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Spatiotemporal changes 
of bacterial communities 
during a cyanobacterial bloom 
in a subtropical water source 
reservoir ecosystem in China
Zhenhua Huang1,4, Cancan Jiang1, Shengjun Xu1,2*, Xiaoxu Zheng1, Ping Lv1, Cong Wang1, 
Dongsheng Wang2 & Xuliang Zhuang1,3*

Cyanobacterial blooms, which not only threaten the health and stability of aquatic ecosystems but 
also influence the microbial community within, emerges as one of the most concerning problems in 
China. However, how cyanobacterial blooms affect the spatiotemporal variation of aquatic microbial 
communities remains relatively unclear. In this study, we used high-throughput sequencing to 
investigate how the cyanobacterial and bacterial community spatiotemporally vary along with 
main cyanobacterial bloom phases in upstream rivers of a eutrophicated water source reservoir. 
Both cyanobacterial and bacterial diversities in each river were significantly lower (P < 0.05) during 
the bloom outbreak phase, showing the apparent influence of cyanobacterial bloom. Dominant 
cyanobacterial taxa included Cyanobacteriales and Synechococcales, and dominant bacterial 
taxa comprised Acinetobacter, CL500-29, hgcI clade, Limnohabitans, Flavobacterium, Rhodoluna, 
Porphyrobacter, Rhodobacter, Pseudomonas, and Rhizobiales, whose changes of relative abundance 
along with the bloom indicated distinct community composition. Non-metric multidimensional scaling 
analysis proved that community composition had significant difference amongst bloom phases. 
Linear discriminant analysis (LDA) with LDA effect size analysis (LEfSe) identified unique dominant 
cyanobacterial and bacterial OTUs at different phases in each river, indicating spatiotemporal 
variations of communities. Canonical correlation analysis or redundancy analysis revealed that 
at different bloom phases communities of each river had distinct correlation patterns with the 
environmental parameters (temperature, ammonium, nitrate, and total phosphorus etc.), implying 
the spatial variations of microbial communities. Overall, these results expand current understanding 
on the spatiotemporal variations of microbial communities due to cyanobacterial blooms. Microbial 
interactions during the bloom may shed light on controlling cyanobacterial blooms in the similar 
aquatic ecosystems.

The frequency and intensity of cyanobacterial blooms are increasing in many inland aquatic ecosystems, includ-
ing rivers, lakes, and reservoirs, due to excessive nitrogen and phosphorus enrichment in surface waters over-
enrichment1–4. These blooms are becoming one of the top concerns of environmental protection agencies, water 
regulation authorities, and society, and the biodiversity of aquatic ecosystems is  decreasing5–7. Furthermore, 
many bloom species can produce a variety of metabolites, which will bring dramatic health risks to humans and 
 animals8. In China, to increase diversities of aquatic ecosystems, a series of water protection campaigns have 
been initiated in recent decades, which are further strengthened in the National Fourteenth Five Year Plan. The 
mechanisms of blooms outbreak, as well as corresponding counter-measures, have become one of the central 
research hotspots.
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It has been universally acknowledged that the bloom species, such as cyanobacteria and other eukaryotic 
algae, are also an integral part of the microbial community within the aquatic  ecosystems9, which not only rapidly 
respond to the changes of surrounding environmental parameters and form blooms but also actively interact with 
their bacterial counterparts. Previous studies on bacteria-cyanobacteria interaction focused on the composition 
and diversity of heterotrophic bacteria living with cyanobacteria (forming micro-niche or biofilms) as well as the 
differences between cyanobacteria-associated bacterial communities and the free-swimming  communities9–12. 
The complex interactions between cyanobacteria-bacteria are crucial in ecological and biogeochemical terms, 
due to their fundamental functions in shaping aquatic  communities11. It should be noted that the cyanobacte-
rial blooms exhibit an ebb-and-flow pattern when dynamically responding to the changes of environmental 
parameters, therefore, the associated and the surrounding bacterial communities are presumed to be changing 
accordingly. However, the dynamic variations of bacterial communities in water bodies that served as drinking 
sources along the bloom course remains unclear.

In a previous study, we evaluated the spatiotemporal changes and eutrophic characteristics of water quality 
of a life-dependent reservoir (Yankou Reservoir Basin) with its upstream rivers, which served as drinking water 
sources for Yiwu City, Zhejiang Province of  China1. Monthly water qualities assessment from 2013 to 2018 
demonstrated that over 90% of the months the upstream rivers were collectively under eutrophic conditions, 
which kept aggravating eutrophic conditions of the reservoir. Before and during then, massive cyanobacterial 
blooms were observed in those upstream rivers and a large part of the reservoir infield, making it an immediate 
issue to be dealt with.

On the presumption that the bacterial communities would dynamically change along the cyanobacterial 
bloom course, the investigation into these variations will reveal which bacterial communities and how they will 
change, and the community information could eventually be used to develop potential predictive or mitigating 
tools against the bloom. For this purpose, surface water samples were collected from the four upstream rivers 
at different phases of full cyanobacterial blooms, and the composition and diversity of cyanobacterial and other 
bacterial communities of each river at each phase were investigated. The dynamic changes of cyanobacterial and 
bacterial communities along the bloom were revealed and correlated with the main environmental parameters.

Materials and methods
Sampling area and environmental parameters determination. This study was carried out along 
the four upstream rivers, namely Huangshan River (HS), Jinfuzhai River (JFZ), Sihe River (SH), and Xihua River 
(XH), of Yankou Reservoir basin (29° 17′ 25″ – 29° 18′ 49″ N, 119° 54′ 11″ – 119° 55′ 13″ E) in Yiwu City, Zhejiang 
province, middle east of China (Fig. 1). Based upon field observation of dynamics of a cyanobacterial bloom 
and Chil-a concentration determination, the outbreak course was primarily divided into four phases, including 

Figure 1.  Diagram of Yankou Reservoir Basin indicating the sampling points on each river. The sampling sites 
were located using the global positioning system (GPS) and were nominated after the names of corresponding 
rivers. Map was created with ArcGIS software (V10.6, https:// deskt op. arcgis. com/ zh- cn/ deskt op/). Field photos 
were taken at each sampling point (pins only indicated some of the locations for concise presentation), and 
representative ones were selected to show the bloom course from May to September.

https://desktop.arcgis.com/zh-cn/desktop/
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before the cyanobacterial bloom (Before AB), followed by early phase (Pre AB), outbreak phase (During AB), 
and late phase (Post AB). Additionally, each river has at least one tributary pool (HS has three pools) connecting 
to mainstream of the river; therefore, water samples would also be collected from the pools. A total number of 
104 surface water samples (0.5 m depth) were collected, respectively in May, July, August, and September 2020 
(26 samples for each sampling campaign), representing the four cyanobacterial bloom phases. The surface water 
samples were collected within a 3-day period in all the phases. After immediate collection, the samples were 
kept in an ice box filled with dry ice and transported back to the laboratory for subsequent treatment. Water 
samples (~ 3000 mL) were first passed through a 200-μm pore-size sieve to remove any debris for subsequent 
determination of water quality parameters and microbial community analysis. For bacterial and cyanobacterial 
community analyses, water samples (~ 1500 mL) were further filtered through 0.22-μm pore-size polycarbon-
ate membranes (50 mm, Jinteng®, Tianjin, China), and those membranes were stored at − 80  °C until DNA 
extraction. The environmental parameters of the water samples were determined according to study described 
 previously13. Briefly, a Hydrolab HQ30D multiparameter water quality meter (HACH Company Co., Loveland, 
the USA) was used in situ to monitor the water temperature (TEMP), oxidation–reduction potential (ORP), pH 
value, and chlorophyll-a (Chl-a). Other water quality parameters, including chemical oxygen demand (COD), 
total nitrogen (TN), dissolved total nitrogen (DTN), ammonium  (NH4

+), nitrite  (NO2
−), nitrate  (NO3

−), total 
phosphorus (TP), dissolved total phosphorus (DTP) and orthophosphate  (MPO4

−) were determined using the 
standard methods published by China’s State Environmental Protection  Administration14.

DNA extraction. The total DNA of microbial communities was extracted directly from the membrane fil-
ters using a FastDNA™ Spin Kit (MP Biomedicals, Santa Ana, CA, the USA) according to the manufacturer’s 
instructions. The purified total DNA was processed and sequenced targeting the V3–V4 region of 16S rRNA 
gene with 338F and 806R  primers15 on MiSeq 300 platform by Shanghai Majorbio Bio-Pharm Technology Co., 
Ltd. The downstream alignment and analyses were performed using the integrated and free online platform of 
Majorbio Cloud Platform (www. major bio. com).

Bioinformatic treatment. The sequenced paired-end reads were merged with FLASH (v.1.2.11), and 
the raw reads were processed and analyzed using QIIEM (v.1.9.1) to remove low quality reads. After quality 
control, sequences were clustered into operation taxonomic units (OTUs) using UPARSE (v.7.0.1090) with a 
97% sequence similarity  threshold16. A representative sequence from each OTU was run against the databases 
of SILVA (Release 138). To avoid mistaken taxonomic alignments, the taxonomic classifications were double-
checked against the reference prokaryotes. Those unclassified OTUs were discarded, followed by normalization 
of the filtered sequence data to minimize sequencing biases and allow for appropriate comparison of community 
variations.

For comparisons of microbial taxa variations across the cyanobacterial bloom phases, we defined those taxa 
with relative abundance less than 0.01% as rare taxa, more than 1% as abundant taxa, and between 0.01% and 
1% as moderate taxa, respectively. Based upon the definition, those relevant taxa in subsequent analyses were 
categorized into groups as follows: always abundant taxa (AAT), always rare taxa (ART), always moderate taxa 
(AMT), and conditionally varied taxa (CVT), and the taxa with more than 0.01% relative abundance at certain 
phases in each sample were also referred as “dominant taxa” according to previous  studies17.

Statistical analyses. In this study, the bloom was mainly attributed to cyanobacterial overproduction, 
therefore, the cyanobacterial community would be further extracted from the normalized data for each sample, 
and alpha- and beta diversities were estimated both on cyanobacterial and the rest of bacterial communities 
(will be referred as “bacterial communities” below). Additionally, a comprehensive analysis on the changes of 
bacterial communities at different phases in each river as well as the variance of communities at the same phase 
amongst different rivers was performed.

To better compare the difference of communities on relative abundances and community compositions, both 
alpha- and beta-diversity indices were calculated. The alpha-diversity indices including OTU numbers (Sobs), 
abundance-based coverage estimator (ACE), Shannon, and Chao 1, as well as Venn diagrams compared to dif-
ferent samples were calculated using the vegan package in R language (v.4.0.0). Rarefaction curves and Good’s 
coverage were performed with MOTHUR (v.1.30.2). Significance amongst alpha-diversity indices were calculated 
using one-way ANOVA and Student’s t-test with the significant level at 0.05. For beta-diversity analysis, the non-
metric multidimensional scaling analysis (NMDS) with weighted unifrac similarity coefficient and permutational 
multivariate analysis of variance test (PERMANOVA) was used to evaluate both the discrepancy of bacterial 
communities at different phases and the variance of communities at the same phase in different rivers.

To identify the cyanobacterial and bacterial OTUs contributing to the difference amongst samples described 
above, a significance test was first performed using the Kruskal–Wallis test coupled with Tukey–Kramer post-
hoc examination, based upon OTUs’ relative abundances. Subsequently, the linear discriminant analysis (LDA) 
coupled with the LDA effect size (LEfSe) technique, with a discriminant analysis score of 2.0, was performed to 
identify the significantly different dominant OTUs amongst the samples. Additionally, cyanobacterial and bacte-
rial OTUs with LDA scores over 3.0 and 4.0, respectively, were screened out to double-check with the significance 
tests. The significance tests and LEfSe analyses were all examined at a significant level of 0.05.

Finally, a variance inflation factor analysis (VIF) was first performed on all of the environmental parameters, 
only when VIF scores of the parameters were under 10, would the parameters be selected for subsequent cor-
relation analyses. In this study, the VIF scores of DTN, DTP, and COD were over 10, which would be eliminated. 
Canonical correlation analysis (CCA) or redundancy analysis (RDA) was conditionally chosen based upon results 
of detrended correspondence analysis (DCA) to reveal the correlations.

http://www.majorbio.com
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Results
Environmental parameters of each river at different phases. Water samples were collected from 
each river, and complete environmental parameters were summarized in Table S1. In general, the Chl-a in the 
pools was higher than that in the corresponding rivers, and the maximum concentration reached 535.68 µg/L 
in JFZ’s pool. Further statistical analyses on the complete parameters of each river at different bloom phases 
indicated that for each river, there was no significant difference amongst the parameters at different phases 
(indicating as N.S.), except ORP and Chl-a (P < 0.05, Table S1). For these two parameters, detailed significances 
between relevant phases were included.

General statistics of sequencing data and alpha-diversity comparison
General statistics of sequencing data. In this study, a total number of 5,115,068 sequences was pooled 
for the total 104 samples, and sequencing data was normalized to 18,633 sequences for each sample, which 
were categorized into 8689 OTUs and 2998 bacterial species. The cyanobacterial community was collectively 
extracted from each sample, stratified into 515 OTUs and 191 species, leaving the bacterial communities consti-
tuting 8174 OTUs and 2807 species.

Rarefaction curves for each sample showed that most samples tended to approach saturation (Fig. S1), and 
the Good’s coverage ranged from 94.91 to 99.42% amongst the samples. The two indices indicated that the 
majority of the bacterial taxa had been extracted from the studied communities. Considering that the tributary 
pools were one of the main sources of cyanobacterial communities in rivers, alpha-diversity indices, including 
Shannon and Chao 1, were analyzed on cyanobacterial and the rest of bacterial communities in pools and rivers.

Alpha-diversity comparisons and statistics. For cyanobacterial communities in pools of HS, JFZ, SH, 
and XH across the bloom phases, the Shannon index maximized at the “During AB” phase for JFZ and XH. 
Although it maximized at the “Post AB” and “Before AB” phase for HS and SH, respectively, the diversities at 
the “During AB” phase were also relatively high for both pools (Fig. S2A). Whilst Chao 1 index of these cyano-
bacterial communities showed a concurrent pattern that community diversities minimized at “During AB” and 
maximized at “Post AB” phase. For bacterial communities, both Shannon and Chao 1 indicated that community 
diversity decreased at “During AB” and increased afterward. On the contrary to pools, cyanobacterial commu-
nities in all rivers minimized at “During AB” phases according to Shannon and Chao 1 index (Fig. S2B), except 
for Shannon of HS and JFZ. Similar to pools, bacterial communities in all rivers were minimized at “During AB” 
phases and increased afterward based upon both indices estimates.

Differences on alpha-diversity were further determined amongst different rivers at the same phase as well 
as each river along the bloom phases (Fig. 2). For the cyanobacterial communities at each phase, there was, in 
general, no significant difference amongst the studied rivers (P > 0.05), except for the comparisons between HS 
and JFZ at “Before AB”, as well as JFZ and SH at “Post AB” phases (P < 0.05) (Fig. 2A). Whereas, community 
diversities in individual rivers exhibited apparent variances across the consecutive phases (Fig. 2B). Cyanobacte-
rial communities in HS showed no significant difference across the phases, whilst communities in JFZ, SH, and 
XH demonstrated significant differences amongst these phases, and especially, communities at the “During AB” 
phase were significantly lower (P < 0.05) than the rest phases according to Chao 1 index for JFZ, SH, and XH.

Similarly, for bacterial communities at the same phase, there was, in general, no significant difference amongst 
the rivers (P > 0.05), except for the comparison between JFZ and XH according to Shannon index (Fig. 2C). 
Bacterial communities in individual rivers also showed similar variance with the cyanobacteria across the phases 
(Fig. 2D). HS communities had no significant difference amongst the phases (P > 0.05), whilst JFZ, SH, and XH 
communities showed significant differences, and communities at the “During AB” phase were also significantly 
lower (P < 0.05) than some of the rest phases in JFZ, SH, and XH, respectively.

OTU comparisons of both cyanobacteria and bacteria in tributary pools and their rivers at corresponding 
phases were performed (Fig. S3). In general, for both cyanobacterial and bacterial OTUs, the comparisons either 
amongst pools and rivers at certain phases (Fig. S3) or in each pool and river at different phases (Fig. S3), only 
a small portion of OTUs was shared in common amongst the four compared counterparts. It should be noted 
that only a small number of cyanobacterial OTUs was classified in pools of JFZ, SH, and XH during the bloom 
(Fig. S3), which supported the alpha-diversity analyses that the cyanobacteria diversities during the bloom were 
significantly lower than the rest phases for JFZ, SH, and XH (Fig. 2).

Comparisons of cyanobacterial and bacterial community composition. In general, the most 
diverse cyanobacterial OTUs were assigned to phylogenetic orders of Cyanobacteriales and Synechococcales in 
both rivers and their tributary pools. However, the cyanobacterial community composition exhibited spatial 
variance amongst these ecosystems. In each pool, the 2 taxa took turns as the most dominant community, for 
example, in the tributary pool of HS, the most dominant community was Synechococcales and Cyanobacteriales 
across each of the phases; whilst JFZ had Cyanobacteriales as the most dominant community. And Synechococ-
cales was the most dominant in the rest of the three rivers along with the bloom (Fig. 3A).

For bacterial communities, the abundant genus to which most diverse OTUs were assigned were sorted out 
in each river. Based upon the relative abundance of each taxon, the phylogenetic genera were further categorized 
into groups of AAT, ART, AMT, and CVT, respectively (Fig. 3B–E). Although these rivers had some genera in 
common in each group (AAT, ART, AMT, and CVT), such as Acinetobacter and Flavobacterium the bacterial 
community composition also exhibited spatial variance amongst the studied rivers. For example, a community of 
hgcI clade was always abundant in HS, JFZ, and SH, whilst was conditionally varied in XH, and its relative abun-
dance was greatly reduced during the cyanobacterial bloom, especially in XH. Communities of Pseudarcicella 
and Limnohabitans in HS were always abundant, and their relative abundance increased during the cyanobaterial 
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bloom, however, they were conditionally varied and noticeably reduced in the rest three rivers during the same 
phase. Similarly, Comamonadaceae was always abundant in each river, but its relative abundance clearly reduced 
during the bloom, and Allobaculum was always rare in HS, SH, and XH, but conditionally varied in JFZ that its 
relative abundance greatly increased during the bloom.

Variations of cyanobacterial and bacterial communities were further illustrated through NMDS with PER-
MANOVA test. Cyanobacterial communities at the “Before AB” phase exhibited significant variation amongst 
the studied rivers (PERMANOVA, df = 3, F model = 3.220,  R2 = 0.305, P = 0.001), however not at the rest phases 
(Fig. 4A). Across the bloom phases, cyanobacterial communities in SH and XH showed significant variations 
(PERMANOVA, df = 3, F model = 2.252 and 2.298,  R2 = 0.252 and 0.256, P = 0.011 and 0.02, respectively), whilst 
those in HS and JFZ did not (Fig. 4B). For bacterial communities, they only showed significant difference at the 
“Post AB” phase amongst the studied rivers (df = 3, F model = 1.729,  R2 = 0.191, P = 0.039) (Fig. 4C). However, 
except for HS, bacterial communities in JFZ, SH, and XH collectively revealed significant discrepancy across the 
cyanobacterial bloom phases (df = 3, F model = 1.884, 3.731, and 4.525,  R2 = 0.220, 0.359, and 0.404, P = 0.006, 
0.001, and 0.001 respectively) (Fig. 4D1–D4).
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Figure 2.  Comparisons of alpha-diversity estimators of Shannon and Chao1 on cyanobacterial (A1–A4 
and B1–B4) and bacterial communities (C1–C4 and D1–D4). Figures of (A1–A4) illustrated cyanobacterial 
community diversity amongst different rivers at the same phases of Before AB (A1), Pre AB (A2), During AB 
(A3), and Post AB (A4), respectively; and (B1-B4) showed cyanobacterial community diversity of HS (B1), 
JFZ (B2), SH (B3), and XH (B4) at different bloom phases. (C1–C4) and (D1–D4) represented comparisons of 
bacterial communities equivalent to (A1–A4) and (B1–B4).
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The significant difference in cyanobacterial and bacterial dominant species (OTUs). The above 
results indicated that the discrepancies of both cyanobacterial and bacterial communities could be more attrib-
uted to the difference of cyanobacterial bloom phases instead of spatial heterogeneity of rivers. Therefore, the 
significantly different OTUs of cyanobacterial and bacterial communities were analyzed amongst samples at 
different phases in each river (containing corresponding tributary pools) (Table S2). The significance test was 
subsequently used for LEfSe analysis (Table S3) to identify those cyanobacterial and bacterial OTUs at different 
phases contributing to the significance.

For cyanobacteria, more OTUs were identified in JFZ, SH, and XH, and these OTUs have mainly identified 
at the rest three phases except the “During AB” phase (Fig. 5). Cyanobacterial OTUs at different phases were 
mainly classified into Cyanobacteriales (OTU1843), and Leptolyngbyales (OTU3191) in SH (Fig. 5C), and were 
pooled into Cyanobacteriales (OTU6199) in XH (Fig. 5D), respectively. Additionally, several OTUs, including 
OTU2648, OTU7367, OTU8417, and OTU867, were widely distributed amongst these three rivers, indicating 
that a core cyanobacterial community was shared in common in these rivers.

Similarly for the bacterial community, more OTUs were identified in JFZ, SH, and XH, however, were uni-
versally identified across the cyanobacterial bloom phases (Fig. 6). Members of Rhodobacteraceae (OTU 853 and 
OTU 5851), Limnohabitans (OTU4177, OTU216, and OTU3910), Porphyrobacter (OTU6265), and Sporichthy-
aceae (OTU2594) were mainly screened out in JFZ (Fig. 6B), whilst Pseudarcicella (OTU3296), Comamonadaceae 
(OTU3244), Sporichthyaceae (OTU2594), Limnohabitans (OTU3910), Acinetobacter (OTU8318, OTU2460, 
OTU2685, OTU5230, OTU2703, OTU5164, OTU483, and OTU2184) were broadly identified in SH and XH 
(Fig. 6C,D). Notably, members of Rhodobacteraceae (OTU853 and OTU5851), Porphyrobacter (OTU6265), 
and Acinetobacter (OTU2460, OTU2685, OTU2184, and OTU5230) in JFZ, SH, and XH exhibited significantly 
higher (P < 0.05) relative abundances at “During AB” phase than the rest three phases (Fig. 6B–D), which may 
indicate their relationships with the bloom-forming cyanobacterial communities.

Correlations between the dominant cyanobacterial taxa and the above-identified dominant species were 
subsequently analyzed (Fig. 7). In general, the results indicated that some bacterial taxa in different aquatic eco-
systems showed different correlations with the same cyanobacterial taxa. For example, OTU853 (Rhodobacter) 
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Figure 3.  Dynamics of dominant cyanobacterial and bacterial taxa along with the cyanobacterial bloom. (A) 
Dominant cyanobacteria at order level in each tributary pool (_p) and rivers (_r). (B–E) Top 50 dominant 
bacterial genus in HS, JFZ, SH, and XH, respectively. Digits in boxes represented the relative abundances of 
cyanobacterial and bacterial taxa, and the group I-IV stood for always abundant taxa (AAT), conditionally 
varied taxa (CVT), always moderate taxa (AMT), and always rare taxa (ART), respectively. Bacterial taxa that 
categorized as “abundant” (> 1%) and “rare” (< 0.01) were shown in unified color.
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in JFZ was negatively correlated with Cyanobacteriales along with the whole bloom phases (Fig. 7A), however, it 
showed contrasting correlation patterns with Cyanobacteriales in XH (Fig. 7C). OTU6265 (Porphyrobacter) in 
JFZ was positively correlated with Cyanobacteriales and Synechococcales for the first three phases, but negatively 
correlated in the last phase (Fig. 7A), however, it was mostly negatively correlated with these cyanobacterial taxa 
in SH (Fig. 7B). These discrepancies indicated that the bacteria-cyanobacteria interaction may additionally be 
affected by environmental parameters.

Correlations of cyanobacterial and bacterial communities with the environmental parame-
ters. The VIF analysis (Table S4) concluded that all parameters expect DTN, DTP, and COD were selected 
for cyanobacterial CCA/RDA, whilst all the parameters were used for bacterial CCA/RDA, and analyses were 
separately performed on microbial communities of each river at different phases (Fig. 8).

In general, cyanobacterial communities in these rivers at different phases were mainly correlated with ORP, 
pH, TEMP,  MPO4

−,  NO3
− and Chl-a, and communities of each river had a specific correlation with additional 

parameters (Fig. 8A). For example, cyanobacteria in JFZ also had a close correlation with TP, TN, and  NH4
+ 

(Fig. 8A2), and the ones in SH had a close correlation with TN,  NH4
+, and  NO2

− (Fig. 8A3). Additionally, the 
cyanobacterial communities of these rivers also exhibited variance in correlations with the main parameters, 
which indicated the discrepancy of the cyanobacterial communities amongst these rivers. For instance, most of 
the samples of HS across cyanobacterial bloom were positively correlated with ORP, TN,  NH4

+,  NO3
−,  MPO4

−, TP, 
TN, and were either not or negatively correlated with the rest main parameters, including pH, TEMP,  NO2

−, and 
Chl-a, whilst most samples in JFZ but the ones of “Before AB” showed a positive correlation with TEMP, ORP, 
 NH4

+, and  MPO4
−, and negative correlation with TN,  NO3

−, TP, pH, and Chl-a. Cyanobacterial communities in 

Figure 4.  Non-metric multidimensional scaling analysis (NMDS) on cyanobacterial and bacterial 
communities. Figures of (A1–A4) presented the difference of cyanobacterial community in different rivers 
at the same phase, and figures of (B1–B4) illustrated the difference of cyanobacteria of each river at different 
phases. Figures of (C1–C4) and (D1–D4) were the bacterial communities equivalent to (A1–A4) and (B1–B4) 
comparisons, respectively. ** indicated the significant level at 0.05.
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SH were universally negatively correlated with the main parameters, whilst the ones in XH largely illustrated a 
positive correlation with TEMP, pH,  NO3

−, and  MPO4
−. The correlation between XH communities and the main 

parameters was reflected through RDA according to the DCA analysis.
For bacterial communities in all rivers at different phases, they were mainly correlated with COD, TN, DTN, 

 NO3
−, ORP, TEMP, and pH, and communities of each river also showed specific correlation with additional 

parameters (Fig. 8B). Bacterial communities in HS additionally exhibited a close correlation with TP,  NO2
− and 

Chl-a (Fig. 8B1), the counterparts in JFZ were with  NH4
+ and Chl-a (Fig. 8B2), the ones in SH and XH were both 

with TP,  MPO4
− and  NH4

+ (Fig. 8B3), whilst XH showed additional correlation with DTP, and  NO2
− (Fig. 8B4). 

Interestingly, different from cyanobacteria, the bacterial communities of these rivers demonstrated relatively 
consistent correlation patterns with the main parameters. For example, communities of “During AB” in these 
rivers universally showed a positive correlation with pH, TEMP, and TP, and negatively with TN, DTN,  NO3

−, 
and ORP, except HS, the rest three rivers also collectively showed negative correlations with Chl-a. Furthermore, 
communities of “During AB” in these rivers consistently exhibited contrasting correlation patterns compared 
with their counterparts either in “Post AB” or “Before AB”.

Discussion
Cyanobacterial bloom is a major factor influencing diversities of microbial community. The 
significance tests amongst the environmental parameters demonstrated that most of the parameters were not 
significantly different across the bloom phases (Table S1, P > 0.05), however, both the cyanobacterial and bacte-
rial communities varied not only across the bloom phases in each individual river, but also amongst rivers at 
each of the same phases (Fig. S2). Additionally, more universal significant differences of cyanobacterial and bac-
terial communities were determined in rivers of JFZ, SH, and XH across the bloom (Fig. 2B,D), and the commu-
nity diversity was significantly lower at the “During AB” phase (P < 0.05). The results as a whole indicate that the 
cyanobacterial bloom is a major factor affecting the diversities of both cyanobacterial and bacterial community.

It has been universally revealed that the main harmful algal blooms could significantly reduce the diversi-
ties and functions of other microbial communities, including coast and freshwater planktonic  communities5,6, 
microbial communities associated with  algae18,19, as well as those grew with  macrophytes20, and sedimentary 
 dwellers7. At the “During AB” phase, diversities of cyanobacterial community in JFZ, SH, and XH also signifi-
cantly reduced, which inferred that the bloom was due to the overproduction of a narrower range of cyanobacte-
rial taxa. Most studies concerning algal blooms focused on Microcystis and related species, which were ubiquitous 
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Figure 5.  Significant cyanobacterial species (OTUs) based on significant and LEfSe analyses. Figures of 
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Figure 6.  Significant bacterial species (OTUs) based on significant and LEfSe analyses. Figures of (A–D) 
represented HS, JFZ, SH, and XH rivers. Bar plots exhibited LDA scores of each OTU, with its clearest 
phylogenetic level, and the scattered dot plots illustrated the dynamic changes of each OTU’s relative abundance.
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in life-depending rivers and lakes in China, including Yangtze River, Taihu Lake, and Chaohu  Lake21–24. It is 
therefore of importance to identify the dominant cyanobacterial taxa, their dynamic changes, and how the bacte-
rial community were correspondingly affected along the course of cyanobacterial bloom in rivers of this study.

The distinct spatial and temporal variance of cyanobacterial community composition along 
the bloom course. Instead of Microcystis, the dominant cyanobacterial taxa were Cyanobacteriales and Syn-
echococcales both in the rivers and their tributary pools (Fig. 3A). Even though these water bodies are close in the 
locality and have similar environmental conditions, they revealed distinct cyanobacterial community composi-
tions and patterns of dynamic changes in abundances along the bloom phases. Additional beta-diversity analyses 
on OTU level compared both different rivers at the same phase and each river along the bloom course, the results 
further illustrated that cyanobacterial community significances were shown in rivers at different bloom phases 
(Fig. 4A,B), especially for SH, and XH. Beside the bloom influence, the differences of community composition 
amongst rivers at each phase were also shown, indicating the spatial heterogeneity, which might be due to human 
activities and riverine characteristics as suggested in other  studies25,26. Because of the relatively slow flowrate and 
large surface area, the tributary pools may therefore possess distinct cyanobacterial communities relative to the 
mainstream rivers, rendering the pools relatively independent ecosystems from rivers to some extent.

The dominant cyanobacterial species (OTUs) were further screened out through significance tests and LEfSe 
analyses on each river at different bloom phases (Fig. 5). The identified dominant species belonged to cyanobac-
terial genus of Mychonastes, Trachydiscus, Oscillatoriales, Chamaesiphon, Nannochloropsis, Monoraphidium, and 
Cyanobium, whose ecological functions included feeds for  livestock27,28, constitutive members of  biofilms29,30, 
biodiesel  derivation31,32, and cyanobacterial early-stage  bloom12,33. No dominant species were identified from 
rivers at the “During AB” phase, which may imply that relevant cyanobacterial OTUs in each river were relatively 
similar in abundance and composition during the bloom.

These results together may shed light on the ongoing treatment campaigns on eutrophication and algal blooms 
in China, that corresponding strategies should be taken into consideration when dealing with rivers and pools 
(ponds, reservoirs, and lakes). In general, the cyanobacterial bloom is the major factor that leads to the dynamic 
variation of community composition, which not only reduces the microbial diversities, assimilating cyanobacte-
rial communities but also would affect the functions of relevant bacterial communities.

Dynamic changes of dominant bacterial community, implications of their ecological functions 
and cyanobacteria-bacteria interaction. Collective comparisons of bacterial genera composition in 
each river at different phases and amongst rivers at the same phases revealed the spatial and temporal hetero-
geneity of bacterial communities (Fig. 3B–E). The dominant bacterial genus including Acinetobacter, CL500-
29, hgcI clade, Limnohabitans, Flavobacterium, Rhodoluna, Porphyrobacter, Rhodobacter, Pseudomonas, and 
Rhizobiales could also be traced in other relevant studies. For example, in a study concerning Tianmuhu Lake, 
CL500-29 and hgcI clade were dominant genera and closely associated with cyanobacteria, whilst in the lake’s 
rivers, Flavobacterium, Limnohabitans, and Rhodoluna were the dominant  genera34. Porphyrobacter, Rhodobac-
ter, Pseudomonas, and Rhizobiales were also dominant concerning either cyanobacterial or Microcystis bloom in 
different aquatic  ecosystems35–39.

The LEfSe analysis identified dominant bacterial species (OTUs) in each river at each phase, which demon-
strated the dynamic responses of exact bacterial species to the bloom, implying their close interactions with the 
bloom-forming cyanobacteria (Fig. 6). For example, abundance of Porphyrobacter (OTU6265), Rhodobacter 
(OTU853 and OTU5851), and Acinetobacter (OTU2460, OTU2184, and OTU2685) were significantly higher at 
“During AB” phase. It was reported that species of Acinetobacter exhibited algicidal activity against Microcystic 
aeruginosa40, therefore, the outbreak of cyanobacterial bloom may also be likely to give rise to its adverse com-
munities to keep the dynamic balance.

Furthermore, it is believed that the bloom-forming cyanobacteria have profound interaction with the bacterial 
communities, which has long been the research of  interest9–11,41,42. Cyanobacterial species can act as bactericidal 
or growth-inhibiting factors, influencing the bacterial  communities18,35,43, similar as various microbial agents 
act in other natural environments and artificial  constructions7,44. On the other hand, various bacterial spe-
cies, including those identified in this study, have also been reported to be cyanobacterial or growth-inhibiting 
 factors40,45–47, which can be further studied to develop microbial reagents to alleviate or control the effects of 
cyanobacterial bloom. Additionally, many cyanobacteria species are integral members of biofilms in various 
 environments29,30,48. These facts jointly reveal that cyanobacteria as a whole are indispensable part of the microbial 
community. Based upon this cognition, to alleviate or control the cyanobacterial bloom is to restore microbial 
equilibrium in ecosystems rather than to eliminate cyanobacteria, and understanding about the dynamic changes 
of cyanobacterial and bacterial communities, as well as those microbial taxa and dominant species relevant to 
each cyanobacterial bloom phase is taking one key step towards the comprehension of cyanobacteria-bacteria 
interactions and the behind mechanisms.

Discrepancies of correlations between microbial communities and environmental parame-
ters. The correlation patterns of cyanobacterial communities with the environmental parameters additionally 
indicated the discrepancies of community composition amongst samples at different bloom phases in each river 
(Fig. 7). Temperature, nitrogen, and phosphorus were universally considered to be the crucial factors affect-
ing cyanobacterial growth and  bloom2,3,49,50, and this study showed that environmental parameters, including 
temperature, nitrogen (ammonium, nitrate, etc.), and phosphorus  (MPO4

− and TP), were also important to the 
cyanobacterial community  compositions2–4,51, and parameters even with not significant difference (Table S1) 
could shape distinct cyanobacterial community.
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The cyanobacterial bloom influenced the correlation patterns of bacterial communities of each river with 
the environmental parameters (Fig. 7B), that bacterial communities at the “During AB” phase generally had 
contrasting correlation patterns compared with the rest phases. The difference may infer that functional bacterial 
community on certain environmental parameters were additionally impaired due to the cyanobacterial bloom, 
and which metabolic pathways were impaired will be included in future studies.

Conclusions
This study investigated the dynamic changes of cyanobacterial and bacterial communities in four upstream rivers, 
namely Huangshan River (HS), Jinfuzhai River (JFZ), Sihe river (SH), and Xihua River (XH), of a eutrophicated 
water source reservoir in the subtropical area of China. The major conclusions were drawn as follows.

• The bloom has a major influence on cyanobacterial and bacterial communities, rendering the alpha-diversities 
of bacterial communities significantly lower at “during cyanobacterial bloom” phase compared with other 
relevant phases;

• The studied rivers commonly shared dominant cyanobacterial taxa, including Cyanobacteriales and Synecho-
coccales, and commonly shared several dominant bacterial genera, including Acinetobacter, Flavobacterium, 
Rhodobacteraceae, Comamonadaceae, etc. However, the corresponding compositions varied along with the 
bloom, making cyanobacterial communities significant difference amongst phases in SH and XH, and bacte-
rial communities significant difference amongst phases in JFZ, SH, and XH;

• The studied rivers had distinct cyanobacterial and bacterial dominant species (OTUs) along with the bloom, 
and the bacterial dominant species with significantly higher relative abundances at “during cyanobacterial 
bloom” phase than other phases, including Rhodobacter, Rhodobacteraceae, Porphyrobacter, Acinetobacter, 
and Pelomonas, may indicate their close correlations with cyanobacterial bloom in each river;

• Cyanobacterial communities at different bloom phases in each river were mainly correlated with ORP, pH, 
TEMP,  MPO4

−,  NO3
−, and Chl-a, and the bacterial counterparts were mainly with ORP, pH, TEMP, COD, 

TN, DTN, and  NO3
−. However, communities of different rivers at different phases showed specific correla-

tions with the above parameters.

The dynamic shifts of cyanobacterial and bacterial communities may imply the interactions between cyano-
bacteria and bacteria, to fully understand and verify the interaction, it is suggested that future studies should 
expand to network analysis and field experiments investigating the effects of bacterial species identified in this 
study on the cyanobacterial blooms.

Data availability
The original sequencing data was updated to the NCBI database under the accession number from 
SAMN23614736 to SAMN23614843. The direct link to the uploaded data is as follows: https:// www. ncbi. nlm. 
nih. gov/ sra? linkn ame= biopr oject_ sra_ all& from_ uid= 786052.
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