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A network analysis 
of executive functions 
before and after computerized 
cognitive training in children 
and adolescents
Iris Menu1, Gabriela Rezende1, Lorna Le Stanc1, Grégoire Borst1,2,4 & Arnaud Cachia1,3,4*

Executive functions (EFs) play a key role in cognitive and socioemotional development. Factor 
analyses have revealed an age dependent structure of EFs spanning from a single common factor 
in early childhood to three factors in adults corresponding to inhibitory control (IC), switching and 
updating. IC performances change not only with age but also with cognitive training. Surprisingly, 
few studies have investigated training-related changes in EFs structure. We used the regularized 
partial correlation network model to analyze EFs structure in 137 typically developing children 
(9–10 years) and adolescents (15–17 years) before and after computerized cognitive training. Network 
models (NMs) —a graph theory-based approach allowing us to describe the structure of complex 
systems— can provide a priori free insight into EFs structures. We tested the hypothesis that training-
related changes may mimic developmental-related changes. Quantitative and qualitative changes 
were detected in the EFs network structure with age and also with cognitive training. Of note, the EFs 
network structure in children after training was more similar to adolescents’ networks than before 
training. This study provided the first evidence of structural changes in EFs that are age and training-
dependent and supports the hypothesis that training could accelerate the development of some 
structural aspects of EFs. Due to the sample size, these findings should be considered preliminary 
before replication in independent larger samples.

Executive functions (EFs) are a set of high-level cognitive functions that allow an individual to intentionally 
regulate his or her thinking and act to achieve  goals1. Three EFs are commonly distinguished: inhibitory con-
trol, working memory or updating, and cognitive flexibility or  switching2. These functions are necessary for the 
development of more complex skills such as  reasoning3, theory of  mind4–6,  arithmetic7–9, decision-making10 
and  creativity11,12. EF abilities improve with  age13–19 under strong genetic and environmental  influences2,20–23.

Studies of individual differences in EFs indicate that performance on tasks designed to tap a specific EF 
domain (e.g., inhibitory control) is correlated with but also separable from, performance on tasks tapping other 
EF domains (e.g., switching)24. Moreover, although scores on various EF tasks are often positively correlated 
with each other, these correlations are often not higher than those between EF and non-EF tasks. In this context, 
studies have investigated the structure of these functions to determine the extent to which (a) they reflect distinct 
or common abilities and (b) these abilities become more specific with age. Using structural equation modeling 
(SEM), Miyake et al.1 proposed a hierarchical structure of EFs, with three latent factors representing each EF 
domain. In adults, these latent factors are separable (EF diversity), although they share a significant proportion 
of variances (EF unity, or common-EF ability)20. The EF structure evolves from a one-factor structure in early 
childhood with no clear separation among EF  tasks25–28 to a two- to four-factor structure in  adolescence15,21,28–31. 
Of note, some studies also report an organization with more than one factor in young  children31 and fewer than 
three factors in older  children32. A recent meta-analysis33 tested seven models of EF structure and found some 
evidence for greater unidimensionality of EFs among child/adolescent samples and both unity and diversity 
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among adult samples. The developmental organization of  EFs15 is supported by a recent brain imaging study 
reporting an increasing segregation of structural brain network modules with age, and this segregation medi-
ates the effects of age on  EFs34. In addition, a recent behavioral study on children from 7 to 15  years24 found that 
age mostly impacts the common EF loadings of inhibitory control and switching. Hence, while in childhood, 
updating, switching and inhibitory control likely rely on similar underlying cognitive processes, in adolescence, 
EFs become more specialized and independent.

Because EFs are implicated in learning, academic achievement, psychiatric health, and everyday 
 functioning2,35, several intervention programs have tested the possibility of stimulating various aspects of EFs, 
including working  memory36,37 and inhibitory control (hereafter referred to as IC)2,10,38–41. These studies, con-
ducted in children, adolescents, and young adults, have shown that it is possible to train EFs and have raised the 
question of the duration of the effects of  training39 as well as the possibility of transferring the effects of training 
an EF to other executive or cognitive  domains10,39–41. Indeed, most training studies aimed to determine to what 
extent executive control training and IC training in particular transfer to untrained tasks within the same domain 
or EF (i.e., near transfer) or in other domains or functions (i.e., far transfer). While some studies reported near 
and far transfer effect in preschoolers (for near transfer: Zhao et al.41 and for far transfer: Liu et al.40; Rueda 
et al.42) other studies have shown no near or far transfer effects of IC  training43–45. Importantly, to date no EF 
training studies have assessed the extent to which EF training changes the structure of EFs.

Another way to understand EF organization and how it changes with age is to use network modeling (NM), a 
graph theory based-approach allowing us to describe the structure of complex  systems46. The underlying principle 
of NM is that systems can be represented as nodes that are interconnected with edges (the thicker the edges are, 
the stronger the interconnection). The complete graph (nodes and edges) summarizes the pattern of relations 
among the  elements47. While in SEM, shared variance of observed variables (e.g., scores on cognitive tasks) is 
assumed to reflect a latent construct (e.g. inhibitory control or working memory), in NM, shared variance is 
assumed to reflect a causal  network48.

NM applied to EFs allows us to identify which nodes (here, a specific EF task) play a pivotal role within the 
whole network (here, different EF tasks). In addition, NM has the potential to test theoretical models on how 
EF structures transform with age and more specifically which components can become more central to general 
executive processing and, therefore, have a greater influence on other EF processes with age. Using NM on a twin 
cohort aged 7 to 15 years of age, Hartung et al.24 found that the interconnections between EF tasks remained 
stable with age except for the inhibition tasks, whose shared variance with the other EF tasks was reduced with 
age. These findings provided convergent evidence that IC is particularly important for allowing young children 
to employ other EFs in pursuit of goals but plays a lesser role in regulating other EFs later in  development32,35,49. 
NM can also provide interesting insights into the effects of training on the structure of cognitive functions. To 
date, only one study has used NM to treat such effects in young  adults50. The study showed that the interconnec-
tions between 25 variables related to mindfulness, compassion, psychological well-being, psychological distress 
and emotional-cognitive control changed after a mindfulness-based stress reduction (MBSR) program.

In the present study, we investigated how the structure of EFs was affected by training EFs in children and in 
adolescents using NM. By using such an approach, we aimed to determine whether training speeds up the devel-
opment of EFs or qualitatively changes the development of EFs by deviating from the developmental trajectory 
typically observed from childhood to  adolescence51. To this end, we assessed EFs in 77 children (9–10 years) and 
60 adolescents (16–17 years) before and after 5 weeks of computerized training. Children and adolescents were 
randomly assigned to an IC training group or an active control group (Fig. 1). We reasoned that if training IC 
speeds up the development of IC, then training-related changes should mimic developmental-related changes, 
namely, the structure of EFs in children after IC training but not after control training should be more similar 
to the structure of EFs in adolescence than before training. On the other hand, if training IC changes the devel-
opmental trajectories of IC, then the structure of EFs in children after IC training should differ from that before 
training (but not after control training) and from the structure of EFs in adolescence. This study, which is pre-
liminary given the sample size, will allow testing these hypotheses before replication in an independent sample.

Results
We investigated the effects of development and cognitive training on EFs using a 6-node network with 4 measures 
taping on different aspects of IC (Stroop on interference control, Stop Signal and Simon on response inhibition 
and Attentional Network Task or ANT on attentional inhibition), 1 measure of switching (Trail making test or 
TMT) and 1 measure of updating (N-back) was constructed and estimated.

Developmental analysis: children vs. adolescents at pretest (before training). We first studied 
the EF structure in children and adolescents from the analysis of the EF networks at pretest before training (see 
Figs. 2 and 3). Visual inspections indicated that networks in adolescents present more and stronger connections 
than in children.

This visual inspection was followed by a quantitative analysis of the network topology using classical graph 
indices (see Figs. 2 and 3). The different indices were similar in children and adolescents. Three common cen-
trality measures were used to quantitatively characterize the network at node  levels52: strength (a measure of 
how strongly a node is directly connected with the network), betweenness centrality (a measure of how a node 
is central in connecting other variables) and closeness centrality (a measure of how strongly a node is con-
nected indirectly with the network). Higher closeness centrality indicates that a node (task) is more related, 
even indirectly, to other nodes (tasks). Higher strength indicates that a node(task) is more strongly connected to 
other nodes (tasks). Because these indices are calculated based on the absolute values of edge-weights and may 
therefore miss information on the network structure if negative relationships between nodes are  present53, two 
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other centrality measures were also used: expected influence (EI), which is the sum of both positive and negative 
weights between a node and all the other nodes in the network, and degree, which is the number of connections 
for each node in the network, thus defining hubs (nodes with highest degree). In both children and adolescents, 
the variables with the highest betweenness were also the variables with the highest strength, closeness and EI. 
However, such central variables varied with age: in children, the most central nodes included the Stroop, Stop 
Signal and TMT while in adolescents, they included the ANT and TMT. In children, a high number of relations 
(i.e., high degree) was generally accompanied by low weights (i.e., low EI and strength).

In adolescents, analysis of hubs revealed homogeneous results, with similar weights over the four indices. 
Overall, these indices were slightly lower in children than in adolescents, reflecting a less connected network in 
9–10-year-old children than in 16–17-year-old children.

We then analyzed the communities. A community corresponds to a set of nodes that cluster more strongly 
among each other than with other nodes in the network; such communities reflect high mutual influences among 
nodes in a given cluster. The community analysis detected two clusters in each age group’s network (Figs. 2 
and 3A–C). In children, the two clusters were as follows: (1) Cluster A (in orange), which included 3 nodes 
corresponding to executive functioning (Stop Signal, ANT and TMT); (2) Cluster B (in blue), which included 
3 nodes corresponding to IC and updating (Stroop, Simon and Nback). In adolescents, the two clusters were 
as follows: (1) Cluster A (in orange), including 3 nodes corresponding to executive functioning (Simon, TMT 
and Nback); (2) Cluster B (in blue), including 3 nodes corresponding to IC (Stroop, Stop Signal and ANT). The 
only difference between children and adolescents’ networks was the cluster switch of Stroop and TMT. Finally, 
the negative correlation between edge weights across networks (r = − 0.51) reflected the differences previously 
observed in network connectivity.

Training effects: pretest vs. posttest. The changes in EF structure were first investigated using clas-
sical univariate repeated-measures ANOVAs applied to the two age groups and the two training groups sepa-
rately (Table 1 and Fig. 4). These analyses detected a significant change in the Stop Signal (p < 0.05) and Stroop 
(p < 0.05) along with a marginal change in TMT (p = 0.09) for children after IC training. In adolescents, a sig-
nificant change in the Stop Signal was detected following AC training (p < 0.05). All the other analyses failed to 
reach significance (all p values > 0.14).

Figure 1.  Experiment design. (a) 77 children (9–10 y.o.) and 60 adolescents (15–17 y.o.) were asked to perform 
inhibitory control tasks (IC group) or knowledge- and vocabulary-based tasks (Active Control (AC) group) 
15 min per day, 5 days a week for 5 weeks (25 sessions) on a tactile tablet. Participants were randomly assigned 
to the IC or the AC groups as in a Randomized Controlled Trial (RCT). The AC condition allowed to control 
for test–retest effects. In both IC and AC training, the difficulty was progressively increased and adapted in 
real time to the learning curve of each participant to maintain the motivation of the participant and to prevent 
automaticity. (b) Participants performed a cognitive battery in the pre- and post-training sessions (longitudinal 
design) measuring different facets of executive functions: cognitive flexibility/switching (TMT), working 
memory updating (N-back task), and inhibitory control (Stroop task for interference control, Stop Signal and 
Simon tasks for response inhibition and ANT for attentional inhibition).
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Complementary analyses, including age and training groups as factors in order to investigate possible age- 
and training-specific effects, only revealed significant main effects of the age group for SST (p = 1.3 ×  10–5) and 
for TMT (p = 0.01) but no interaction effects involving the age nor the training group (all ps > 0.27; see details 
of the analyses in Table S1). Post-hoc analyses, with Tukey correction for multiple testing, revealed significant 
pre-post changes in children in IC group for SST (p = 0.009) and TMT (p = 0.03).

Of note, Welch Two Sample t-tests revealed no significant differences between the two training groups at 
pretest except for TMT in adolescents (t (39.39) = − 2.16, p < 0.05) where adolescents affected to the IC training 

Figure 2.  Six-nodes networks for children, before (a), after active control training (AC group; b) and after 
inhibitory control (IC group; c) training with the corresponding centrality indices (d). Color of nodes 
correspond to the communities. Each number in the networks corresponds to an EF task (see details in the 
legend).
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showed lower score (6.87 ± 3.63) than those who were affected to the AC training (9.62 ± 4.73). All other ps > 0.17. 
See details of raw pretraining and posttraining scores for the three EF tasks in Table 1 and in the radar-plots 
representing the relative changes after the two types of training in Fig. 4.

These standard analyses were further investigated by comparing the network structure in the pretest and 
posttest for children (Figs. 2 and 5) and adolescents (Figs. 3 and 5).

Figure 3.  Six-nodes networks for adolescents, before (a), after active control training (AC group; b) and 
after inhibitory control (IC group; c) training with the corresponding centrality indices (d). Color of nodes 
correspond to the communities. Each number in the networks corresponds to an EF task (see details in the 
legend).
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Cognitive training in children. The children’s 6-nodes-network had a different organization, with denser, 
more numerous and stronger connections after training compared to pretest, especially after the IC training. 
Almost all variables showed increasing strength (except for the Stop Signal task) and closeness (Fig. 2B). Stroop 
and TMT remained the most central nodes of the network after IC training. After AC training, most of the vari-
ables increased in strength and closeness, and N-back became the most central node in the network along with 
TMT. The centrality indices revealed poor connections at pretest in children (strength < 1 and closeness < 0.03) 
while at posttest, strength and closeness increased, but differently after AC and IC training.

The community analysis (Fig. 2) detected two communities both pretest and after IC training and three com-
munities after an AC training. After AC training, the three clusters were as follows: (1) Cluster A (in orange), 
including only ANT; Cluster B (in blue), including Stroop, Stop Signal and N-back and Cluster C (in green), 
including Simon and TMT. After IC training, the two clusters were: (1) Cluster 1 (in orange), including Stroop 
and TMT and Cluster B (in blue), including Stop Signal, Simon, ANT and Nback.

Correlations between edge weights across networks were low both after AC (rAC = −  0.30) and IC 
(rIC = − 0.23) training indicating few similarities between networks before and after training.

Cognitive training in adolescents. In adolescents (Fig. 3), the differences in network structure between 
pretest and after IC training are less important than in children (see Fig. 3a–c). Nevertheless, after IC training, 
almost all variables except Simon increased in strength and closeness. Analysis of EI and Degree highlights the 
centrality of Stroop and Nback, which have the highest scores in these indices. After AC training, fewer changes 
occurred with an increase in Stop Signal and Simon for both Strength and Closeness. However, these changes 
were less important than those after IC training.

Community analysis revealed small cluster changes after training, with two nodes being switched after AC 
training (TMT and ANT) and after IC training (ANT and Simon; see details in Fig. 3). As for centrality indices, 
changes in communities were less important in adolescents than in children.

Table 1.  Efficiency of EFs in children and adolescents before and after an active control (AC) or an inhibitory 
control (IC) training. For all tasks, scores were derived from RTs (in s). SST stop signal task, TMT trail making 
test. Training-related changes in task efficiency were evaluated with repeated measures ANOVAs. Significance 
levels: ○ < 0.10; *< 0.05; ** < 0.01; *** < 0.001.

Pre 
IC-training

Children

Pre 
IC-training

Adolescents

Pre 
AC-training

Post 
IC-training

Post 
AC-training

Pre 
AC-training

Post 
IC-training

Post 
AC-training

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

SST 0.26 ± 0.08 0.25 ± 0.08 0.21 ± 0.06* 0.23 ± 0.08 0.16 ± 0.03 0.16 ± 0.03 0.15 ± 0.04 0.16 ± 0.03

Stroop 0.11 ± 0.16 0.13 ± 0.15 0.06 ± 0.10* 0.08 ± 0.16 0.07 ± 0.09 0.09 ± 0.08 0.04 ± 0.05 0.06 ± 0.07*

Simon 0.04 ± 0.03 0.04 ± 0.03 0.03 ± 0.03 0.03 ± 0.04 0.08 ± 0.05 0.08 ± 0.06 0.02 ± 0.02○ 0.02 ± 0.02

ANT 0.04 ± 0.03 0.03 ± 0.03 0.06 ± 0.04** 0.05 ± 0.04** 0.04 ± 0.02 0.05 ± 0.02 0.04 ± 0.02 0.04 ± 0.03

TMT 22.14 ± 12.01 18.18 ± 10.04 16.40 ± 9.07○ 15.03 ± 6.66 6.87 ± 3.63 9.62 ± 4.73 7.83 ± 4.33 8.71 ± 4.15

N-back 0.09 ± 0.23 0.10 ± 0.20 0.06 ± 0.23 0.12 ± 0.24 0.04 ± 0.07 0.06 ± 0.08 0.07 ± 0.11 0.09 ± 0.11

Figure 4.  Relative changes in EF tasks after cognitive training in children (a) and adolescents (b). The radar 
graphs represent relative changes after inhibitory control (IC, in yellow) and active control (AC, in orange) 
training. Values correspond to − log(p), with p being the main effect of training in the repeated measures 
ANOVAs presented in Table 1.
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Correlations between edge weights across networks between pretest and posttest were low in both AC 
(rAC = − 0.08) and IC training (rIC = − 0.11), supporting very few similarities between networks before and 
after training.

In addition to the 6-node networks, a complementary analysis of balanced 3-node networks, where each node 
represented an EF (Stop Signal for IC, TMT for switching and N-back for updating; Fig. 5), was performed. The 
Stop Signal, the IC task with the most significant progression after training (see pre-post changes in Table 1), was 
selected as IC measure. This analysis provided similar results to the previous analysis obtained with the 6-node 
network, namely greater network connections in childhood than in adolescence and similar network changes 
related to training and to development.

Figure 5.  Three-nodes networks for children (a–c) and adolescents (d–f), before (a,d), after active control 
training (AC; b,e) and after inhibitory control (IC; c,f) training. Color of nodes correspond to an executive 
function. Each number in the networks corresponds to an EF task (see details in the legend).
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Discussion
In this study, we report the first NM analysis of EF structure changes with age and cognitive training. Based on 
the hypothesis that training mimics development and can therefore accelerate cognitive changes with age, we 
anticipated a switch from a centralized to a distributed EF network from childhood to  adolescence1,34 as well as 
in children after IC but not AC training.

Quantitative and qualitative differences were detected in the EF network structure between children 
(9–10 years) and adolescents (16–17 years). The increased connections with age between children’s and adoles-
cents’ networks between tasks tapping different EF domains support the previously reported increasing shared 
variance among EF variables during  development28. This increased number of connections was confirmed by an 
increased overall centrality in adolescents compared to children. These findings are also consistent with a study 
on the development of EF structures from 7 to 15 years of age reporting increased centrality indices (closeness 
and strength) for EF tasks after 13 years of  age24. Our results also support a recent cross-sectional study using 
network analysis to examine changes in EF organization from 3 to 85 years of  age54. This study reported an 
increase in inter-EF connections (increasing strength and expected influence) from 15.5 years of  age54, consist-
ently with our findings. However, this study also demonstrated that this increase was preceded by a decrease 
in the centrality indices from early childhood. Our two age groups are thus just around the point of inversion, 
it might thus be interesting in the future to extend our analyses with participants just at the point of inversion. 
Moreover, an accelerated longitudinal design study also suggested organizational changes between ages 8 and 
14, along with change for each age group within a single  year55. Thus, it might be relevant to narrow the age 
range in order to investigate finer developmental changes. Analysis of centrality also revealed that Stroop, Stop 
Signal and TMT—the first two on IC and the last one on switching—are central in the EF network of children. 
This is consistent with previous studies that reported that IC is central for children to employ other  EFs32,35,49. 
However, according to these studies, with age and EF development, IC becomes less central, while in adolescence 
and adulthood, working memory increases its role in regulating  EFs32,35,49. We thus expected N-back to be the 
most central node in adolescents. Instead, TMT and ANT—tapping on switching and attentional IC—were the 
central nodes of the network. Nevertheless, it should be noted that N-back had a high centrality in adolescents’ 
graphs, and this centrality increased after 5 weeks of IC training, perhaps reflecting the increasing central role of 
working memory in EFs’ regulation. Moreover, these results are consistent with a recent study that emphasized 
the increasingly critical role of Switching during the development, which would act as a mediator between IC 
and Updating from  adolescence54. On another hand, the community analyses revealed an organization of EFs 
in two clusters in both children (two clusters with mixed-EF tasks) and in adolescents (one cluster with IC tasks 
and a second cluster composed of three tasks measuring the three different EFs). Previous SEM studies reported 
a differentiation of EF organization between middle childhood and  adolescence15,21,24,28–31. It is important to note 
that the clusters obtained with community analysis are determined a posteriori (via a data-driven approach), 
while the factors obtained in SEM analysis are determined a priori (via a hypothesis-driven approach). Indeed, 
clusters derived from community analysis correspond to nodes with high mutual influence and are therefore 
dependent upon the data under analysis, while SEM clusters correspond to latent factors that were defined 
before the analysis. Hence, taken together, previous SEM studies and current NM analyses, which are based 
on complementary approaches, converge toward changes in EF structure from childhood, with a more general 
composition of EFs, to adolescence, with more specified EFs.

In addition to developmental changes, quantitative and qualitative changes in the EF structure were also found 
after training one EF, namely, IC. The results showed that after IC training in children, networks have increas-
ingly stronger connections both within and between EFs and are therefore more similar to adolescents’ networks 
than before training. On the other hand, in adolescents, changes in the EF network were subtler. More precisely, 
after AC training, the number of connections decreased, but some edges increased in weight, whereas after IC 
training, the edge weights became much more important, reflecting a more integrated network. However, these 
lower changes in adolescents compared to children may also be interpreted in terms of reduced training effects 
in adolescents. Complementary analyses using classical repeated-measures ANOVAs (see Table S1 and Fig. S1 
in Supplementary Materials) indicated that adolescents did not improve their performances in the six EF tasks, 
while children improved their performances after IC training for Stop Signal, ANT and tendentially for TMT. 
The lack of progress in adolescents might reveal a ceiling effect (see Fig. S2 in Supplementary Materials). Of note, 
the AC and IC trainings were similar in children and adolescents, with difficulty adapted at the individual level. 
Importantly, except for TMT in children, classical repeated-measures ANOVAs did not detect important transfer 
effects, while NM could highlight changes in the organization of EFs, including both trained and nontrained tasks 
(e.g., Stroop and Stop Signal), thus revealing transfer effects. The community analyses also provided insights into 
training-related reorganizations of EF structures. In children, networks had two communities before and after 
the IC training and three communities after the AC training, whereas in adolescents, there were two communi-
ties before and after both types of training; these communities had only slight changes in composition, once 
again reflecting the reduced effects of training in adolescents compared to children. However, it can be noted 
that in adolescents, after IC training, one of the two communities was composed of only IC tasks and the other 
of attentional IC, switching and updating tasks, thus highlighting EF-specific effects.

The present study has several limitations that call for caution when interpreting the results. First, sample 
size is a critical issue for the reliability of statistical analysis, particularly for NM  analysis56. Hence, despite the 
relatively large sample size used in this interventional longitudinal study in children and adolescents (N > 120), 
it is important to replicate the findings with confirmatory studies conducted on larger and independent samples. 
Of note, the recruitment and follow-up of typically developing school-aged children and adolescents enrolled in 
a 5-week longitudinal study with cognitive training on a tactile tablet raised sound logistical and practical issues 
which has constrained the sample size. Following recent recommendations for NM analysis with small sample 
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size (i.e., approximately hundreds of participants), we limited the number of variables to  657 as it allowed us to 
recover the global structure of the network even though the full network could not be measured. This criterion 
also led to an imbalance of the three EFs in the creation of the networks. Indeed, IC was overrepresented (4 nodes 
out of 6). As this was one being trained, it seemed important to look at the impact of training on the organization 
of this particular EF. Because such imbalance may bias the analysis, and particularly the estimation of the partial 
correlations, we completed our 6-node network analysis with a balanced 3-node network analysis with networks 
including one measure per EF. These 3-node network further confirmed the results provided by the 6-node 
network analysis, namely greater connections in childhood than in adolescence and similar network changes 
related to training and to development. A perspective is the inclusion of latent variables in the  networks58, which 
could allow us to observe the links, without a priori, between tasks within the same EF latent variable. Second, 
the behavioral changes observed from the pre- to the post-training sessions might not be attributed only to the 
training per se but could also reflect a ‘regression to the mean’  effect59. This statistical phenomenon arises when 
a random variable—here task scores—is extreme at baseline but closer to the mean on follow-up or vice versa 
and typically affects longitudinal design such as the one used in the present study. However, it is unlikely that 
the difference in IC efficiency change from the pre- to the post-training sessions between the IC and AC training 
groups only reflects such a ‘regression to the mean’ effect because participants were randomly assigned to the two 
training groups, and thus, both groups were potentially equally affected by such an  effect60.

NM provides an original and relevant way to investigate the effect of cognitive training on EF organization, 
complementary to more classical statistical approaches, such as univariate ANOVAs. Our study combining NM 
and classical ANOVAs appears to be relevant to analyses of developmental and training-related cognitive changes. 
Recent methodological developments, such as moderated network  models61 or network model  trees62, could be 
an interesting perspective to further explore factors that could influence network organization after an interven-
tion. Because EF neural networks are known to vary with age and to correlate with EF behavioral  performance34, 
a multimodal and multilevel approach combining network analysis at the behavioral level and the neural level 
(e.g., using resting-state functional magnetic resonance imaging)63, is likely an interesting direction to explore. 
Such an approach could provide a more complete view of  EFs64 and could pave the way toward an integrative 
approach, including behavioral, neural and genetic and environmental levels.

Methods
Participants. We recruited 137 healthy participants from public schools: 77 children (33 males, 
M ± SD = 9.86 ± 0.55  years, range = 9–10  years) and 60 adolescents (20 males, M = 16.56 ± 0.48  years, 
range = 15–17  years). All participants were right-handed as determined by the Edinburgh Handedness 
 Inventory65, were born full-term, had normal or corrected-to-normal vision, had no history of neurological 
disease and had no cerebral abnormalities. Parents or legal guardians gave written informed consent for the 
children and the adolescents, and all children and adolescents agreed to participate. All participants were tested 
in accordance with the national and international norms that govern the use of human research participants. 
The national ethics committee (Committee for the protection of persons, CPP) approved our study in children 
(ID-RCB 2015-A00383-46) and in adolescents (ID-RCB 2015-A00811-48).

Cognitive training. In both IC and AC computerized 5-week training, the difficulty was progressively 
increased and adapted in real time to the learning curve of each participant to maintain his or her motivation 
and to prevent  automaticity36,66,67. In each session, the level of difficulty was increased or decreased after each 
block of trials performed at a given level. All tasks were implemented on the tablet using E-prime 2.0.

The IC training included two tasks involving interference control (Color-Word Stroop task) and response 
inhibition (SST) because (a) IC is a multidimensional  construct2 and (b) transfer effects can be potentially larger 
when the same cognitive function is trained with different  tasks66,67. In particular, each task performed by the 
participants during the IC training involved different types of inhibitory control processes, namely response 
inhibition for the Stop-Signal task and interference control for the Color-Word Stroop task. The Stop-Signal 
task typically requires inhibiting a motor response action after it was initiated while the Color-Word Stroop task 
requires inhibiting task-irrelevant information (i.e., the color denoted by the word)2.

AC training consisted of knowledge- and vocabulary-based tasks of increasing  difficulty39. On each task, 
4-choice trivia-like questions were presented, and participants were asked to answer by pressing on one of the 
four answers presented on the screen. Participants were given a maximum of 30 s to reply to each question. An 
online pretest performed on more than 1600 children and adolescents helped us select the questions assigned 
to each of the 8 levels of difficulty. Ten questions were presented at each level.

At the end of each level, based on the achieved accuracy, participants earned points that they could redeem at 
the end of the 25 training sessions for a small gift (books and card or board games). In all four tasks, task difficulty 
was increased when participants achieved 90% accuracy at a given level, decreased when participants failed to 
achieve 70% accuracy at a given level and remained the same when participants reached accuracy between 70 
and 90% at a given level. On each task of each training session, participants started the session with the difficulty 
level one level below the one they achieved in the previous training session. In the two IC training tasks, the 
difficulty of inhibiting either the motor response initiated or the irrelevant task information was adapted after 
each block of training. In the Stop-Signal task, by increasing the delay between the presentation of the stimu-
lus and the presentation of the signal to stop, the inhibition of the motor response became increasingly more 
 difficult68. In the Color-Word Stroop task, as the delay between the presentation of the word and the coloring of 
the word decreased, the inhibition of the task-irrelevant information (i.e., the color denoted by the word) became 
increasingly more  difficult69. In the AC training tasks, the answers to the questions were increasingly more dif-
ficult to determine and were adapted after each block of training. At the end of each training session, parents 
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were instructed to send the data file generated by E-prime 2.0, and participants were asked to complete a short 
autoevaluation of their motivation and engagement during the session. Levels reached at each training session 
are reported in Fig. S2 in the Supplementary Materials. Participants included in the analyses had to complete a 
minimum of 15 training sessions.

Evaluation of EFs. Participants performed a cognitive battery in the pre- and post-training sessions meas-
uring different facets of EFs. Six tasks were administered to measure the three EFs: cognitive flexibility (here 
referred to as switching), working memory updating (here referred to as updating), and inhibitory control. 
The task used to identify the switching factor was the trail making test (TMT)70 and for the updating factor, the 
N-back  task71 was used. Four tasks were used to identify the inhibitory control factor: the Color-Word  Stroop72, 
the Stop-Signal  task73, the Simon  task74 and the ANT (Attention Network Task)75; each of these tasks taps on dif-
ferent aspects of IC: Stroop on interference control, Stop Signal and Simon on response inhibition and ANT on 
attentional  inhibition2,76. To limit potential differences in familiarity with the Stroop and Stop-Signal tasks used 
in the pre- and post-training sessions between participants of the IC and AC groups, we introduced a number of 
differences between these tasks and those used in the IC training sessions: (a) we used no control trials, and we 
did not vary the difficulty of the task in the Color-Word Stroop task; (b) the Stop-Signal delay was adapted on a 
trial-by-trial basis and not on a block-of-trial basis in the SST.

For each task, scores were screened and cleaned for possible aberrant values using a nonparametric approach: 
outliers were defined as values lower than median − 2.5 MAD or greater than median + 2.5 MAD (MAD: median 
absolute deviation) and considered missing values in the analyses.

Construction and analysis of cognitive networks. NM were completed with classical univariate sta-
tistical analyses (Analyses Of Variances, ANOVAs). Like for NM, ANOVAs were conducted separately for each 
of the six EF tasks for the two age groups and the two training groups. In order to assess possible group-specific 
effects, complementary ANOVAs were run for each task, including age group (children vs adolescents) and 
training group (IC vs AC) in the models.

The repeated-measures ANOVAs were estimated using mixed-effects linear models. We used the package 
lme477 with the Time (pre- or post-training) as fixed effects and intercepts for subjects as random effects. P-values 
were obtained by using likelihood ratio tests of the full model, including the tested effect against the model 
without the tested effect.

Then, separate networks, based on the correlation matrix of the EF task scores, were built for children and 
adolescents before training (pretest) and after training (inhibitory control training: posttest IC; active control 
training: posttest AC). Six networks (3 per age range) were estimated. These networks included 6 nodes cor-
responding to the scores of the 6 cognitive tasks, which we grouped into three EFs:

• Inhibitory control: Color-Word Stroop, Stop-Signal, Simon, and ANT scores (for Stop Signal, we calculated 
the SSRT as  recommended78, and, for the other tasks, we calculated the difference in reaction time (RT) 
between incongruent and congruent trials)

• Switching: TMT flexibility score (RT difference between TMT-B and TMT-A)
• Updating: N-back score (RT difference between the 2-back and the 1-back trials).

The inclusion of trained (Stroop and Stop-Signal) and untrained (Simon and ANT) IC tasks allowed us to 
observe the direct effects of IC targeted training on the trained tasks but also on other IC tasks (intra-EF) and 
thus, to assess near transfer effects within the same EF. The inclusion of TMT and N-back allowed us to assess 
the effects of IC training on other EF tasks (inter-EFs) and thus to evaluate the effects of a more distant transfer 
while keeping the number of nodes limited to 6, as recommended for a sample size of approximately  10057.

In addition to the 6-node networks, balanced 3-node networks, with only one node per EF (Stop Signal for 
IC, TMT for switching and N-back for updating), were built. Such balanced networks overcome the issues for 
the interpretation of the 6-node network related to the partial network models that remove shared variance 
associated with all other EF tests in the model (i.e., the relationship between each inhibition task with switching 
and updating involved controlling for other tests of inhibition).

NM was used to analyze (1) the multiple relations (edges) between the different EF tasks (nodes) simulta-
neously and (2) how these relations change during development (children vs. adolescents) and after cognitive 
training (before and after training). We used the successive steps procedure proposed for network analysis in 
 psychology79: (1) network estimation; (2) network inference (topological characterization); and (3) node com-
munity analysis. The interrelation between the different variables was modeled with a Gaussian graphical model 
 (GGM80), a regularized partial correlation network (RPCN). The edge between two nodes/tasks corresponded 
to the partial correlation between the two corresponding variables, controlling for the effects of the remaining 
variables. We used Spearman correlations, as  recommended81.

Statistical analyses were performed using R-statistical software, version 3.6.1 (R Development Core Team, 
2014). The networks were constructed and visualized using the package qgraph version 1.6.482. As previously 
 recommended83, we investigated the robustness and replicability of the analyses (accuracy check) using the 
bootnet package version 1.481. Figures of edge-weight accuracy can be found in the Supplementary Materials.

Characterization of the networks. The networks were characterized using both quantitative and quali-
tative measures. Five classical centrality measures were used to quantitatively characterize the network at node 
 levels52: strength (the sum of the weights of the direct relations of a node to all other nodes), closeness centrality 
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(the inverse of the total length of all the shortest paths between the selected node and all other nodes in the net-
work), betweenness centrality (the shortest path length connecting any two variables), expected influence (the 
sum of both positive and negative weights between a node and all the other nodes in the network), and degree 
(number of connections for each node in the network), thus defining hubs (nodes with the highest degree). The 
community analysis was based on the Spinglass  algorithm84 with standard parameters (γ = 1, start tempera-
ture = 1, stop temperature = 0.01, cooling factor = 0.99, spins = 25). The correlation between edge weights across 
networks was also estimated.
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