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Multiple sclerosis diagnosis 
and phenotype identification 
by multivariate classification 
of in vivo frontal cortex metabolite 
profiles
Kelley M. Swanberg1,2,5*, Abhinav V. Kurada1,5, Hetty Prinsen2 & Christoph Juchem1,2,3,4

Multiple sclerosis (MS) is a heterogeneous autoimmune disease for which diagnosis continues to rely 
on subjective clinical judgment over a battery of tests. Proton magnetic resonance spectroscopy 
(1H MRS) enables the noninvasive in vivo detection of multiple small-molecule metabolites and is 
therefore in principle a promising means of gathering information sufficient for multiple sclerosis 
diagnosis and subtype classification. Here we show that supervised classification using 1H-MRS-
visible normal-appearing frontal cortex small-molecule metabolites alone can indeed differentiate 
individuals with progressive MS from control (held-out validation sensitivity 79% and specificity 68%), 
as well as between relapsing and progressive MS phenotypes (held-out validation sensitivity 84% and 
specificity 74%). Post hoc assessment demonstrated the disproportionate contributions of glutamate 
and glutamine to identifying MS status and phenotype, respectively. Our finding establishes 1H MRS 
as a viable means of characterizing progressive multiple sclerosis disease status and paves the way for 
continued refinement of this method as an auxiliary or mainstay of multiple sclerosis diagnostics.

Multiple sclerosis is an inflammatory neurodegenerative condition that damages both white and grey matter 
in the central nervous system. Heterogeneity in the clinical presentation of multiple sclerosis can complicate 
its diagnosis, typically achieved by a combination of symptomatic report, neurological assessment, magnetic 
resonance imaging, and occasionally lumbar puncture1. While recent revisions to the McDonald diagnostic 
criteria2 as applied to magnetic resonance imaging, particularly T1-weighted sequences that can demonstrate 
local abnormalities in blood–brain barrier permeability to injectable gadolinium contrast indicative of inflam-
matory lesion activity and T2-weighted FLAIR that can indicate lesions of some age, have improved diagnostic 
accuracy for new multiple sclerosis cases, specificity remains low3.

Compounding both the difficulty and importance of accurate multiple sclerosis diagnosis is the existence 
of diverse disease courses with disparate responsivity to currently available disease-modifying therapies. The 
majority of individuals with multiple sclerosis exhibit the relapsing–remitting phenotype, marked largely by 
intermittent immunological flares called relapses, for which the arsenal of modern pharmacotherapies, includ-
ing monoclonal antibodies, inhibitors of immune cell proliferation or migration, and other immunosuppressive 
drugs, has demonstrated relative efficacy. Up to a third or more of these individuals, however, will transition to 
the secondary progressive phenotype, marked rather by steady neurodegeneration exhibited by cortical atrophy 
and functional decline largely resistant to currently available treatments1. About 15% of patients manifest a pro-
gressive phenotype from the outset with minimal overt relapse, called primary progressive multiple sclerosis. 
Uncertainty surrounds not only initial identification but also phenotypic classification of multiple sclerosis, 
especially during the transition from relapsing to progressive manifestation, for which a mean duration of diag-
nostic uncertainty as high as three years has previously been calculated4.
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Despite continued shortcomings of current imaging-supported diagnostic pipelines in identifying multi-
ple sclerosis, magnetic resonance techniques in general are attractive as potential diagnostic tools. Magnetic 
resonance is noninvasive and safe, facilitating its repeated use not only for initial identification of disease state 
but also for continued monitoring of treatment and transition between phenotypes. In part for these reasons, 
‘advanced’ magnetic resonance techniques, including magnetic transfer imaging5,6, diffusion tensor imaging7, 
and proton magnetic resonance spectroscopy8 have been explored for their potential use in multiple sclerosis 
prognosis, disease progression, or diagnosis9.

Among these, proton magnetic resonance spectroscopy (1H MRS) is unique in its ability to simultaneously 
query concentrations of several small-molecule metabolites in one or more regions of interest. This is particularly 
advantageous for diagnosing a disease like multiple sclerosis, associated to some degree of reproducibility with 
abnormalities in multiple 1H-MRS-visible metabolites, including N-acetyl aspartate, choline, myoinositol, gluta-
mate, glutathione, GABA, and possibly common 1H-MRS quantification reference creatine8. It is also potentially 
advantageous for differentiation among different multiple sclerosis phenotypes, especially given that progressive 
subtypes may predominantly exhibit cortical as opposed to active white-matter lesioning10, the former largely 
invisible to conventional clinical imaging11–13. While some evidence exists that relapsing and progressive multiple 
sclerosis may express differential metabolic signatures in white-matter N-acetyl aspartate and perhaps creatine 
as well as grey-matter N-acetyl aspartate and inositols, direct phenotypic comparisons by proton spectroscopy 
remain sparse8.

Given previously published findings of 80 ± 13% (average ± standard deviation over comparisons reported) 
sensitivity and 63 ± 13% specificity for MS diagnostics combining imaging and CSF analysis14, the 80% thresh-
olds previously recommended for each index to qualify a measure as a novel Alzheimer’s disease diagnostic 
biomarker15 might be reasonably applied to the improvement of multiple sclerosis diagnosis as well. One major 
shortcoming of proton magnetic resonance spectroscopy as currently employed is the typically low sensitivity 
and specificity of any single metabolite to disease effects, and currently published investigations demonstrate 
multiple sclerosis to be no exception. Reductions in N-acetyl aspartate, the metabolite demonstrating the most 
extensively reported abnormality in multiple sclerosis central nervous tissue, are neither reliably reproduced 
nor specific to this disease8. Similarly, a promising finding of diffusely localized cortical and subcortical choline 
concentration as a 100% sensitive and 90% specific biomarker for relapsing–remitting multiple sclerosis in a 
cohort of 20 individuals16 has yet to be replicated among a larger sample.

Despite the failure of nearly thirty years of proton magnetic resonance spectroscopy research to identify a 
single-molecule diagnostic biomarker for multiple sclerosis, it is plausible that the rich multivariate data sets 
provided by this method enable the accurate classification of individuals by multiple sclerosis state and/or 
phenotype when assessed using measures that more fully address their inherent complexity. Recursive methods 
for classifying data via simultaneous consideration of multiple variables are growing in feasibility and therefore 
popularity for uncovering patterns that may be too subtle and/or complex for traditional hypothesis testing, 
typically of one dependent variable at a time or combination of two at most, for instance, as ratios. Two of the 
most widely employed methods for classifying small data sets from multiple sclerosis patients have been support 
vector machines (SVM), used on a variety of data types to separate multiple sclerosis patients from control17–26, 
each other19,27,28, future non-converters with clinically isolated syndrome29, and individuals with other neuro-
logical disorders30; as well as random forest algorithms, used to separate patients from control18,22,25,26,31–34 and 
individuals with neuromyelitis optica31. Additional techniques used to classify multiple sclerosis state or sub-
type on the basis of non-MRS data sets have included neural networks18,25,26,35–39, K-nearest neighbors17,20,25,27,37 
(KNN), decision trees17,18,26,40, logistic regression17,27, Naïve Bayes25, and least squares27 or maximum likelihood 
estimation41. A range of classifiers has additionally been employed, also on non-MRS data, to characterize or 
predict disease conversion42, symptom severity43–51, or treatment effect52–55, and especially to automatically seg-
ment MRI-visible multiple sclerosis lesions56.

With a nested optimization pipeline designed with care to the considerations inherent in potentially overfit-
ting flexible classifiers to the small data sets typical of 1H MRS studies, here we apply a number of supervised clas-
sification algorithms to explore the feasibility of diagnosing multiple sclerosis from proton magnetic resonance 
spectroscopy measurements of prefrontal cortex metabolite concentrations alone (Fig. 1); details regarding the 

Figure 1.   Frontal cortex metabolite profiling by proton magnetic resonance spectroscopy in individuals with 
relapsing–remitting, progressive, and no multiple sclerosis. Seven metabolites were measured in a single 27-cc 
cubic voxel in the prefrontal cortex of individuals with relapsing–remitting (N = 25), progressive (N = 19), 
or no (N = 24) multiple sclerosis. Individual spectra shown in color; group averaged spectra shown in black. 
Signals from five compounds, including total N-acetyl aspartate (tNAA: N-acetyl aspartate plus N-acetyl 
aspartylglutamate), total choline (tCho: choline, phosphocholine, and glycerophosphocholine), myoinositol 
(mIns), glutamate (Glu), and glutamine (Gln), were obtained via macromolecule-suppressed STimulated Echo 
Acquisition Mode (STEAM; echo time TE 10 ms, repetition time TR 3 s, mixing time TM 50 ms, inversion time 
TI 300 ms); glutathione (GSH) and GABA were estimated by J-difference editing (JDE) on a semi-Localization 
by Adiabatic SElective Refocusing sequence (MEGA-sLASER; TE 72 ms, TR 3 s). Total creatine (tCr) served 
as a concentration reference for these seven metabolite features, which were calculated in millimolar (mM) 
assuming 10 mM tCr; additional metabolites listed in italics, including aspartate (Asp), ascorbate (Asc), 
phosphorylethanolamine (PE), glycine (Gly), taurine (Taur), scylloinositol (sIns), GSH and GABA from 
STEAM, and glutamate, glutamine, and/or NAA in J-difference-edited spectra, were employed in spectral 
data quantification for one or more experiments but not included in the machine-learning feature set. RR-MS 
relapsing–remitting multiple sclerosis, P-MS progressive multiple sclerosis, HC healthy control, ppm parts per 
million, NC number of cases, NF number of features.
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methodological validation of data collection procedures57; the acquisition, processing, and univariate analysis58; 
and proof-of-concept classification analysis59 of this data set have been reported previously. Due to the low 
degrees of freedom offered by a small number of cases, we split our diagnostic pipeline into two independent 
problems: First, deciding whether an individual has multiple sclerosis; second, deciding whether individuals 
with multiple sclerosis exhibit a relapsing–remitting or progressive phenotype. Binary classifications between 
controls and each phenotype separately were further developed to inform the interpretation of potential differ-
ences in model accuracies.

Analysis pipelines thus constituted four types of binary classification. The first established among all avail-
able participants the absence or presence of multiple sclerosis. The second decided among all participants with 
multiple sclerosis whether they exhibited the relapsing or progressive phenotype. Two additional comparisons 
between control and each multiple sclerosis subtype were also performed to enhance the interpretability of 
relative model accuracies. Support vector machines (SVM), K-nearest neighbors (KNN), and quadratic discri-
minant analysis (QDA) were selected for detailed report among all approaches employed for testing based on 
preliminary held-out validation accuracies in the relapsing versus progressive question. Additional classification 
algorithms tested but not refined or reported included random forests, gradient-boosted decision trees, extremely 
randomized trees, and logistic regression.

Dimensionality reduction on the already small feature set of seven metabolites (glutamate, glutamine, GABA, 
glutathione, total choline, total N-acetyl aspartate, and myoinositol) was not performed to avoid reduction in 
model interpretability. Data were split into training and validation sets by removing one data set at a time for 
use as a held-out validation set, yielding a total of N1 × 2 runs for data with smaller group size N1. Leave-one-out 
cross-validation (LOOCV) statistics were calculated on each training set for aggregate use in feature selection 

Table 1.   Model hyperparameters optimized against average training cross-validation accuracy. a Scaling 
optimized over default model-specific hyperparameters. σx

2 feature variance, Nf number of features, RBF radial 
basis function, QDA quadratic discriminant analysis, KNN K-nearest neighbors, SVM support vector machines.
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and optimization of training hyperparameters (Table 1). This bootstrapping strategy, in which LOOCV accuracies 
were aggregated across multiple training sets, each itself missing one held-out validation set, struck a balance 
between the low statistical confidence offered by the small validation set Ns of a single-loop approach and the 
computational intensity of separately optimizing features and hyperparameters against individual training sets 
for each held-out validation case (i.e., a true test case) in a fully nested approach. Notably, the small range of 
parameters optimized did not render hyperparameter overfitting a concern for this particular application. Under-
sampling proceeded similarly for cross-validation as for held-out validation in that each of the training cases 
was removed once for use as a cross-validation set for that training run, with a total of N2 × 2 cross-validations 
for data with the smaller training group size N2 to ensure class balancing in the population of cross-validation 
sets used for each training run. Class sizes were then balanced after removal of the aforementioned held-out 
validation and cross-validation sets using the Synthetic Minority Over-Sampling Technique (SMOTE) such that 
data points were interpolated in the smaller class along line segments joining each case to a predefined number 
of its nearest neighbors until the class equaled the size of the larger60.

Each training set was scaled using a matrix calculated over that training set only, after which the same scaling 
was transferred to the held-out validation case. This enabled each separate model to minimize bias to held-out 
validation cases while also allowing for the calculation of population validation set statistics via the inclusion of 
all participants in both training and held-out validation sets. Optimized hyperparameters and model performance 
were averaged across all runs for each algorithm (Fig. 2).

Results
Classifiers separating progressive from relapsing multiple sclerosis exhibited increased perfor-
mance relative to those separating multiple sclerosis from control.  Average held-out validation 
accuracies were higher for separations of relapsing versus progressive (QDA 79%, KNN 74%, and SVM 68%) 
than for multiple sclerosis versus control (QDA 60%, KNN 63%, SVM 58%). Accuracy averaged across all three 
classifiers was significantly higher for models separating relapsing from progressive multiple sclerosis than for all 
multiple sclerosis from control (73.7 ± 5.5% versus 60.3 ± 2.5%, t(2) = 3.82, two-tailed p < 0.05).

The same trend was also seen in higher held-out validation accuracies for progressive versus control clas-
sifications (QDA 68%, KNN 74%, and SVM 74%) than for relapsing–remitting versus the same control (QDA 
52%, KNN 58%, and SVM 52%), yielding a mean difference that also exceeded the threshold for statistical 
significance despite a small sample size of 3 classifiers (72.0 ± 3.5% versus 54.0 ± 3.5%, t(2) = 6.30, two-tailed 
p < 0.01) (Fig. 3, 4; Table 2).

Quadratic discriminant analysis and K‑nearest neighbors but not support vector machines 
yielded 80+% sensitivity or specificity for at least one classification question.  Quadratic discri-
minant analysis yielded the highest classification accuracies for identification of progressive multiple sclerosis as 
distinct from relapsing–remitting (held-out validation accuracy 79%; sensitivity 84%, specificity 74%; area under 
the receiver operating characteristic or AUROC 0.86) as well as from control (held-out validation accuracy 68%; 
sensitivity 58%, specificity 79%; AUROC 0.83). K-nearest neighbors exhibited slightly lower performance than 
QDA for its top-performing applications, distinguishing progressive from relapsing multiple sclerosis (held-out 
validation accuracy 74%; sensitivity 68%, specificity 78%; AUROC 0.78) and from control (held-out valida-
tion accuracy 74%; sensitivity 95%, specificity 53%; AUROC 0.72). By contrast, support vector machines failed 
to reach either 80% sensitivity or specificity for any question, though overall accuracy for the classification of 
progressive multiple sclerosis relative to relapsing–remitting (held-out validation accuracy 68%; sensitivity 68%, 
specificity 68%; AUROC 0.68) and control (held-out validation accuracy 74%; sensitivity 79%, specificity 68%; 
AUROC 0.77) still exceeded those of the other two classifications (Table 2).

Metabolite feature importance differed more by classification question than by algo-
rithm.  Total choline ranked among the most important three features for all progressive versus relapsing 
models but none of the control versus multiple sclerosis models. Total choline was also the most important 
feature for distinguishing progressive from control in QDA, while it did not feature among the top three for 
any model distinguishing relapsing from control. Similarly, glutamine and glutathione ranked among the three 
most important features for two of the three progressive versus relapsing models but only one (glutamine) or 
none (glutathione) of those distinguishing multiple sclerosis from control. Additionally, GABA ranked among 
the three most important features for two of three models distinguishing progressive MS from control but none 
distinguishing relapsing–remitting MS from control.

Inversely, two metabolites (myoinositol and glutamate) ranked among the three most important retained 
features for all three control versus multiple sclerosis models but only one (myoinositol) or none (glutamate) 
of the progressive versus relapsing models. Both myoinositol and glutamate were each also ranked among the 
top three features for at least five of six (myoinositol) or all six (glutamate) models distinguishing each multiple 
sclerosis subtype from control (Table 3).

Discussion
We have presented evidence that individuals with progressive multiple sclerosis can be accurately distinguished 
from those with relapsing–remitting and no multiple sclerosis on the sole basis of frontal-cortex metabolite 
concentrations, including glutamate, glutamine, glutathione, GABA, N-acetyl aspartate, choline, and myoino-
sitol, measured by proton magnetic resonance spectroscopy at 7 T. By contrast, the same data did not support 
accurate separation from control of relapsing–remitting multiple sclerosis or of both multiple sclerosis subtypes 
pooled as a single classification. This finding underlines the potential of proton magnetic resonance spectroscopy 
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Figure 2.   Training, optimization, and validation pipeline for multivariate classifiers of multiple sclerosis state 
and type by frontal cortex metabolite profiles. Classification pipelines constituted two binary decisions: The first 
(A) established the presence of multiple sclerosis, while the second (D) characterized the phenotype. Models 
distinguishing from control relapsing–remitting multiple sclerosis (B) and progressive multiple sclerosis (C) 
were also implemented for context in interpreting performance differences between (A) and (D). One data 
set at a time was held out for use as the validation set, yielding a total of N1 × 2 runs for data with smaller 
group size N1. Undersampling proceeded similarly for an inner cross-validation loop used for hyperparameter 
optimization and feature selection, in that each of the training cases was removed once for use as a cross-
validation set for that training run, with a total of N2 × 2 cross-validations for data with the smaller training 
group size N2 to ensure class balancing in the population of cross-validation sets used for each training run. 
Class sizes were then balanced using the Synthetic Minority Over-Sampling Technique (SMOTE). Each training 
set was scaled using a matrix calculated over that training set only, after which the same scaling was transferred 
to the held-out validation case. Dimensionality reduction was not performed in order to avoid degrading 
model interpretability. Classification algorithms tested included support vector machines, K-nearest neighbors, 
quadratic discriminant analysis, random forests, gradient-boosted decision trees, extremely randomized 
trees, and logistic regression; only the first three were selected for reporting based on performance separating 
progressive and relapsing–remitting multiple sclerosis. LOOCV leave-one-out cross-validation.
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as an auxiliary diagnostic tool for progressive multiple sclerosis. Additionally, it highlights the as-yet untapped 
potential of multivariate approaches to investigating the in vivo metabolic signatures of multiple sclerosis and its 
various phenotypes, especially under experimental conditions that enable the separation of visually overlapping 
but physiologically distinct spectral signals like glutamate and glutamine.

Proton magnetic resonance spectroscopy is an experimental technique of low sensitivity that has historically 
led to findings of metabolic abnormality in multiple sclerosis that are subtle and inconsistent at best8. Notably, 
application of data derived from this method alone led to satisfactory differentiation between progressive mul-
tiple sclerosis and control, and between progressive and relapsing–remitting multiple sclerosis, in a cohort that 
exhibited unequivocally significant univariate differences between the former two groups for only two metabolites 
(GABA and glutamate), and between the latter for only one (GABA)58. Our classification pipelines distinguished 
patients from control with a clarity exceeding the subtle pattern of results yielded by univariate statistical tech-
niques, demonstrating the additional information offered by multivariate approaches to multiple-sclerosis-related 
abnormalities in small molecule concentrations measurable by proton magnetic resonance spectroscopy. The 
additional diagnostic utility of simultaneously considering multiple metabolic signals is perhaps especially true 
when assessing data from tissue voxels that appear grossly normal on T1-weighted MR scans without contrast, 
and which would not be expected to demonstrate the more substantial abnormalities, including but not limited 
to decreased N-acetyl aspartate, increased choline, and differences in macromolecule and lipid contribution to 
the spectral baseline, previously reported for tissue that is already visibly lesioned8.

Composite imaging and CSF-based multiple sclerosis diagnostic strategies have reported low average sensitivi-
ties and specificities across the literature14. At least one investigation using the 2001 McDonald criteria61 including 
MR imaging of a cohort with suspected multiple sclerosis has reported higher than 80% diagnostic sensitivity 
and specificity upon follow-up after several years62, but the majority of imaging-based diagnostics tested have 
not exceeded these thresholds63. Our finding, in our top-performing hyperparameter-optimized classification 
scheme, of 84% sensitivity and 74% specificity of differentiating progressive from relapsing–remitting multiple 
sclerosis on the basis of select metabolite concentrations in normal-appearing prefrontal cortex alone also does 
not exceed but approaches this standard. Importantly, it does so despite very small training samples (N < 25 per 
group without synthetic oversampling) using minimally transformed, biologically interpretable features in a 
pipeline controlled for overfitting.

Figure 3.   Confusion matrices for top-performing pipeline in each binary classification. Quadratic discriminant 
analysis (QDA) proved to be the top-performing classification algorithm by area under the receiver operating 
characteristic for all four questions, with higher validation sensitivity and specificity for classification of 
progressive patients than relapsing–remitting or all multiple sclerosis patients taken together, despite a smaller 
group size (progressive N = 19 versus relapsing–remitting N = 25 or control N = 24). LOOCV leave-one-out 
cross-validation.
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That reported accuracy decreases with sample size, suggestive of the dangerous potential for overfitting in 
models produced by iterative learning methods, has been previously shown in a literature review of machine-
learning application to multiple neurological disorders64. The same review reported that only one-fifth of the 
literature examined employed held-out validation sets on which classification parameters were not optimized. The 
present study does not feature among them per se, as we did optimize a limited range of model hyperparameters 
and perform feature selection based on cross-validation accuracies pooled over the entire data set, though all 
training was conducted on cases kept entirely separate from the held-out validations. Overfitting, however, was 
not a concern, given the low number of variables optimized (only one for the consistently top-performing model 
QDA) and features (de)selected. In addition, all three of the final models tuned on the relapsing–remitting versus 
progressive multiple sclerosis classification data set were subsequently applied on a similar but distinct 7-Tesla 
1H-MRS data set to separate individuals with either posttraumatic stress disorder or major depression from 
healthy controls, yielding comparable (> 70% sensitivity and specificity) held-out validation performance using 
only tailored feature selection without any further hyperparameter tuning65,66. While a detailed presentation of 
these analyses lies beyond the scope of this manuscript and can be found in the referenced sources, comparable 
model performance on this completely held-out independent test set further supports the notion that the present 
findings are not simple artifacts of overfitting.

Classification accuracies for distinguishing either relapsing–remitting or general multiple sclerosis from 
control on the basis of the metabolites measured in this study were only a few percentage points above chance 
(50%), while at least one classifier of progressive versus relapsing–remitting multiple sclerosis nearly achieved the 
80% threshold of sensitivity and specificity previously recommended for a diagnostic biomarker15. In addition to 
demonstrating that the pipeline employed here does not inevitably lead to overfitting for data sets that lack clear 
signals, this pattern of results underscores a phenotype-specific heterogeneity in multiple sclerosis as viewed 
through the lens of the metabolites measured here. This suggestion dovetails with previous reports of discrepant 
single-metabolite normal-appearing brain tissue abnormalities in relapsing–remitting and progressive multiple 
sclerosis patients67–69 to further emphasize the necessity for targeted study of multiple sclerosis progression as 
opposed to, or in parallel with, relapse, rather than multiple sclerosis as a reified monolith. The same argument 
may in principle be extended to our own conflation of secondary and primary progression into a single category 
of progressive multiple sclerosis, which is an admitted limitation of the present study borne of limited sample size.

Our results also suggest consistently divergent contributions by certain metabolites to the separation of relaps-
ing–remitting or progressive multiple sclerosis subtypes from control versus from each other. It was demonstrated 

Figure 4.   Receiver operating characteristic (ROC) curves for classification cross-validation and validation 
performance by question. Quadratic discriminant analysis (QDA) proved to be the top-performing classification 
algorithm by area under the receiver operating characteristic for all four questions. While it is visually clear 
that metabolite-based classifications between controls and multiple sclerosis patients, or between controls and 
relapsing–remitting multiple sclerosis patients, exhibited performance only marginally better than chance, 
ROC curves exhibited substantially increased convexity for questions involving the classification of progressive 
multiple sclerosis patients specifically, also reflected in higher sensitivity and specificities as shown in Fig. 3. 
Multiple sclerosis groups defined as positives in all plots; for the relapsing–remitting versus progressive question 
a positive is defined as relapsing–remitting multiple sclerosis. LOOCV: leave-one-out cross-validation.
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in particular that myoinositol and glutamate were consistently ranked among the most important metabolites for 
distinguishing from control relapsing–remitting and progressive multiple sclerosis both separately and as a single 
category of disease. By contrast, total choline, glutathione, and glutamine ranked among the top three features 
for at least two of the three classifiers separating progressive from relapsing–remitting multiple sclerosis, but 
never (total choline or glutathione) or only once (glutamine) in any of the three models separating any multiple 
sclerosis patient from control. It is crucial not to over-interpret feature importances within any single model, 
especially those deriving from models with low baseline accuracies against which this parameter is calculated. 
These patterns were consistently observed, however, across multiple model questions and types, including those 
with accuracies exceeding 70%.

The validity of reporting separate concentrations of glutamate and glutamine derived from 1H MRS experi-
ments at field strengths lower than 7 Tesla is controversial, given previously demonstrated spectral overlap at 
these fields even under the clean spectral conditions offered by simulations70. Our results suggest that at least 
when considered in concert with other compounds measurable by 1H MRS, these two metabolites may weight 
differently in characterizing the commonalities versus the differences between the in vivo cortical metabolic 
signatures of relapsing–remitting and progressive multiple sclerosis. These findings therefore re-emphasize the 
crucial need for spectroscopy research on the role of glutamate in multiple sclerosis pathophysiology to be 
conducted under conditions that enable its unequivocal separation from glutamine, especially considering a 
literature that continues to demonstrate a relative absence of such investigations8.

It has been argued that both relapsing and progressive multiple sclerosis phenotypes reflect serial, parallel, or 
otherwise interrelated mechanisms in both inflammation and neurodegeneration71 and that diffusely amplified 
manifestation of the latter may be especially relevant for the progressive state, regardless of whether primary or 
secondary72. One possible implication of our finding that prefrontal 7 Tesla 1H MRS-visible metabolite concentra-
tions were sufficient to identify progressive but not unspecified or relapsing–remitting multiple sclerosis relative 
to control may therefore be that diffuse inflammatory and neurodegenerative changes were more visible to our 
methods than focal inflammatory ones in the normal-appearing cortical voxels under study. To the extent that 
such tissue changes may not track perfectly with strictly “relapsing–remitting” or “progressive” labels, multivariate 
assessment of 1H MRS-visible metabolite signatures may thus yield even higher accuracies with respect to finer 
subgroups based on more detailed views of clinical presentation, e.g. involving additional qualifiers regarding 
activity and progression as per the 2013 revisions to multiple sclerosis clinical course definitions73. Moreover, such 
1H-MRS biomarkers might reflect arguably more physiologically and clinically meaningful subgroups of shared 
disease mechanism, prognosis, and appropriate treatment thereof (e.g., progressive multiple sclerosis patients 

Table 3.   Effect of metabolite selection on binary classifier leave-one-out cross-validation (LOOCV) 
performance. Grey indicates no feature selection implemented due to resultant reductions in model cross 
validation accuracy. a Feature elimination performed in this algorithm despite no substantial improvement in 
CV accuracy due to appreciable increase in AUROC. PI permutation importance, S.D. standard deviation, Sn 
sensitivity, Sp specificity, Acc. Accuracy, AUC​ area under receiver operating characteristic (ROC) or AUROC, 
QDA quadratic discriminant analysis, KNN K-nearest neighbors, SVM support vector machines, mIns 
myoinositol, Glu glutamate, tCho total choline, Gln glutamine, tNAA total N-acetyl aspartate, GSH glutathione.
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who show some inflammatory disease activity and expected response to certain disease-modifying therapies 
versus those without overt relapse who may not) than the categories employed here.

One factor that additionally bears mention for future extensions of these 1H MRS-based methods toward any 
claim of direct diagnostic utility is the consideration of positive controls representing a clinically realistic range 
of differential diagnoses, which the present study, employing only healthy participants as a negative control and 
patients with another phenotype of multiple sclerosis as a limited positive control, of course lacks. Low specific-
ity to multiple sclerosis against other neurodegenerative conditions is one limitation of, for example, serum or 
plasma neurofilament light chain (NfL) as a diagnostic as opposed to prognostic or treatment effect biomarker74, 
even as parallel developments in machine learning and networking technologies are otherwise enhancing the 
feasibility of automated blood-based testing in routine point-of-care use75.

On the sole basis of in vivo proton magnetic resonance spectroscopic metabolite concentrations derived from 
normal-appearing frontal cortex voxels at 7 Tesla, progressive multiple sclerosis could be distinguished from 
relapsing–remitting multiple sclerosis or control with near to or greater than 70% sensitivity and specificity. By 
contrast, relapsing–remitting multiple sclerosis, or both multiple sclerosis subtypes pooled as a single classifica-
tion, could not be accurately distinguished from control using the same approach. While further steps toward 
clinical translation will demand larger-scale replication of these findings involving more clinically diverse control 
groups, our results demonstrate the potential of multivariate statistical classifiers as applied to proton magnetic 
resonance spectroscopy as an auxiliary diagnostic tool for progressive multiple sclerosis as well as of multivari-
ate approaches to researching in vivo metabolic signatures of diverse multiple sclerosis phenotypes, especially 
under ultra-high-field conditions enabling the separation of key spectral signals like glutamate and glutamine.

Methods
Participants and acquisition.  Metabolite spectra were obtained as previously reported58 from a single 
27-cm3 cubic voxel in the prefrontal cortex using a 7 T head-only scanner (Varian Medical Systems, Inc., Palo 
Alto, CA, USA) at the Yale University Magnetic Resonance Research Center (MRRC) with actively shielded gra-
dients and zero- through third-order shims. Spin handling and signal reception were achieved via a custom-built 
eight-channel transceiving radiofrequency head coil as previously described in detail for a similar protocol57. 
Briefly, short echo time STimulated Echo Acquisition Mode (STEAM; echo time TE 10 ms, repetition time TR 
3 s, mixing time TM 50 ms, inversion time TI 300 ms) and semi-Localization by Adiabatic SElective Refocusing 
(sLASER; TE 72 ms, TR 3 s) with J-difference editing (JDE) for GSH (on 4.56 ppm to isolate 2.95-ppm 7’CH2) and 
GABA (on 1.89 ppm to isolate 3.01-ppm 4CH2) sequences were custom written for VnmrJ software. Water sup-
pression by the CHEmical Shift Selective (CHESS) module in all sequences, outer-volume suppression by cuboid 
saturation bands in STEAM, and inversion recovery for macromolecule suppression in STEAM and JDE-GABA 
sLASER were additionally employed. B0 shim coefficients through third order were calculated on gradient-echo 
images (TE 3.8, 4.0, 4.3, 5.3, 6.8 ms) in B0DETOX76, and B1 phase shimming was achieved by in-house software 
IMAGO, written in MATLAB (v. 2013b, MathWorks, Natick, MA, USA).

STEAM and at least one J-difference acquisition were completed for 68 of 72 original study participants58, 
leaving groups for progressive multiple sclerosis (N = 19; 6 primary, 13 secondary; 11 women, 8 men; 55 ± S.D. 8.3 
years old; time since first MS diagnosis 20 ± 13 years), relapsing–remitting multiple sclerosis (N = 25; 17 women, 
8 men; 45 ± 13 years old; time since first MS diagnosis 9 ± 7 years) and healthy controls with no multiple sclerosis 
(N = 24; 15 women, 9 men; 43 ± 15 years old). All participants provided informed consent to study enrollment 
prior to scanning, and all experimental procedures were conducted in accordance with the Declaration of Hel-
sinki and as approved by Yale School of Medicine Human Investigation Committee protocol #1107008743 and 
Columbia University Institutional Review Board protocol AAAQ9641.

Spectral processing and quantification.  Spectral processing was performed in 1H MRS analysis free-
ware INSPECTOR77,78 as described in detail previously58,79. Briefly, signals from individual receive channels were 
corrected for eddy currents using water-unsuppressed references80, phase- and frequency-aligned, and averaged 
with weighting by receive channel sensitivities81. Summed metabolite spectra were zero-order phased but not 
truncated, zero-filled, or line-broadened before direct quantification or alignment between summed editing 
conditions for difference spectrum calculation, as applicable.

Spectral quantification was achieved by linear combination modeling with basis spectra density-matrix simu-
lated in SpinWizard82 using previously published chemical shift and J-coupling values83,84. Basis sets included 
ascorbate, aspartate, choline, creatine, GABA, glycerophosphocholine, glutathione, glutamate, glutamine, glycine, 
myoinositol, N-acetyl aspartate, N-acetyl aspartylglutamate, phosphocholine, phosphocreatine, phosphoryle-
thanolamine, scylloinositol, and taurine. GSH J-difference spectral basis sets included glutathione and N-acetyl 
aspartate, while GABA J-difference spectra employed GABA, total N-acetyl aspartate, glutamate, and glutamine 
(Fig. 1). Spectral quantification was performed in LCModel85, and precision was assessed for each basis function 
fit using Cramér-Rao lower bounds86. Absolute quantification estimates of total N-acetyl aspartate (N-acetyl 
aspartate plus N-acetyl aspartylglutamate), total choline (choline, phosphocholine, and glycerophosphocholine), 
glutamate, glutamine, myoinositol, glutathione, and GABA were achieved by normalizing by a 10 mM voxel 
concentration of total creatine (creatine and phosphocreatine). Total N-acetyl aspartate, total choline, myo-
inositol, and glutamate concentrations were corrected using significant linear regression betas on subject age, 
calculated from the control cohort as detailed previously58. These seven metabolite concentrations were used 
as input features for each classification pipeline. All participants in this analysis had full STEAM and GSH data 
sets; two subjects (one control and one progressive MS patient) were missing GABA concentrations that were 
interpolated as the average of their respective classes prior to analysis.
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Pipeline implementation.  All classification pipelines were developed in Python 3.7 and implemented as 
per functions provided in Scikit-learn87.

Classification performance assessment.  Cross-validation accuracies were averaged over all runs for 
each classification pipeline. Additionally, receiver operating characteristics were approximated for each algo-
rithm by plotting sensitivities and specificities for each of N(N − 1) cross-validation runs. Sensitivity (true posi-
tive classifications over all real positives) and specificity (true negative classifications over all real negatives) were 
calculated over all classifications. Model error was additionally reported as precision, recall, and the composite 
thereof F1, or 2(precision × recall)/(precision + recall), where precision is the proportion of positive classifica-
tions that were true and recall is the proportion of positive cases that were identified. In each challenge versus 
control, multiple sclerosis was defined as the positive classification; in the relapsing versus progressive question, 
relapsing multiple sclerosis was defined as positive for the calculation of the aforementioned statistics.

Metabolite feature selection.  Feature selection was performed on hyperparameter-optimized models 
and consisted of recursive feature elimination according to permutation importance. Permutation importance is 
proportional to the reduction in model accuracy when the association between feature values and classifications 
is broken by randomization88. Starting from hyperparameter-optimized models retaining all seven metabolites, 
the feature with the lowest permutation importance was removed and LOOCV performance recalculated over 
the whole data set. Feature elimination was continued as long as the resultant model exhibited superior perfor-
mance (higher average LOOCV accuracy and/or area under the receiver operating characteristic) relative to the 
original.

Group statistics.  All group statistics are reported as means ± standard deviations unless otherwise noted. 
Model accuracies were compared across classification questions using a Student’s t-test89 scripted in MATLAB 
(v. 2018a, MathWorks, Natick, MA, USA) with two-tailed significance testing and α at 0.05.

Data availability
The extracted feature sets analyzed during the current study are available from the corresponding author on 
reasonable request.
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