respec-
tively. These are almost worthless threshold values too, because they are from the optimal threshold (153). In 
contrast, the threshold values of OTSU, CHPSO_otsu, GLLV, GABOR and WPWLPT are 147, 148, 150, 146, 
152, respectively, which are reasonable threshold values because they are close to the optimal value. Especially, 

Table 1.   The threshold values, MEs , NUs and FSIMs of the seven thresholding methods on the synthetic 
“Circles” image. The best results are highlighted in bold.

OTSU KSW CHPSO_otsu CHPSO_ksw GLLV GABOR WPWLPT

Threshold value 102 82 102 84 101 105 110

ME 0.0120 0.2650 0.0120 0.2595 0.0156 0.0098 0.0049

NU 0.1025 0.2208 0.1025 0.2172 0.1368 0.1027 0.0837

FSIM 0.7998 0.6425 0.7998 0.6652 0.7921 0.8024 0.8103

Table 2.   The threshold values, MEs , NUs and FSIMs of the seven thresholding methods on the synthetic 
“Squares” image. The best results are highlighted in bold.

OTSU KSW CHPSO_otsu CHPSO_ksw GLLV GABOR WPWLPT

Threshold value 147 108 148 110 150 146 152

ME 0.0020 0.0606 0.0019 0.0618 0.0018 0.0021 0.0018

NU 0.0405 0.1982 0.0401 0.1884 0.0398 0.0403 0.0386

FSIM 0.8002 0.6605 0.8076 0.6725 0.8178 0.8104 0.8198
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the threshold value of our WPWLPT is only 1 less than the optimal threshold. The results in terms of MEs , NUs 
and FSIMs also reveal that our WPWLPT yields the minimum ME , NU  and the maximum FSIM values, which 
were best results among all the seven thresholding methods.

Figure 3 provides a visual comparison between the thresholding results obtained by the OTSU, KSW, CHPSO_
otsu, CHPSO_ksw, GLLV, GABOR and the proposed WPWLPT methods. As can be seen from Fig. 3, the KSW 
and CHPSO_ksw methods obtained almost unvalued results because their segmented images had obvious noise 
(see Fig. 3, the second and fourth images of each row). In contrast, all the OTSU, CHPSO_otsu, GLLV, GABOR 
and WPWLPT methods segmented a cleaner image because the threshold values they obtained were close to the 
optimal threshold value. Furthermore, by zooming in Fig. 3, we can easily observe that the WPWLPT method 
gives the clearest segmentation results compared with the OTSU, CHPSO_otsu, GLLV and GABOR methods, 
because it has the least residual noise.

Experiments on NDT images.  The NDT images are also ideal for testing the image thresholding algo-
rithm because their ground-truth images can be obtained directly. In this part, eight NDT images were used to 
assess the performance of the WPWLPT. They are “PCB”, “defective tile”, “material structure”, “fuselage material”, 
“eddy current”, “ultrasonic”, “GFRP”and “bonemarr”. All the above eight images, their histograms and ground-
truth images are shown in Fig. 4. The thresholding segmentation results obtained using the reference threshold-
ing methods and WPWLPT are shown in Fig. 5.

Tables 3, 4 and 5 show the MEs , NUs and FSIMs of the different thresholding methods, respectively. ̟ ME,̟ NU 
and ̟ FSIM represent the average of MEs , NUs and FSIMs respectively. The best results are highlighted in bold.

Because of length limits, we only analyzed four NDT images. They are the “PCB”, “material structure”, “eddy 
current” and “GFRP”.

Figure 3.   Thresholding segmentation results of the noised synthetic image by using different methods. For 
each experimental synthetic image, the results of OTSU, KSW, CHPSO_otsu, CHPSO_ksw, GLLV, GABOR and 
WPWLPT methods are displayed side by side from left to right.

Figure 4.   The experimental NDT images, their histograms and ground-truth images.
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For “PCB” image, the ME and FSIM values obtained by WPWLPT method are optimal, while the NU  value 
is inferior to GLLV method only. This is reasonable because they focused on different aspects of measurement. 
ME represents the percentage of background pixels incorrectly classified to the foreground, or vice versa, FSIM 
focuses on the texture, shape and other features, while NU  judges the intrinsic quality of the segmented areas. 
The worst results are obtained using the KSW method. Its ME , NU  and FSIM values are equal to 0.2170, 0.6725 
and 0.5864, respectively. Obviously, compared with other methods, its ME and NU values are too high and FSIM 
value is too low, making the results worthless. A visual comparison, as shown in Fig. 5, shows that the OTSU, 

Figure 5.   Thresholding segmentation results by using different methods. For each experimental image, the 
results of OTSU, KSW, CHPSO_otsu, CHPSO_ksw, GLLV, GABOR and WPWLPT methods are displayed side 
by side from left to right.
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CHPSO_otsu, GLLV and WPWLPT methods can segment better segmentation image. By comparison, the KSW, 
CHPSO_ksw and GABOR methods segmented valueless results because they misclassify lots of foregrounds as 
backgrounds (see Fig. 5, first row, second, fourth and sixth images, they can’t distinguish the backgrounds and 
printed circuit board, especially the second image).

For “material structure” image, GLLV, GABOR and OTSU yield the best ME NU  and FSIM values, respec-
tively. However, WPWLPT yields the closest values of ME , NU  and FSIM values to the best. The worst results 
are obtained using the KSW method. Its ME , NU  and FSIM equal to 0.6176, 0.7036 and 0.5028, respectively. 
Obviously, its ME and NU  values are too high and FSIM value is too low, so the results obtained are worthless. 
The visual comparison, as can be seen from Fig. 5, we can also discover that the OTSU, CHPSO_otsu, GLLV and 
WPWLPT methods can segment better segmentation image. By comparison, the KSW and CHPSO_ksw methods 
segment almost an unvalued segmentation image because they misclassify lots of foregrounds as backgrounds 
(see Fig. 5, third row, second and fourth image, the whole image looks black).

For “eddy current” image, the ME and NU values obtained by WPWLPT method are optimal, while the FISM 
value is inferior to GABOR method only. The worst results are obtained using the KSW method. Its ME , NU 
and FSIM values are equal to 0.0407, 0.1239 and 0.7002, respectively. Similar to the results of the KSW method, 
the CHPSO_ksw method also yielded poor results for ME , NU  and FSIM values. The visual comparison, as can 

Table 3.   MEs of the different thresholding methods. The best results are highlighted in bold.

Image OTSU KSW CHPSO_otsu CHPSO_ksw GLLV GABOR WPWLPT

PCB 0.0320 0.2170 0.0376 0.1828 0.0380 0.0886 0.0176

Defective tile 0.1478 0.1668 0.1337 0.1576 0.0297 0.0249 0.0198

Material structure 0.0895 0.6176 0.0626 0.5562 0.0503 0.0536 0.0528

Fuselage material 0.0207 0.0711 0.0257 0.0942 0.0728 0.0199 0.0199

Eddy current 0.0253 0.0407 0.0229 0.0402 0.0209 0.0206 0.0193

Ultrasonic 0.0405 0.1021 0.0356 0.0829 0.0215 0.0275 0.0203

GFRP 0.0855 0.4898 0.0765 0.3986 0.0945 0.1008 0.0669

Bonemarr 0.1021 0.3256 0. 1038 0. 3338 0.0976 0.0958 0.0921

̟ME 0.0679 0.2538 0.0623 0.2308 0.0532 0.0540 0.0386

Table 4.   NUs of the different thresholding methods. The best results are highlighted in bold.

Image OTSU KSW CHPSO_otsu CHPSO_ksw GLLV GABOR WPWLPT

PCB 0.1228 0.6725 0.1228 0.5265 0.1208 0.1492 0.1225

Defective tile 0.2037 0.1583 0.2012 0.1526 0.0988 0.0968 0.0935

Material structure 0.1846 0.7036 0.1676 0.6092 0.1105 0.1025 0.1078

Fuselage material 0.0898 0.1678 0.1102 0.1876 0.1798 0.0812 0.0724

Eddy current 0.0675 0.1239 0.0598 0.0960 0.0588 0.0585 0.0580

Ultrasonic 0.1036 0.1478 0.0983 0.1421 0.0827 0.0841 0.0784

GFRP 0.0858 0.7879 0.0838 0.6035 0.0980 0.1092 0.0837

Bonemarr 0.1051 0.3465 0.1011 0.3379 0.0982 0.0976 0.0921

̟NU 0.1204 0.3885 0.1181 0.3319 0.1060 0.0974 0.0886

Table 5.   FSIMs of the different thresholding methods. The best results are highlighted in bold.

Image OTSU KSW CHPSO_otsu CHPSO_ksw GLLV GABOR WPWLPT

PCB 0.6882 0.5864 0.7005 0.6643 0.6801 0.5948 0.7013

Defective tile 0.5845 0.6005 0.5801 0.5992 0.6716 0.6895 0.7052

Material structure 0.7112 0.5028 0.6708 0.5802 0.6786 0.6882 0.6931

Fuselage material 0.7128 0.7466 0.7209 0.7375 0.7314 0.7684 0.7690

Eddy current 0.7088 0.7002 0.7108 0.7103 0.7110 0.7116 0.7112

Ultrasonic 0.6402 0.6327 0.6508 0.6388 0.6851 0.6816 0.7013

GFRP 0.7270 0.6036 0.7178 0.6616 0.7104 0.7037 0.7294

Bonemarr 0.7008 0.6018 0.7045 0.6055 0.7125 0.7101 0.7237

̟FISM 0.6842 0.6218 0.6820 0.6497 0.6976 0.6935 0.7168
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be seen from Fig. 5, we can also discover that the GLLV, GABOR and WPWLPT methods can segment better 
segmentation images. By comparison, the KSW and CHPSO_ksw methods segment a low-value segmentation 
image because they misclassify some backgrounds as foregrounds (see Fig. 5, fifth row, second and fourth images, 
some black shadows appeared in the segmentation image).

For “GFRP” image, all the ME , NU  and FISM values obtained by WPWLPT method are optimal. The worst 
results are also obtained by the KSW method. Its ME , NU and FSIM values are equal to 0.4898, 0.7879 and 0.6036, 
respectively. Obviously, the ME (0.7879!) is close to 1 which corresponding to the worst case. The results obtained 
by CHPSO_ksw method are also valueless due to their higher ME , NU  values and lower FSIM values. A visual 
comparison, as can be seen from Fig. 5, shows that the OTSU, CHPAO_otsu, GLLV, GABOR and WPWLPT 
methods can segment better segmentation images. By comparison, the KSW and CHPSO_ksw methods seg-
mented valueless results because they misclassify lots of backgrounds as foregrounds (see Fig. 5, seventh row, 
second and fourth images, it’s impossible to distinguish between foregrounds and backgrounds).

Experiments on a set of benchmark images.  A set of benchmark images belonging to the Image Pro-
cessing Standard Database and USC-SIPI Image Database, which contain 12 Gy images. For brevity, we give 
12 images here, “cameraman”, “house”, “jetplane”, “lake”, “milkdrop”, “livingroom”, “mandril”, “peppers”, “pirate”, 
“walkbridge”, “tank”, and “boat”, all in uncompressed tif or tiff format and of the same 512× 512 size. The thresh-
olding segmentation results of the corresponding twelve images obtained by the reference thresholding methods 
and WPWLPT are shown row by row from top to bottom in Fig. 6. Tables 6 and 7 show the NUs , and FSIMs of 
different thresholding methods, respectively. ̟ NU , and ̟ FSIM represent the average of MEs , and FSIMs respec-
tively. The best results are highlighted in bold. It should be noted that, we did not employ ME to measure the 
quality of thresholding methods experiment on these images, because the ideal thresholded or ground-truth 
images cannot be acquired.

As shown in Fig. 6, Tables 6 and 7, it can be observed that:
For most of the tested images, the values of NU  and FISM obtained by WPWLPT are the lowest. Specifi-

cally, for the “cameraman”, “house”, “milkdrop”, “peppers”, “walkbridge”, “tank” and “boat” images, the proposed 
WPWLPT method can obtain the lowest NU  values. For the “pirate” image, OTSU obtains the lowest NU  val-
ues. For the “lake” and “pirate” images, CHPSO_otsu obtains the lowest NU  values. For the “livingroom” and 
“mandril” images, GLLV obtains the lowest NU values. For the “jetplane” image, GABOR obtains the lowest NU 
values. In terms of FISM , the proposed method are similar. It obtains the highest FISM values in the “camera-
man”, “milkdrop”, “peppers”, “pirate”, “walkbridge”, “tank” and “boat” images. Although the WPWLPT method 
did not obtain the lowest NU  values and highest FISM values for all 12 test images, the average value of NUs 
and FISMs were the best among all seven thresholding methods. Specifically, the ̟NU values of OTSU, KSW, 
CHPSO_otsu, CHPSO_ksw, GLLV, GABOR and WPWLPT are equal to 0.1119, 0.3772, 0.1127, 0.3686, 0.2037, 
0.1278 and 0.0992, respectively. The ̟ FISM values of OTSU, KSW, CHPSO_otsu, CHPSO_ksw, GLLV, GABOR 
and WPWLPT equal to 0.7601, 0.5896, 0.7597, 0.6058, 0.73014, 0.7646 and 0.7867, respectively. It means that the 
̟NU value obtain by our method outperforms the OTSU, KSW, CHPSO_otsu, CHPSO_ksw, GLLV and GABOR 
methods by 1.27%, 27.80%, 1.35%, 26.94%, 10.45% and 2.87% respectively, while the ̟ FISM value outperforms 
the OTSU, KSW, CHPSO_otsu, CHPSO_ksw, GLLV and GABOR methods by 2.66%, 19.71%, 2.69%, 18.09%, 
5.66% and 2.20% respectively.

From the above analysis, we can assert that the WPWLPT method can calculate better ̟NU and ̟FISM 
values in comparision with other reference methods. This result demonstrates the stability and accuracy of the 
proposed method.

mIou values.  mIoU is the more widely used objective metric for the task of image segmentation. It is defined 
as:

where k is the number of classes, TP, FNandFP denote true positives, false positives and false positives, respec-
tively. We employ mIoU  to objectively evaluate synthetic and NDT images because they have ground-truth 
images. The mIoUs obtained by different thresholding methods are listed in Table 8. ̟ mIoU represents the average 
of mIoUs . The best results are highlighted in bold.

As shown in Table 8, in most test images, the values of mIoU  obtained by WPWLPT are the highest. Specifi-
cally, for the “Circles”, “PCB”, “defective tile “, “material structure”, “fuselage material “, “eddy current”, “ultrasonic” 
and “GFRP” images, the proposed WPWLPT method can obtain the highest mIoU  values. For the “, “Squares” 
image, GLLV, GABOR and WPWLPT both obtained the highest mIoU  value. For the “bonemarr” image, GLLV 
and WPWLPT both got the highest mIoU  values.

Figure 7 depicts the average values of mIoU  for the synthetic and NDT images. As shown in Fig. 7, our 
method has been improved to varying degrees on average mIoU compared with other methods. Specifically, the 
̟mIoU values of OTSU, KSW, CHPSO_otsu, CHPSO_ksw, GLLV, GABOR and WPWLPT are equal to 78.7%, 
65.8%, 79.5%, 68.2%, 83.3%, 83.7% and 85.3%, respectively. It means that the ̟ mIoU value obtain by our method 
outperforms the OTSU, KSW, CHPSO_otsu, CHPSO_ksw, GLLV and GABOR methods by 6.0%, 19.5%, 5.8%, 
17.1%, 2.0% and 1.6%, respectively.

Discussion.  Based on the above analysis of the experimental results of synthetic, NDT and a benchmark 
images, we find that:

(28)mIoU =
1

k + 1

k∑

i=0

TP

FN + FP + TP



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13635  | https://doi.org/10.1038/s41598-022-17818-4

www.nature.com/scientificreports/

1.	 The proposed WPWLPT method obtained the best segmentation performance for most images. In addition, 
our method can yields the lowest ̟ ME and ̟ NU , the highest ̟ FISM and ̟ mIoU on all the synthetic, NDT and 
the benchmark of images. Specifically, for the two synthetic images, the ̟ ME , ̟ NU , and ̟ FISM of WPWLPT 

Figure 6.   Thresholding segmentation results by using different methods. For each experimental image, the 
results of OTSU, KSW, CHPSO_otsu, CHPSO_ksw, GLLV, GABOR and WPWLPT methods are displayed side 
by side from left to right.
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equal to 0.0034, 0.0612 and 0.8151, respectively. The ̟ ME of WPWLPT outperforms the competing methods 
by 0.0037 to 0.1595, the ̟ NU outperforms the competing methods by 0.0102 to 0.1484, and the ̟ FISM out-
performs the competing methods by 0.0101 to 0.1636. For the eight NDT image, the ̟ ME , ̟ NU , and ̟ FISM 
of WPWLPT equal to 0.0386, 0.0886 and 0.7168, respectively. The ̟ ME of WPWLPT outperforms the com-
peting methods by 0.0146 to 0.2152, the ̟ NU outperforms the competing methods by 0.0088 to 0.2999, and 
the ̟ FISM outperforms the competing methods by 0.0192 to 0.0950. For the benchmark of twelve images, the 

Table 6.   NUs of the different thresholding methods. The best results are highlighted in bold.

Image OTSU KSW CHPSO_otsu CHPSO_ksw GLLV GABOR WPWLPT

Cameraman 0.1245 0.8587 0.1236 0.8326 0.6207 0.1828 0.1096

House 0.1702 0.6299 0.1825 0.6285 0.2052 0.3116 0.1624

Jetplane 0.1852 0.2225 0.1825 0.2208 0.1651 0.1603 0.1644

Lake 0.0718 0.3499 0.0707 0.3423 0.0737 0.0726 0.0720

Milkdrop 0.1027 0.7182 0.1083 0.7174 0.7083 0.0486 0.0428

Livingroom 0.0988 0.2059 0.0976 0.1895 0.0889 0.1025 0.1122

Mandril 0.0798 0.1821 0.0788 0.1879 0.0668 0.1356 0.0672

Peppers 0.0836 0.1328 0.0828 0.1330 0.1008 0.1012 0.0728

Pirate 0.1028 0.6738 0.1028 0.6689 0.1106 0.1274 0.1031

Walkbridge 0.1324 0.1228 0.1302 0.1225 0.1138 0.1108 0.1102

Tank 0.1106 0.2807 0.1098 0.2321 0.1048 0.1017 0.1009

Boat 0.0806 0.1489 0.0826 0.1478 0.0854 0.0788 0.0725

̟NU 0.1119 0.3772 0.1127 0.3686 0.2037 0.1278 0.0922

Table 7.   FSIMs of the different thresholding methods. The best results are highlighted in bold.

Image OTSU KSW CHPSO_otsu CHPSO_ksw GLLV GABOR WPWLPT

Cameraman 0.6978 0.4684 0.6988 0.6223 0.6529 0.6925 0.7168

House 0.7427 0.2323 0.7207 0.2416 0.7022 0.6628 0.7418

Jetplane 0.7375 0.7026 0.7399 0.7101 0.7842 0.7883 0.7865

Lake 0.7569 0.6004 0.7569 0.6011 0.7588 0.7535 0.7518

Milkdrop 0.7301 0.3872 0.7315 0.3885 0.4018 0.8178 0.8288

Livingroom 0.7498 0.6585 0.7467 0.6568 0.7005 0.7269 0.7326

Mandril 0.8280 0.7326 0.8396 0.7288 0.8288 0.7998 0.8328

Peppers 0.8568 0.7358 0.8568 0.7384 0.8113 0.8012 0.8568

Pirate 0.7359 0.3684 0.7402 0.3744 0.7227 0.7129 0.7625

Walkbridge 0.6339 0.7002 0.6376 0.7083 0.7367 0.7452 0.7452

Tank 0.8515 0.7598 0.8520 0.7678 0.8598 0.8692 0.8712

Boat 0.7998 0.7288 0.7962 0.7312 0.8010 0.8056 0.8134

̟FISM 0.7601 0.5896 0.7597 0.6058 0.7301 0.7646 0.7867

Table 8.   mIoUs (%) of the different thresholding methods. The best results are highlighted in bold.

Image OTSU KSW CHPSO_otsu CHPSO_ksw GLLV GABOR WPWLPT

Circles 86.9 66.2 86.0 66.6 88.6 89.1 89.6

Squares 87.8 79.8 85.8 84.4 89.8 89.8 89.8

PCB 82.3 70.5 84.7 73.5 84.7 82.0 86.5

Defective tile 59.7 75.0 60.6 71.6 85.4 85.8 86.3

Material structure 72.8 38.2 75.0 44.4 80.7 80.4 83.4

Fuselage material 82.3 76.2 82.8 74.3 76.0 83.3 84.3

Eddy current 85.8 84.4 86.0 84.5 87.6 88.1 88.3

Ultrasonic 78.7 71.8 82.0 73.4 87.1 86.6 87.2

GFRP 75.9 35.7 76.7 48.1 75.2 74.6 79.3

Bonemarr 79.9 54.0 79.8 53.3 81.2 80.5 81.2

̟mIoU 78.7 65.8 79.5 68.2 83.3 83.7 85.3
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̟NU , and ̟ FISM of WPWLPT equal to 0.0992, and 0.7867, respectively. The ̟ NU outperforms the compet-
ing methods by 0.0127 to 0.2780, and the ̟ FISM outperforms the competing methods by 0.0220 to 0.1971. 
For all the ten synthetic and NDT images, The ̟ mIoU of WPWLPT equals to 85.3%, which outperforms the 
competing methods by 1.6% to 19.5%. These experimental results well demonstrate the effectiveness and 
robustness of the proposed WPWLPT method.

2.	 From a visual perspective (Figs. 3, 5 and 6), although for some images, our method does not achieve the best 
segmentation effectiveness, it can obtain acceptable or close to the best results, which also shows the stability 
of our method.

3.	 OTSU is a traditional method, that exhibits high stability and accuracy. It outperformed most of the other 
methods except for ours.

4.	 Although our method works well for most images, it doesn’t yield best performance on “material structure”, 
“lake”, “milkdrop” et al. (For these three images, all the ̟ ME , ̟ NU , ̟ FISM or ̟ mIoU values are not optimal). 
The possible reason is the boundary information, which plays a crucial role in our proposed method is not 
obvious.

5.	 The KSW and CHPSO_ksw methods are the two worst performing methods. The Kapur based method is 
1D entropy without considering other information. Obviously, GLLV and GABOR methods are superior 
to Kapur based method because they introduce other information such as gradient magnitude, texture and 
contour, etc. This also gave us inspiration to introduce other information into our method, which is our next 
step. This also gives us a clue to introduce other information into our method, and contour information is a 
potential choice. Moreover, it can be seen as our future work.

Running time.  In addition to the qualitative and quantitative assessment, the running time of the thresh-
olding method is another important evaluation. Table 9 reports the average running time obtained by different 
threshold methods for the above 22 test images. All the experiments are running on the DELL notebook with 
Intel(R) Core (TM) i5-4300U CPU @ 1.90 GHz 2.50GHZ, 16 GB memory. The running environment is Matlab 
(R2015b). As shows in Table 9, the proposed WPWLPT method takes approximately the same amount of time 
as the GLLV method. It is superior to the GABOR method but inferior to 1D methods, such as OTSU, KSW, 
CHPSO_otsu and CHPSO_ksw. Although our method is slower than OTSU, KSW etc., the running time is com-
pletely acceptable in many applications. In addition, our WPWLPT method is still highly competitive because of 
its superior effectiveness and robustness.

Conclusions
In this study, a new image bi-level thresholding method is proposed. The method first obtains the boundaries 
for the foreground and background in the image using a weighted Parzen-window to describe the gray level 
distribution status. Secondly, the image thresholding problem can be transformed into the problem of solving a 
linear programming problem for computing the coefficient values of the weighted Parzen-window. By solving 
the problem of linear programming, we determine the threshold. In the experiment, we used two synthetic, eight 
NDT and a benchmark of twelve testing images, which have different histogram types, to evaluate the quality 
of the proposed image thresholding method. The measurement of visual and quantitative results demonstrates 
that our proposed method, compared with the OTSU, KSW, CHPSO_otsu, CHPSO_ksw, GLLV and GABOR 
methods, can achieve better effectiveness and robustness. In the future, as an extension of this work, we will 

Figure 7.   The average mIoUs (%) of different methods.

Table 9.   The average running times (s) of different thresholding methods for all the 22 test images.

Method OTSU KSW CHPSO_otsu CHPSO_ksw GLLV GABOR WPWLPT

Average running time (s) 0.4580 0.5000 0.4280 0. 4890 6.8500 65.7500 6.9500
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embed other information, such as texture, contour etc. in WPWLPT to enhance its performance, and extend 
the method to the problem of multilevel thresholding.

Data availability
The data underlying this article will be shared on reasonable request to the corresponding author.
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