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Dynamic modeling and simulation 
of rigid‑flexible coupling cable 
system by absolute nodal 
coordinate formulation
Xiaoyu Wang1*, Jingchao Zhao1, Haofeng Wang1, Huitao Song2, Zhong Luo1 & Qingkai Han1

The rigid-flexible coupling cable system under large deformation is studied, and the beam element 
from absolute node coordinate formulation is used to establish flexible cable body of the system. 
Different numerical integral algorithms are discussed for solving the rigid-flexible cable system and 
an integration strategy which combines Implicit Euler with Minimum Residual Method (MINRES) is 
proposed. The influence of the position and number of rigid components and different the lengths of 
the flexible elements on the system dynamics are analyzed. With constant total mass of the system, 
higher number of rigid components and their uniform distribution contribute to stabilization of the 
swing of the flexible cable body. When the total length of the cable is constant, increasing the number 
of beam elements enhances the nonlinear characteristics of the swing motion and damages the 
stability. The influence of different factors on the movement of large deformation flexible cable body 
is obtained through modeling and simulation of the rigid-flexible coupling cable system.

In conventional rigid mechanisms, the transmission of motion and power is mainly realized through joints, 
which can also be achieved by elastic deformation of the flexible body. The flexible cable can be deemed as a 
plurality of nodes with large deformation and displacement, withstanding a certain load in the stretching state, 
which is widely used in various realms such as aerospace and platform hoisting1–5. The modeling methods of 
flexible multi-body system dynamics mainly include floating coordinate method, rotation coordinate method 
and absolute node coordinate formulation6–9. The floating coordinate method, also known as mixed coordinate 
method, is widely used in the modeling of rigid-flexible coupling system, especially for rigid body small angle 
movement10. The rotating coordination method based on structural kinetics is suitable for small deformation 
of elastic body and large angle movement of rigid body. The absolute node coordinate formulation (ANCF) is 
a multi-body systems dynamics analysis method for large deformation and large displacement of flexible body 
proposed by Professor Shabana in 199611. With respect to large deformation and large rotation of flexible multi-
body systems, the infinitesimal rotation angle results in inaccurate rigid body motion model12,13. In comparison, 
ANCF establishes the node position coordinates and slope vector based on the inertial coordinate system, and 
obtains constant mass matrix without centrifugal acceleration and Coriolis acceleration, which improves the 
efficiency of numerical calculation14 and avoids inertial coupling between the large-scale movement of rigid 
body and the elastic deformation of flexible body15. Shen et al.16 established two-dimensional cantilever beam 
and three-dimensional flexible net based on ANCF, and proposed a method suitable for the dynamic study of 
large deformation and large displacement flexible cable systems. Chen et al.17 derived the rigid-flexible coupling 
dynamic equations of spatial parallel mechanism under different elastic modulus by Lagrange multiplier method, 
which provided a method for the rigid-flexible coupling dynamics modeling of spatial mechanism. Liang et al.18 
studied the modeling of flexible rope and proposed a structure bending spring model, which can simulate 
ropes with different elastic modulus. Zhao et al.19 established the dynamic model of flexible mesh based on the 
assumption of discrete particle system, and carried out numerical calculation by using the fourth-order Runge 
Kutta method. Li et al.20 derived the dynamic model of compliant mechanisms with nonlinear large deformation 
components by elliptic integral method and ANCF, and verified the effectiveness of ANCF in the modeling of 
compliant mechanisms. Zhang et al.21 studied the modeling method for the flexible rod with large deformation by 
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ANCF beam element with end deformation constraints. Berzeri et al.22 analyzed the planar four-bar mechanism 
with large deformation components by ANCF.

The dynamics of flexible cable body is studied in this paper considering the influence of rigid components. 
The rigid-flexible coupling multi-body system is established by ANCF, which contains beam elements and rigid 
cylinders. The free swing process of the flexible cable under gravity is simulated, during which the kinematics 
and dynamics of the system are calculated, and the influence of different factors on the swing of the flexible 
cable body is analyzed.

Flexible element modeling
In the absolute node coordinate formulation, the node coordinates of the element are defined in the inertial 
coordinate system. Figure 1 shows a plane deformation beam element based on the ANCF. The nodal coordinates 
can be approximated by the global shape function. Therefore, the global position of any point on the element can 
be described by the global shape function and absolute node coordinates expressed as

where, S is the global shape function. e is the element node coordinate vector, which can be described by node 
displacement and slope. r defines the global position vector of any point.

According to the Euler Bernoulli beam hypothesis, the orientation of the coordinate system is defined by 
the tangential vector t, and the normal phase vector n can be described by the transformation matrix under the 
inertial system.

Where, rx and ry are the components of vector r. x is the coordinate along the undeformed beam axis. The 
direction of Frenet frame is defined by the angle α in inertial coordinate system, and the angle can be expressed 
by the gradient of position vector.

When the beam moves as a rigid body as shown in Fig. 2, the global position vector of any point in the beam 
element can be expressed as

(1)r =

[

rx
ry

]

= Se

(2)r =

[

rx
ry

]

=

[

Rx + x cos θ
Ry + x sin θ

]

Figure 1.   Plane deformation beam element.

Figure 2.   Motion of rigid beam element.
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where, Rx and Ry are the global coordinates of end point O. θ defines the direction of the beam.
The component of vector r is defined by cubic polynomial in the inertial system. The global shape function 

containing the complete rigid body mode can be expressed as

The node coordinate vector is expressed as

where, l represents the length of the element. e1, e2, e5, e6 represent the absolute node coordinates at O and A, 
and the rest node coordinates can be expressed as

According to the kinematics formula given in Eq. (2), the arbitrary rigid body motion is defined by the posi-
tion of the end point O, and the element coordinate vector e can be expressed as

Dynamic modeling of flexible body
The global displacement of any point of the element can be described by shape function, and the absolute velocity 
can be obtained by the derivative of displacement with respect to time. Then the kinetic energy of the element 
can be expressed as

where, ρ and V are the density and volume of the element, respectively, so the mass matrix is constant. By sub-
stituting the shape function, the mass matrix can be expressed as

where, m is the mass of the beam element and l is its length.
The elastic force of flexible beam element can be obtained by derivation of strain energy with respect to 

generalized coordinate

where, Qk is the elastic force of flexible beam element, U is the total strain energy.
The longitudinal strain caused by longitudinal deformation can be expressed as

where, E is the elastic modulus of the element. A is the cross-sectional area of the element.
Bending moment M can be expressed as
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where, I is the second moment of the element cross section. κ is the curvature of the element.

The strain caused by bending deformation can be expressed as

The total strain energy of the beam element is

The curvature of the beam element can be expressed as

where,

Longitudinal elastic force Ql due to longitudinal deformation can be expressed as

where, Kl represents the stiffness matrix corresponding to the longitudinal elastic force. The curved elastic force 
Qt due to transverse deformation can be expressed as

where, Kt represents the stiffness matrix corresponding to the transverse elastic force. The total elastic force Qk 
and the total stiffness matrix K of the element can be expressed as

where, S′ and S″ are the first and second derivative of shape function S with respect to local coordinates 
respectively.
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The constant mass matrix of flexible elements can be obtained by ANCF without coordinate transformation. 
The centrifugal force and Coriolis force are zero. In addition, the elastic force is nonlinear in the coordinate 
system, and the small deformation assumption is generally not used.

According to the first kind of Lagrange equation, the rigid-flexible coupling dynamic equation based on the 
Lagrange multiplier method is derived as

where, Qk is the elastic force of flexible beam element, which can be obtained by Eq. (11). Φe is the Jacobian 
matrix of the constraint equation. Qa is the generalized nodal force vector. λ is Lagrange multiplier. γ is the right 
end term of the acceleration equation.

Algorithm analysis
Differential algebraic equations (DAEs) of large deformation multi-body systems require numerical integration 
methods. Some algorithms usually need reasonable selection of parameters to ensure computational convergence 
and improve computational efficiency. Compared with the explicit algorithm, the implicit algorithm is more 
stable with higher calculation efficiency. Therefore, the implicit integral method is preferred for the multi-body 
system dynamics23. Runge Kutta algorithm is often used to solve nonlinear ordinary differential equations, how-
ever, the Explicit Runge Kutta method has limitations of stabilization regions, so rigid body dynamics equations 
are generally solved by Implicit Runge Kutta, which requires more computation cost. Compared with the tradi-
tional integration methods, Bathe algorithm, as a compound implicit time integration method, is more stable with 
smaller error accumulation, but the calculation time increases exponentially24–27. During the dynamics simula-
tion, the finite element discretization of flexible components produces many pseudo high-frequency responses, 
which may lead to the non-convergence of Newmark algorithm. And the Newmark algorithm may become 
unstable when solving long-time nonlinear dynamic problems28,29. Besides, the damping factors introduced by 
Implicit Euler algorithm make the fluctuation amplitude of the curve smaller and the convergence speed faster. 
Moreover, the mass matrix and stiffness matrix of multi-body system dynamics are large sparse matrices, and 
MINRES (Minimum Residual Method) is a powerful approximation method for dynamic large sparse matrix30. 
Comparison between GMRES (Generalized Minimal Residual method) and MINRES is to be discussed later. 
Generally compared with GMRES, MINRES is more stable and can avoid the problem of numerical mutation in 
GMRES, which is suitable for analyzing the swing movement of the flexible cable. Therefore, in this paper, the 
rigid-flexible coupling model is calculated by the Implicit Euler algorithm combined with MINRES method. 
Flow chart of calculation is shown in Fig. 3.

Algorithm comparison.  In order to verify the solving method of large asymmetric matrices in dynamics 
equation. MINRES and GMRES are compared with respect to the dynamic system of the cable system with a 
rigid body attached at the end16,31. Parameters are shown in Table 1, and the model diagram is shown in Fig. 4.

Total simulation time is 20 s and the time step is 0.005 s. As can be seen from Fig. 5a, the difference of the 
end node displacement is similar and the convergence speed of GMRES method is slightly faster. Figure 5b 
shows that with the increase of simulation time, the acceleration tends to be consistent. The curve of MINRES 
method is smoother, while GMRES method shows abrupt changes at the first several periods and exhibits high 
frequency fluctuations compared with MINRES. Therefore, when analyzing the swing movement of the flexible 
cable, MINRES method is more stable.

The rigid-flexible coupled sing system is only driven by gravity, so the total energy of the system is conserved, 
which includes the kinetic energy and potential energy of the flexible components and the rigid bodies as well as 
the elastic deformation energy of the flexible components. Taking the one rigid body model as an example, the 
energy of the system is analyzed. The change of energy components of the system is shown in the Fig. 6, which 
implies that the energy is always conserved during the whole simulation process.

Model validation.  In this section, an example is considered in order to validate the flexible beam model, 
which is a two-dimensional free falling flexible pendulum under its own weight32, as shown in Fig. 7. The beam is 
connected to the ground by a pin joint at one end. The length, cross section area, second moment of area, density 
and modulus of elasticity of the beam are 1.2 m, 0.0018 m2, 1.215 × 10−8 m4, 5540 kg/m3, 0.7 × 106 Pa, respectively. 
In the original configuration, the beam is horizontal without velocity. Two cases are considered in the analysis 
of the falling pendulum. In the first case, the beam is assumed to fall under normal gravity force, while in the 
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second case gravitational acceleration is increased to 50.0 m/s2. Figure 8a shows the position of the tip point of 
the beam using 12 and 40 finite elements for the first case. It is clear that there is a good agreement between the 
two models, which demonstrates that the solution converges with small numbers of elements. Figure 8b shows 
the large deformation result of the falling beam under gravitational acceleration of 50.0 m/s2 using 12 finite ele-
ments. The results presented in Fig. 8 agree with those in the literature32.

In addition to the above two-dimensional beam example, the flexible pendulum in the case of three-dimen-
sional motion is considered in this second example33. The flexible pendulum is under gravity with initial angular 
velocity about the vertical Y-axis. Figure 9 shows the model setup, and the model simulation parameters are 
shown in Table 2.

Figure 10 shows the comparison between our ANCF cable method simulation results and the results in the lit-
erature, it can be seen, the two results are consistent, which verifies the ANCF cable element method in this paper.

Figure 3.   Flow chart of calculation.

Table 1.   Parameters of the model.

Material Parameter

Cable length L1 = 0.5 m

Element diameter D = 0.01 m

Element length L = 0.025 m

Cross sectional area A = 7.85 × 10−5 m2

Section moment of inertia I = 4.91 × 10−10 m4

Elastic modulus E = 1.0 × 107 Pa

Element density ρ = 1.0 × 103 kg/m3

Rigid-body height H = 0.1 m

Figure 4.   Rigid-flexible coupling model diagram with one rigid body at the end.
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Results and discussion
Influence of number of rigid bodies.  Rigid bodies are added to the flexible cable to establish a rigid-
flexible coupling model. Assuming the total weight of the model and parameters of flexible cable remains the 
same, only the number and distribution of rigid bodies are changed, therefore, two rigid-body, three rigid-body 
and five rigid-body models are constructed. The process of the falling and swinging of the rigid-flexible cable 

(a) (b)

Figure 5.   Comparison between GMRES and MINRES. (a) Displacement of the beam end node in the Y 
direction. (b) Acceleration of the beam end node in the Y direction.

Figure 6.   System energy analysis.

Figure 7.   Free falling flexible pendulum.
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system freely from the horizontal state is simulated and the movement of the rigid body connected at the end of 
the flexible cable is analyzed. Parameters of rigid cylinder are shown in Table 3.

Figure 11 shows three patterns of rigid-flexible coupling models with different numbers of rigid bodies, 
including two rigid-body model, three rigid-body model and five rigid-body model.

Figure 12 shows the comparison of displacement, velocity and acceleration of the rigid cylinder located at 
the end of cable under three different conditions.

As can be seen from the comparison of displacement, in Fig. 12a,b, when the total mass of the model remains 
unchanged, with the increase of the number of rigid bodies on the flexible cable, the displacement of the end 
cylinder decays faster with smaller amplitude. With respect to the comparison of velocity, the distribution of 
rigid bodies has great influence on the amplitude and period of velocity as shown in Fig. 12c,d, with the increase 
of the number of rigid bodies, the velocity cycle of the cylinder becomes larger. The difference is more obvious 
with longer simulation time. For example, the fifth peak of velocity is 10.2 s, 10.5 s and 11.9 s respectively with 
respect to two rigid-body, three rigid-body, and five rigid-body model. This phenomenon also infers that more 

(a) (b)

Figure 8.   Vertical position of the free end of the pendulum. (a) The beam using 12 elements and 40 elements, 
g = 9.81 m/s2. (b) The beam using 12 elements, g = 50.0 m/s2.

Figure 9.   Flexible pendulum model in three dimensional motion.

Table 2.   Parameters of flexible pendulum.

Property Value

Cable length L = 1.0 m

Element density ρ = 3.20 × 102 kg/m3

Elastic modulus E = 1.60 × 106 N/m2

Cross sectional area A = 2.50 × 10−5 m2

Poisson’s ratio 0

Initial angular velocity ω = 4.0 rad/s

Step size 0.0001 s

Simulation time 2.0 s
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rigid bodies may contribute to more stable swing speed of the cable system. From Fig. 12e,f, it can be seen from 
the first two cycles, the acceleration peak of the two-rigid body model is much greater than the other two cases, 
which is easy to cause the twining of the cable. With the increase of the number of rigid bodies, this phenomenon 
is obviously weakened. The attenuation of the acceleration of the five rigid-body model slows down with the 
increase of simulation time, and presents a strong nonlinear phenomenon.

(a) (b)

Figure 10.   Comparison between simulation results and the results of former literature. (a) The Z versus X 
position of the tip of the pendulum. (b) The Y position of the mid-point of the pendulum.

Table 3.   Parameters of rigid cylinder.

Rigid-body Parameter

Cylinder_1 height H1 = 0.1 m

Cylinder_2 height H2 = 0.05 m

Cylinder_3 height H3 = 0.025 m

Cylinder diameter D = 0.04 m

Cylinder density ρ = 1.0 × 103 kg/m3

Section moment of inertia I = 1.26 × 10−7 m4

Figure 11.   Schematic diagram of different patterns of distribution of rigid bodies.
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Influence of length of flexible element.  The preliminary analysis implies that excessive number of seg-
ments of the flexible cable causes nonlinear phenomenon. It is speculated that the influence of flexible cable 
segments is similar to the number of flexible elements. Therefore, the effect of element length on the nonlinear 
characteristics of flexible cable motion is observed with the total length of the cable unchanged.

(a) (b)

(c) (d)

(e) (f)

Figure 12.   Comparison of different pattern of rigid body distribution. (a) Displacement in the X direction. (b) 
Displacement in the Y direction. (c) Velocity in the X direction. (d) Velocity in the Y direction. (e) Acceleration 
in the X direction. (f) Acceleration in the Y direction.
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Three types of element length are set as shown in Table 4. Other parameters including material property and 
simulation conditions are consistent with the analysis above.

Comparison of displacement, velocity and acceleration of the end cylinder in the Y direction with different 
element length are shown in Fig. 13.

As shown in Fig. 13, with the decrease of element length, the nonlinear phenomenon becomes more obvi-
ous. The displacement with the smallest element length (Element_3) presents the largest swing amplitude, and 
velocity is no longer smooth but with sharp points and mutation phenomenon. The nonlinear phenomenon of 
acceleration is more obvious, and a large number of burrs appear in the curve. The simulation results imply that 
the shorter the element length, the stronger the nonlinear phenomenon of the rigid-flexible coupling system, 
and acceleration is the most sensitive to element length. In the rigid flexible coupling system, the addition of 
rigid bodies increases the complexity of flexible body motion. When there are fewer elements, the solution of 
the system is more stable and tends to converge.

The above analysis is carried out under the condition of equidistant arrangement of rigid bodies. In order 
to explore the situation of non-equidistant distribution of rigid bodies, we select the three rigid-body model to 
design comparative experiments between equidistant and non-equidistant situations, the schematic diagram 
and parameters of model is shown in Fig. 14.

Table 4.   Element length.

Element Element_1 Element_2 Element_3

Element length 0.05 m 0.025 m 0.0125 m

(a)                  (b)

(c) (d)

Figure 13.   Comparison of different element length. (a) Comparison of displacement. (b) Comparison of 
velocity. (c) Comparison of acceleration. (d) Enlarged view of acceleration comparison between Element_1 and 
Element_3.
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Figure 14.   Schematic diagram of non-equidistant distribution of rigid body. (a) Equidistant distribution. (b) 
Non-equidistant distribution.

(a) (b)

(c)

Figure 15.   Comparison of equidistant and non-equidistant distribution of rigid bodies. (a) Comparison of 
displacement. (b) Comparison of velocity. (c) Comparison of acceleration.
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The free swing process is simulated under the conditions of equidistant and non-equidistant arrangement of 
three rigid-body. Figure 15 shows the comparison of displacement, velocity and acceleration of the end cylinder 
in the Y direction.

Figure 15 shows that the swing amplitude, velocity and acceleration of the end cylinder with equidistant 
arrangement of rigid bodies is smaller compared with non-equidistant arrangement of rigid bodies, which 
implies that under the same conditions, the distribution of rigid bodies would affect the motion of the end of 
the cable, and the equidistant arrangement of rigid bodies will make the motion of the end of cable more stable 
(“Supplementary Information”).

Conclusions
The rigid-flexible coupling cable model is established based on ANCF. The influence of number and distribu-
tion of rigid bodies, distribution patterns of rigid bodies and element lengths on the swing process is analyzed. 
When the total mass of rigid bodies remains unchanged, with more rigid bodies distributed, the cable system 
would have smaller swinging amplitude and be more stable. Equidistant distribution of the rigid bodies would 
weaken the swing amplitude and speed, and increase the stability of the system. The length of the flexible ele-
ment directly affects the simulation accuracy of the motion of cable system. With shorter elements, the motion 
of cable system is more complex and nonlinear characteristics become more obvious. Meanwhile, this paper 
studies the discrepancies of different methods for solving large matrices of dynamic equations, and verifies the 
stability and practicability of MINRES method. In summary, with respect to rigid-flexible coupling cable system 
of large deformation and displacement, ANCF can be used to construct flexible elements efficiently, and this study 
is contributive to the influence of different factors on the movement of large deformation flexible cable body.

Data availability
The data used to support the findings of this study are available from the corresponding author upon request.
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