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Spatial and temporal variation 
in New Hampshire bat diets
Devon O’Rourke1,2*, Nicholas P. Rouillard1, Katy L. Parise1,2 & Jeffrey T. Foster1,2

Insectivorous bats consume a diverse array of arthropod prey, with diets varying by bat species, 
sampling location, and season. North American bat diets remain incompletely described, which is 
concerning at a time when many bat and insect populations appear to be declining. Understanding 
the variability in foraging is thus an essential component for effective bat conservation. To 
comprehensively evaluate local foraging, we assessed the spatial and temporal variability in prey 
consumed by the little brown bat, Myotis lucifugus, in New Hampshire, USA. We collected bat guano 
samples from 20 sites over 2 years and analyzed sequence data for 899 of these samples using a 
molecular metabarcoding approach targeting the cytochrome oxidase I subunit (COI) gene. Some prey 
items were broadly shared across locations and sampling dates, with the most frequently detected 
arthropod orders broadly similar to previous morphological and molecular analyses; at least one 
representative sequence variant was assigned to Coleoptera in 92% of samples, with other frequently 
detected orders including Diptera (73%), Lepidoptera (65%), Trichoptera (38%), and Ephemeroptera 
(32%). More specifically, two turf and forest pests were routinely detected: white grubs in the genus 
Phyllophaga (50%), and the Asiatic Garden beetle, Maladera castanea (36%). Despite the prevalence 
of a few taxa shared among many samples and distinct seasonal peaks in consumption of specific 
arthropods, diet composition varied both temporally and spatially. However, species richness did not 
strongly vary indicating consumption of a broad diversity of taxa throughout the summer. These data 
characterize little brown bats as flexible foragers adept at consuming a broad array of locally available 
prey resources.

North American insectivorous bats have highly flexible foraging strategies. Dietary analyses indicate consump-
tion of a broad assortment of  prey1, yet the composition of prey contents reported appears sensitive to temporal 
or spatial factors among little brown bats, Myotis lucifugus2–4, big brown bats, Eptesicus fuscus4–6, as well as 
Indiana bats, Myotis sodalis7. Similar patterns of temporal variability of arthropods in bat diets occur in their 
European  relatives8–10. Thus, it is unsurprising that many of the factors associated with intraspecies variation in 
little brown bat diets—a species with extensive historical records—are connected with either location or season. 
These factors include variation in prey  abundance4,11, bat  age12, landscape  features13, and ambient  temperature14. 
Heterogeneity in sampling location or date can alter the community composition of prey available and therefore 
what is observed in bat  diets2,4,6, suggesting that a more comprehensive understanding of the niche breadth of 
a species would greatly benefit from a sampling design surveying multiple populations simultaneously and 
repeatedly throughout the season.

The techniques used to describe diets also play a fundamental role in how we characterize the foraging 
habits of a  species15,16. Historically, morphological analyses have described bat diets at the order-level due to 
taxonomic challenges with prey species identifications from  guano1,17. Diet compositions of insectivorous bats 
in Eastern North America typically contain some ratio of Coleoptera, Diptera, and Lepidoptera, with smaller 
fractions of Trichoptera and Ephemeroptera and a few other taxa. For example, these visual identification meth-
ods indicate that North American bats like E. fuscus are beetle  specialists5, while Myotis spp. more frequently 
consume flies and  moths18–20. More recent studies using molecular methods support some of the historically 
observed order-level diet findings—E. fuscus still prefer  beetles6,21 (but less so in Southwestern  deserts22), and 
M. lucifugus continue to consume flies and  moths2,3. Although not without their own biases (see Nielsen et al.16 
for a review of various diet tracing techniques, and Alberdi et al.23 for molecular metabarcoding, specifically), 
molecular analyses generally have higher resolution of prey items relative to morphological techniques, and can 
reveal a much broader palate than previously  described24. Rather than a small menu consisting of a few arthro-
pod orders, molecular studies of insectivorous bats routinely describe hundreds of unique sequences detected 
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with varying frequencies across numerous arthropod orders. In light of the superior taxonomic resolution of 
molecular metabarcoding, historical assessments may have significantly underestimated the niche and dietary 
breadth of the bat species described.

Detailed diet information provided by metabarcoding may be of particular importance for conserving 
North American bat populations that have exhibited drastic declines due to the fungal disease White-Nose 
 Syndrome25,26. For bat populations that are recovering and for those that continue to decline, diet information can 
help characterize the local habitat resources required by these populations. Molecular diet information is scant 
for a few of the species impacted by the disease and entirely absent for others. At the same time, insect popula-
tions have recently exhibited dramatic declines  worldwide27,28, with likely effects on aerial insectivores such as 
 bats9. The first multi-year molecular analyses of the diets of North American bats observed local compositional 
variability within and between seasons at the same location in little brown  bats2,3 and big brown  bats6. Similarly, 
a recent evaluation of little brown bat diets across six sites in Wisconsin identified regional and local foraging 
preferences, with evidence of family-level diet turnover between  weeks4. We were motivated to build on these 
foundational studies by significantly expanding on the number of sites sampled to better assess the potential 
diversity in little brown bat foraging patterns across sampling locations and years. We completed a two-year 
sampling regime that spanned 20 sites across southern and central New Hampshire, USA. Our study had three 
main objectives: first, to assess the dietary breadth of little brown bats throughout New Hampshire; second, to 
determine the extent with which these guano samples reveal potential forest or agricultural pests in an area; and 
third, to compare the extent with which bat diets vary along temporal and spatial gradients.

Results
Over 4200 guano samples were collected from June to August 2015, and April to October 2016, at 20 locations 
throughout central and southern New Hampshire, USA. These sites included a mixture of forest land cover 
classes, as well as water, wetland, agricultural, and urban landscape components (Fig. 1). We generated sequence 
data for 2521 samples, and ultimately retained 899 samples at 19 of 20 sites for diet analyses after filtering for 
arthropod-specific COI sequences due to strict data quality requirements (Tables S1 and S2). Because guano 
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Figure 1.  NH bat sample locations and landcover. (a) Guano samples collected throughout New Hampshire 
(dark state location of inset map) at particular locations (labels). Locations are abbreviated by 3-letter codes 
to reflect a particular New Hampshire town: ALS, Alsted; BRN, Brown Lane, Hollis; CHI, Chichester; CNA, 
Canterbury; CNB, Canterbury; COR, Cornish; EPS, Epsom; FOX, Fox State Forest, Hillsborough; GIL, Gilsum; 
GRN, Greenfield; HOL, Squam Science Center, Holderness; HOP, Hopkinton, MAP, Maple Hill, Hollis; MAS, 
Massabesic Audubon Center, Auburn; MTV, Mont Vernon; PEN, Penacook; SWZ, Swanzey; WLD, Willard 
Pond, Antrim; WLT, Wilton. (b) Fraction of land cover type within a 2500 m radius at collection site. Map 
created using a custom R script available at https:// github. com/ devon orour ke/ nhgua no/ blob/ master/ scrip ts/r_ 
scrip ts/ mappl ots.R.

https://github.com/devonorourke/nhguano/blob/master/scripts/r_scripts/mapplots.R
https://github.com/devonorourke/nhguano/blob/master/scripts/r_scripts/mapplots.R
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samples were collected passively, classification of COI sequences was also used to identify the likely bat species. 
A single species, the little brown bat (Myotis lucifugus), was identified in 579 guano samples and contained more 
than 99.99% of all bat-classified sequences. Thus, while it is possible that other bat species were present and 
contributing guano, we did not detect them.

The largest fraction of arthropod sequence diversity was detected among the coleopteran order, with 766 
sequence clusters (OTUs) identified among all samples, and at least one coleopteran OTU was identified among 
92% of samples (Table 1). Note that ‘sequence clusters’, herein termed OTUs, are in fact denoised exact sequence 
variants (ASVs) clustered at 98.5% similarity (see Methods for details). Many samples also contained at least one 
OTU classified to Diptera (73% of samples), Lepidoptera (65%), Trichoptera (38%), and Ephemeroptera (32%). 
While we detected thousands of OTUs, just 51 were identified in at least 5% of samples (Table S3). Most of these 
frequently detected OTUs were prevalent in diets throughout most locations: 11 of the 19 sites contained at least 
half of these 51 OTUs. We grouped these frequent OTUs into shared genus labels rather than examining the 
taxonomic identity assigned to specific OTUs because several of these OTUs shared identical taxonomic labels, 
or alternatively, contained ambiguous species labels. Interestingly, the five most frequently detected genera are 
all coleopterans, and are present in at least 20% of all samples (Fig. 2). In fact, no other arthropod order had any 
genus represented in more than 20% of samples, although other orders contained multiple genera detected at 
lower frequencies. Overall, these data depict little brown bats consuming a diverse assortment of prey spanning 
many arthropod orders, although several beetle taxa are the most commonly consumed group in New Hampshire.

Two groups of beetles were frequently detected in guano samples that are listed as pests by US Forest Service 
(USFS) or US Department of Agriculture (USDA): white grubs of the genus Phyllophaga (detected in 52% of 
samples at 19 sites), and the Asiatic garden beetle, Maladera castanea (37% of samples at 18 sites). Only one 
other exact species match was identified as a pest in our dataset, the forest tent caterpillar moth, Malacosoma 
disstria (25 distinct samples detected at 13 sites). Because matching species identities in different databases can 
be complicated by ambiguous labels and incomplete records, we expanded our search to include any taxa we 
detected that shared the genus of a pest listed by USFS or USDA. Bats consumed a much wider variety of taxa 
when comparing at the genus level; 32 pest genera were identified, all of which were detected in at least 10 samples 
and at multiple sites (Table 2). While genus-level identification of pests is not definitive as to whether these bats 
are consuming particular insect species, these results suggest that bat guano sampling may provide a robust and 
rapid survey method for forest and agricultural pests, with refinements possible to focus on particular species.

Three separate analyses investigated how bat diets varied with temporal and spatial factors: (1) comparing 
effect of bat diet on sampling date only, by comparing samples collected at a single site across multiple sampling 
windows in a single year; (2) comparing effects between multiple sites and sampling windows in a single year; 
(3) comparing effects of multiple sites at a single sampling date between multiple years. Sampling windows are 
defined in the Methods section and were used break each season into periods of equal length.

First, we compared bat diets temporally, and examined samples collected at a single site (Fox State Forest 
in Hillsboro, NH, USA; the site with the most complete collection data) in 2016. Sample collection spanned 
6.5 months at the site, beginning in sampling window 3 on April 7 and ending in sampling window 8 on October 

Table 1.  Number and fraction of samples with a sequence variant (OTU). OTUs are classified to a particular 
arthropod order among all bat guano samples collected in 2015 and 2016 throughout 19 sites in New 
Hampshire, USA. OTUs were clustered by collapsing exact sequence variants at 98.5% identity. Orders with 
fewer than ten samples detected included: Entomobryomorpha (4 samples), Plecoptera (4), Thysanoptera (3), 
Amphipoda (2), Dermaptera (2), Orthoptera (2), Zygentoma (2), Mantodea (1), Opiliones (1), Poduromorpha 
(1), and Symphypleona (1).

Order Samples detected % Samples detected Distinct OTUs

Coleoptera 829 0.922 766

Diptera 659 0.733 623

Lepidoptera 582 0.647 364

Trichoptera 340 0.378 111

Ephemeroptera 289 0.321 74

Hemiptera 193 0.215 102

Hymenoptera 174 0.194 99

Araneae 126 0.14 50

Megaloptera 116 0.129 38

Trombidiformes 114 0.127 57

Psocodea 80 0.089 27

Blattodea 76 0.085 9

Mesostigmata 33 0.037 13

Sarcoptiformes 31 0.034 2

Neuroptera 26 0.029 9

Odonata 14 0.016 3

Other taxa  < 10 0.026 15
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21 (mean 13.5 ± 9.7 S.E. samples per window). We calculated the effective number of arthropod species in sam-
ples to determine whether the dietary richness varied by sample window using three metrics (Fig. S1): observed 
OTUs (SR), Shannon’s entropy (H), and Faith’s phylogenetic diversity (PD). We chose to apply multiple tests to 
contextualize our understanding of richness: while SR provides a measure of taxa richness, H and PD provide 
additional information about the evenness of a community (with PD further incorporating the phylogenetic 
signal driving that evenness), A Kruskal–Wallis test for group differences suggested modest group differences for 
sampling window for all three metrics: SR (H(5) = 13.35, p = 0.02); H (H(5) = 9.79, p = 0.082); PD (H(5) = 11.99, 
p = 0.035). While a post hoc Dunn’s test revealed a small number of significant pairwise differences in species 
richness between sampling windows for uncorrected data, no significant differences were detected after applying 
a Benjamini–Hochberg correction. This indicates there was little variation in the richness or evenness of species 
detected in the sampling windows throughout the entirety of the foraging season at this site.

However, we detected variability in diet composition, with significant main effect of sampling window for 
both non-phylogenetic (Dice-Sorensen; ADONIS:  R2 = 0.22; P < 0.001; Table S4) and phylogenetic distance esti-
mates (unweighted UniFrac; ADONIS:  R2 = 0.19; p < 0.001) (Table S4). Evaluating diet composition using both 
phylogenetic along with non-phylogenetic distance measures helps contextualized what’s on the menu for these 
bats: with phylogenetic-weighted distances showing significant differences in diet, we understand that bats are 
not just eating different collections of any type of bugs, but they are consuming different collections of evolu-
tionarily divergent types of bugs at different points of the season. Principal Coordinates Analyses (PCoA) using 
Dice-Sorensen (Fig. 3a) and unweighted UniFrac (Fig. 3b) distance measures clustered samples along expected 
temporal gradients, with early and late samples forming distinct groups between a third cluster of samples col-
lected mid foraging season. The composition of frequently detected taxa at Fox State Forest was consistent with 
overall observations across New Hampshire sites, with coleopteran, dipteran, and lepidopteran orders represent-
ing the majority of OTUs detected (Fig. 3c). However, the dominant taxa shifted throughout the season, with 
beetle taxa being far more detected in early and mid-season samples, while flies were the most detected taxa in 
the later part of the foraging season. In particular, white grub beetles of the genus Phyllophaga were detected in 
the majority of samples at Fox State Forest in the early sampling windows, while non-biting midges in the genus 
Chironomus were common in later sampling windows (Fig. 3d).

We next evaluated whether sample richness and species composition varied across both location and date 
within one season. We focused on samples collected from seven locations in 2016 during sampling windows 4–6 
(15.8 ± 9.1 samples per site + window group) due to the completeness of this dataset. Species richness varied by 
site + window groups for all three measures: SR (H(20) = 49.59, p < 0.001); H (H(20) = 39.06, p < 0.005); and PD 
(H(20) = 91.12, p < 0.001). Species richness measures were broadly similar across various site + window groups 
for non-phylogenetic measures, but more variable among Faith’s PD diversity (Fig. S2). A post hoc Dunn’s test 
for pairwise differences illustrated that only a small fraction of possible group pairs were significantly different 
after multiple significance correction among non-phylogenetic measures and were largely attributed to a single 
site + window with elevated richness (of the 210 pairwise comparisons, 7 of 10 significant differences included the 
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Figure 2.  Proportion of samples with commonly detected genus labels organized by arthropod order. Genera 
shown represent labels present in at least 5% of samples across all New Hampshire sites. One particularly 
frequent taxon was missing a genus-specific label and is listed by its known family and generic OTU alias (f. 
Chironomidae OTU-19).
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5-EPS window + site group). Similarly, significant pairwise differences in phylogenetic diversity among site + win-
dow groups were largely attributed to just 3 of 21 potential site + window groups (4MAP, 6HOL, 6PEN). In 
particular, 4MAP was significantly lower in diversity compared to nine other site + window groups, while 6HOL 
and 6PEN groups were larger in phylogenetic diversity relative to 8 and 5 site + window pairs, respectively (Fig-
ure S3). Collectively, these comparisons suggest that limited variability in dietary richness over different sampling 
windows and across multiple New Hampshire sites, although a few particular sites and sampling periods differed.

Diet composition varied in both space and time, with significant main effects for sampling widow and site, as 
well as their interaction, for both Dice-Sorensen and unweighted UniFrac estimates (Table S5). However, a greater 
proportion of variation in each PERMANOVA calculation was attributed to sampling site than sampling window 
for both Dice-Sorensen (Adonis: site  R2 = 0.13, p < 0.01; window  R2 = 0.05, p < 0.01; Table S5) and unweighted 
UniFrac (Adonis: site  R2 = 0.14, p < 0.01; window  R2 = 0.05, p < 0.01; Table S5) distances. The first two principal 
component axes captured only a modest proportion of variation for Dice-Sorensen (23.5%) or unweighted-
UniFrac (25%) distance measures (Fig. 4a), indicating that many diet components are shared throughout these 
New Hampshire sites and sampling windows. Nevertheless, particular site + window groups can be discriminated 
by particular taxa at both the order (Fig. 4b) and genus (Fig. 4c) levels. An indicator species analysis (of shared 
genus labels, thus really an indicator ‘genus’ analysis) was performed separately for sampling window, site, and 
site + window groups (Fig. 4c) and identified representative taxa from multiple orders significantly associated 
with groups in each test. The majority of significant associations occur in one sampling window (window 6, 60% 
of significant taxa), or were associated with a single sampling site (HOL, 50% of taxa), though every distinct site 

Table 2.  Genera detected in bat guano. Pest taxa listed by the US Forest Service or US Department of 
Agriculture were matched at genus level to sequence variants classified in bat guano. The exact species matches 
are highlighted in bold. The most prevalent pest genera, Phyllophaga, is listed by the US Forest Service as a 
complex group, thus no single species is highlighted. Remaining taxa shared common genus labels only but 
were not exact species matches. Taxa endemic to New Hampshire are denoted (+) or endemic to other New 
England states as (*). Numbers of samples detected for species within shared genus listed in parentheses.

Order Family Genus Samples Sites Detected species

Coleoptera Scarabaeidae Phyllophaga 469 19 hirsuta (399), anxia+ (216), sp. (175), longispina+ (158), hirticula+ (45), fraterna+ (36), tristis+ (29), 
drakii+ (12), crenulata+ (11), marginalis+ (11)

Coleoptera Scarabaeidae Maladera 330 18 castanea+ (330)

Lepidoptera Lasiocampidae Malacosoma 29 13 disstria+ (25)

Coleoptera Elateridae Hemicrepidius 277 18 memnonius+ (250), brevicollis* (50)

Coleoptera Elateridae Melanotus 204 18 hyslopi+ (107), sp. (49), similis+ (44), decumanus+ (29), communis+ (22)

Coleoptera Scarabaeidae Diplotaxis 199 18 sp. (199)

Coleoptera Cerambycidae Monochamus 51 12 notatus+ (36), sp. (14)

Coleoptera Elateridae Athous 49 14 brightwelli+ (37)

Coleoptera Curculionidae Dendroctonus 18 9 sp. (17)

Coleoptera Curculionidae Strophosoma 13 7 fulvicorne (13)

Diptera Tipulidae Tipula 245 19 sp. (203), entomophthorae (25), ultima (17), monticola (10)

Diptera Tipulidae Nephrotoma 28 10 sp. (11)

Hemiptera Cicadellidae Gyponana 33 12 sp. (28)

Hemiptera Miridae Blepharidopterus 16 4 provancheri+ (16)

Hemiptera Pentatomidae Banasa 15 7 calva+ (15)

Hemiptera Rhyparochromidae Ozophora 14 7 picturata+ (14)

Hymenoptera Formicidae Tetramorium 14 7 caespitum+ (14)

Lepidoptera Gracillariidae Caloptilia 94 15 alnivorella (79), sp. (13)

Lepidoptera Tortricidae Olethreutes 65 16 fasciatana+ (55)

Lepidoptera Depressariidae Psilocorsis 59 13 reflexella+ (54)

Lepidoptera Depressariidae Agonopterix 58 7 sp. (57)

Lepidoptera Noctuidae Amphipyra 54 10 pyramidoides+ (54)

Lepidoptera Crambidae Crambus 54 14 agitatellus (36), praefectellus (15)

Lepidoptera Tortricidae Epinotia 37 13 transmissana+ (14), solicitana+ (11)

Lepidoptera Tortricidae Pandemis 31 14 sp. (26)

Lepidoptera Tortricidae Argyrotaenia 30 10 quercifoliana+ (10)

Lepidoptera Tortricidae Cydia 30 11 latiferreana (21)

Lepidoptera Lasiocampidae Tolype 27 4 sp. (26)

Lepidoptera Gelechiidae Coleotechnites 25 9 piceaella+ (11)

Lepidoptera Sesiidae Synanthedon 23 10 acerni+ (23)

Lepidoptera Blastobasidae Hypatopa 14 6 vestaliella (11)

Lepidoptera Tineidae Acrolophus 13 7 sp. (13)
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or sampling window contains at least one indicator taxa, as did 13 of 21 possible site + window groups (Table S6). 
Notably, taxa detected in these bat guano may be associated with particular combinations of sampling window, 
site, or site + window groups (Figure S3), often befitting the life histories of these arthropod prey items. For 

Figure 3.  Changes in bat diet arthropod composition at one site. Compositional change at Fox State Forest 
(Hillsboro, NH, USA) throughout an entire foraging season in 2016. Sampling windows define 37-day periods 
beginning in early April and ending in late October. PCoA ordinations shown for (a) Dice-Sorensen index and 
(b) unweighted UniFrac distance metrics are grouped into early, mid, and late foraging season clusters; ellipses 
depict 95% confidence intervals around window group median. (c) The proportion of detections per arthropod 
order in a sampling window shift from being most represented by coleopteran taxa in early season to dipteran 
taxa in late season. (d) The fraction of samples with particular genera detected at each sampling window 
suggest specific taxa are major diet targets at different points of the foraging season. For example, coleopteran 
(Phyllophaga) in early sampling windows and dipteran (Chironomus) in late sampling windows.
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example, the commonly detected genus Phyllophaga, fittingly known as a May or June bug, was strongly associ-
ated with sampling windows 4 and 5 (spanning April through June) but not window 6 (early July to early August).

Samples collected from three sites in both 2015 and 2016 were compared within a single sampling window 
(window 6, July 5 to August 11) to assess the variability in bat diet richness and composition between years 
(13.5 ± 4.5 samples per site + year group). Species richness did not vary significantly among site + year groups for 
any metric: SR (H(5) = 6.54, p = 0.26); H (H(5) = 2.51, p = 0.77); and PD (H(5) = 3.56, p = 0.62). A PERMANOVA 
revealed that diet composition was significant for main effects of Site and Year, as well as their interaction for both 
metrics. However, little of the variation was captured in the model by either Dice-Sorensen (Adonis: residual 
 R2 = 0.86) or Unweighted-UniFrac (Adonis: residual  R2 = 0.87) distances. Likewise, ordinating the first two prin-
cipal components of the PCoA explained a limited amount of variation for both Dice-Sorensen (17.7%) and 
Unweighted-UniFrac (20.6%) metrics, yet no clustering was apparent for either site, year, or site + year groups 
(Fig. 5a). Few taxa (at the genus level) were identified as significant indicators of a particular site + year group, 
with just 4 genera associated to a particular site + year, and 3 genera associated to some combination of site + year 
groups (Fig. 5b). Indeed, at the taxonomic order level, the proportion of taxa detected were largely consistent 
between years at a given site (Fig. 5c).

Discussion
The earliest work characterizing insectivorous North American bat diets was performed using morphological 
techniques—even within New Hampshire  specifically19,29—yet these visual identifications were largely limited 
to classifying prey to the order or family level and may have underrepresented or misassigned  taxa17. Our study 
reaffirms that bats in New Hampshire are indeed foraging on many of the same arthropods described in these 

0.00

0.50

1.00

 sampling Window

fra
ct

io
n 

of
 d

et
ec

tio
ns

Order
Araneae
Coleoptera
Diptera
Ephemeroptera
Hemiptera
Lepidoptera
Megaloptera

other

Psocodea
Trichoptera
Trombidiformes

Dice−Sorensen

−0.4 0.0 0.4 0.8

−0.25

0.00

0.25

0.50

Axis.1   [16.4%]

Ax
is.

2 
  [

7.
1%

]

Unweighted−UniFrac

−0.6 −0.3 0.0 0.3

−0.4

−0.2

0.0

0.2

Axis.1   [18.1%]

Ax
is.

2 
  [

6.
9%

]

Window
4
5
6

Site
CNA
EPS
FOX
HOL
HOP
MAP
PEN

CNA EPS FOX HOL HOP MAP PEN
A B

C

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

Araneae
Coleoptera

Diptera
Ephemeroptera

Hemiptera
Lepidoptera

Megaloptera
Psocodea

Trichoptera
Trombidiformes

w
in

do
w

si
te

si
te

+w
in

do
w

C
lu

bi
on

a
Te

tra
gn

at
ha

Ar
rh

en
od

es
At

ho
us

C
ym

in
di

s
D

en
dr

oi
de

s
Ec

to
pr

ia
H

em
ic

re
pi

di
us

M
al

ad
er

a
M

el
an

ot
us

N
ic

ro
ph

or
us

Ph
yl

lo
ph

ag
a

Pl
ag

io
m

et
rio

na
St

ro
ph

os
om

a
Ab

la
be

sm
yi

a
An

to
ch

a
C

ha
ob

or
us

C
he

ilo
tri

ch
ia

C
ne

ph
ia

D
ic

ra
no

m
yi

a
f. 

C
ec

id
om

yi
id

ae
 O

TU
−2

10
f. 

C
hi

ro
no

m
id

ae
 O

TU
−1

9
f. 

C
hi

ro
no

m
id

ae
 O

TU
−4

41
f. 

C
hi

ro
no

m
id

ae
 O

TU
−8

11
Fa

nn
ia

H
el

iu
s

M
ic

ro
te

nd
ip

es
Ph

ae
no

ps
ec

tra
Pr

oc
la

di
us

Ps
eu

do
lim

no
ph

ila
Si

m
ul

iu
m

Ta
ny

ta
rs

us
Ti

pu
la

C
ho

ro
te

rp
es

Eu
ry

lo
ph

el
la

H
ex

ag
en

ia
M

ac
ca

ffe
rti

um
St

en
on

em
a

Bl
ep

ha
rid

op
te

ru
s

D
er

ae
oc

or
is

Ph
oe

ni
co

co
ris

Pi
lo

ph
or

us
Ap

od
a

Ar
gy

ro
ta

en
ia

Bl
as

to
ba

si
s

Bo
nd

ia
C

al
op

til
ia

C
ne

ph
as

ia
C

ol
eo

ph
or

a
C

ol
eo

te
ch

ni
te

s
Eu

co
pi

na
O

le
th

re
ut

es
Ps

ilo
co

rs
is

To
rtr

ic
id

ia
Xe

no
le

ch
ia

C
ha

ul
io

de
s

M
et

yl
op

ho
ru

s
Pe

rip
so

cu
s

Tr
ic

ha
de

no
te

cn
um

H
yd

ro
ps

yc
he

Li
m

ne
ph

ilu
s

Ph
ry

ga
ne

a
Ph

yl
oc

en
tro

pu
s

Pl
at

yc
en

tro
pu

s
Tr

ia
en

od
es

f. 
Py

gm
ep

ho
rid

ae
 O

TU
−9

6
f. 

Sc
ut

ac
ar

id
ae

 O
TU

−1
27

0
Pi

on
a

4
5
6

CNA
EPS
FOX
HOL
HOP
MAP
PEN

CNA4
CNA6
EPS5
EPS6
FOX4
FOX6
HOL4
HOL5
HOL6
HOP4
MAP4
MAP6
PEN6

0.2

0.5

0.8

association
statistic

Figure 4.  Changes in bat diet arthropod composition at multiple sites and sampling windows in 2016. (a) 
PCoA ordinations shown for Dice-Sorensen index and unweighted UniFrac distance metrics depict sampling 
site (point shape) or sampling window (color); ellipses depict 95% confidence intervals around window group 
median. (b) The proportion of detections per arthropod order in a sampling window for each site; arthropods 
with fewer than 2% of detections aggregated as “other” taxa. (c) Indicator species analysis performed at genus 
level to identify taxa associated with sampling window, or site, or site + window groups. Taxa with ambiguous 
genus labels identified by known arthropod family labels.
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earlier morphological analyses: principally beetles, flies, and moths. However, our molecular approach indicates 
a more expansive diversity of arthropod prey than the earlier visual analyses have described, with 12 orders of 
insects and spiders detected in at least 5% of our samples. This was not unsurprising, as molecular metabarcod-
ing approaches are known to reveal taxa previously unrecognized by morphological  techniques24,30. We also 
detected arthropod orders like Blattodea, Psocodea, and Megaloptera, including cockroaches such as Parcoblatta 
pennsylvanica, and fishflies such as Chauliodes pectinicornis—taxa endemic to New Hampshire, but absent from 
previous bat diet records employing visual techniques. Our molecular analyses provide strong evidence that 
little brown bats in New Hampshire bats are capable of consuming a more diverse assortment of prey than their 
historical depictions.

Our most frequently detected arthropod orders (beetles, flies, and moths) were similarly depicted in previous 
molecular diet analyses of little brown  bats2,3 and big brown  bats6 from eastern Canada, as well as little brown 
bats in  Wisconsin4. However, we found that the particular proportions of these arthropod components are in 
contrast to the preferences ascribed to these earlier reports. Coleopteran, not lepidopteran taxa, were by far the 
most frequently detected arthropod order in our study, despite these previous investigations indicating that bee-
tles are preferred by big brown bats, and moths preferred by little brown bats. While it is possible that particular 
compositional differences occur between studies because of different primers used to generate the COI ampli-
con data, previous comparisons of these primer sets show no evidence for bias towards amplifying coleopteran 
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 taxa31,32, and would likely only reduce the breadth of taxa in earlier studies instead of the selective amplification 
of beetle over lepidopteran sequences. Additionally, different methodologies between studies produced similar 
OTU richness estimates between our single guano pellet approach, other North American insectivore richness 
values sampling from individual  bats22, or earlier studies of little brown  bat3 and big brown  bat6 diets that used 
a bulk sampling (i.e., pooled guano pellets) approach. It is also possible our passive sampling technique failed 
to account for big brown bat contributions mixed in with little brown bat guano, as our study did not physi-
cally capture the bat to confirm species identity. However, the preponderance of bat-classified COI sequences 
characterizes our samples as distinctly belonging to the little brown bat, with over 99.9% of all bat-classified COI 
sequences assigned to the little brown bat in hundreds of guano samples. It has also been suggested that the hardy 
carapace of a beetle increases the likelihood of detection over softer-bodied prey items, yet the same authors also 
demonstrate that molecular techniques can consistently detect other arthropod  orders6. Indeed, while we detected 
five distinct genera of beetles in over 20% of all samples, we also frequently detected particular genera in other 
arthropod orders such as Diptera. For example, dipteran sequences classified to the genus Tipula were detected 
in 144 samples, while the genus Hexagenia (order Ephemeroptera) were detected in 105 samples. Additionally, 
beetles were not universally the most dominant taxa at all sites or sampling windows. For example, samples col-
lected in Holderness, NH contained more ephemeropteran and dipteran detections than coleopteran (see HOL 
in Fig. 1A). Thus, it is likely that the inordinate fondness for beetles observed among these little brown bats in 
New Hampshire is driven by prey availability rather than particular methodological differences.

Our extensive sampling across multiple sites and time periods was motivated to understand how spatial or 
temporal factors vary with New Hampshire bat diets. First, we discovered that the extent of diet composition 
varying with time was related to the phenology of the available prey in question. Thus, the frequency of detections 
for particular taxa in particular sampling windows routinely matched the expected life history of the prey. For 
example, beetles classified to the Phyllophaga genus were the most frequently detected taxa in our entire study, 
yet the number of samples with Phyllophaga detected dropped from 90% of samples between late April to late 
May, to 77% of samples between late May to early July, to 29% of samples between early July and mid-August. 
The same pattern extended to other arthropods: the psocodean barklouse (genus Metylophorus) was detected 
only in late summer and mid-fall sampling periods, befitting their seasonally late adult aerial emergence; non-
biting midges like the dipteran (genus Chironomus) were detected in 10% or fewer samples from April through 
early July, yet increased from 18% of samples by mid-August, to nearly 60% of samples between August and 
September, an expected period of peak mating swarm activity. Collectively, our evidence supports the notion that 
New Hampshire bat diet composition shifts throughout the foraging season because of the variation in available 
prey, which is itself a function of the particular life cycle of the taxa in question. It is therefore no surprise to see 
May and June bugs at the top of the menu in May and June months. Systematic sampling of prey availability was 
beyond the scope of our study but would improve our inferences about the strength of the connections between 
bat diets and arthropod phenology.

The phenology of prey also explains the relatively modest effect of the sampling period on diet composition. 
Our samples were organized in 37-day sampling windows, a period of time shorter than the adult lifespan of 
many insect taxa. Thus, taxa detected across multiple sampling windows reduce the overall effect of time in our 
model. We observed that shifts in diet composition were the least pronounced among proximal sampling win-
dows and the greatest during the beginning and end of the foraging season among samples collected at a single 
site in 2016. Likewise, when comparing across multiple sites in 2016 between three sampling periods spanning 
late April through mid-August, sampling period explained no more than 5% of the observed variation in diet 
composition.

Diet also varied based on sampling site. However, the effect of sampling location on diet composition was 
complicated by the fact that most sites contained highly similar land cover attributes; most sites consisted of 
mixed, softwood, and hardwood forest land cover. Thus, the effect of site explained no more than 14% of the 
observed variation in diet composition among samples collected at the seven locations evaluated in 2016. How-
ever, the greatest number of compositional differences did occur at the site with the greatest land cover difference. 
Samples collected from Holderness, a location less than 500 m to Squam Lake (a lake over 27  km2), contained 
more than half of all taxa uniquely associated with a particular site in an indicator species analysis, the majority 
of which were aquatic invertebrates. In addition, after further restricting this indicator analysis to particular 
site + window groups, 13 of the 23 genera significantly associated to a single group were from Holderness.

With examples of regional  persistence33,34 providing an opportunity at conserving bat populations decimated 
by White-Nose Syndrome (WNS)35,36, diet analyses can play a consequential role informing future management 
considerations. The earliest U.S. Fish and Wildlife Service national plans for managing WNS specifically outlined 
the need to identify research methods effective for monitoring and conserving affected  populations37,38. These 
kinds of guano analyses offer a rapid and robust characterization of the particular habitat resources a population 
requires. Our work builds on earlier studies indicating that little brown bats are sufficiently flexible in foraging 
across a range of land cover  types2–4, yet it remains unclear whether this foraging flexibility is equally robust 
among the many other bat species affected by WNS. We recommend that future management strategies include 
molecular diet analyses in regional and national plans.

Beyond providing information on habitat requirements, molecular diet analyses of bat guano can also identify 
economic benefits bats may be providing. Bats provide well-known ecosystem  services39, and insectivorous bats 
in particular can provide significant economic  benefits40 as consumers of pests in a variety of agricultural and 
forested  environments31,41–43. We discovered that two of the most ubiquitous diet components were beetle pests: 
the Asiatic garden beetle in 36% of samples and white pine grubs in the genus Phyllophaga in 48% of samples. 
These are  turf44 and forest/crop45,46 pests, respectively, though they are of limited ecological and economic con-
cern, and both were known to exist in New Hampshire. Among taxa detected in New Hampshire bat guano that 
shared a common genus with pests of concern to the USDA or USFS, all were known to exist in the Northeast, 
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although several had not been recorded in New Hampshire specifically according to records available through the 
Insect and Arachnid Collections at the University of New  Hampshire47. In some cases, it may be evident that this 
ambiguous classification is not a concern. For example, while there are five known species in the Coleotechnites 
genus in New Hampshire, the significant forest pest from our study, Coleotechnites milleri, is not one of them, 
and the host tree does not exist on the east coast. However, in other cases such as with the genus Dendroctonus 
it is not clear whether this ambiguous sequence is derived from one of the three endemic bark beetles, or if it 
represents a more concerning species such as D. mexicanus. Because of the ease with which guano is collected and 
the relatively inexpensive manner that sequence data can be obtained, molecular diet analyses can serve a dual 
benefit: providing a robust assessment of the dietary breadth of a species, as well as leveraging the bats’ expansive 
foraging capacity to screen for potential pests of concern within agency frameworks such as the USDA Forest 
Service early warning  system48. While detections of putative pests discovered using this molecular approach are 
not definitive, and unlikely to be conclusive for species-level identification without further targeted comparisons 
of vouchered specimens, our results demonstrate that the broad array of arthropod orders detected using this 
approach can reveal pests or other non-native insects that were previously undescribed in an area.

Methods
Sample collection. Individual guano pellets were passively collected each week at sites throughout New 
Hampshire (Fig. 1) beginning June 2015 and ending October 2016. We relied on citizen scientists to assist with 
collecting samples at 19 of the 20 sites. Locations consisted of a mix of forest and agricultural landscapes typi-
cal of the region. We obtained data from partners collecting guano at a nature center (HOL in Fig. 1), a forest 
research station (FOX), conservation lands (BRN, MAP, MAS, WLD), and privately owned homes (all other 
sites) from bat colonies occupying structures such as attics, barns, garages, and bat houses. Volunteers were 
provided with supplies (forceps, dust masks, nitrile gloves, ethanol wipes, plastic sheets), and were instructed to 
collect up to 12 fresh guano samples per week by transferring individual pellets into the pre-filled microcentri-
fuge tubes containing 1 mL storage buffer (3.5 M ammonium sulfate, 16.7 mM sodium citrate, 13.3 mM EDTA, 
pH 5.2). Plastic sheets were replaced weekly to avoid cross contamination between weeks, and samples were 
shipped in batches back to our lab approximately monthly. Samples were stored at −80 °C until DNA extraction.

All research and experimental protocols were approved and performed in accordance with relevant guide-
lines following the University of New Hampshire’s licensing committee (IACUC) protocols 160105 and 181209. 
Likewise, we obtained informed consent from our citizen scientist volunteers.

Metabarcoding. DNA was extracted from individual guano pellets using 96-well plate format of the Qia-
gen DNeasy PowerSoil Kit (Qiagen, Hilden, Germany) following manufacturer guidelines. Samples were eluted 
with 60 µL of elution buffer and up to eight extraction blanks were included per 96-well plate. Arthropod COI 
gene fragments were targeted for amplification using primers detailed in Jusino et al.31. We modified the origi-
nal primer sequences to preserve the COI-specific regions, but integrated linker, pad, adapter, and barcode 
sequences into the oligo following Kozich et al.49. We used 25 µL reactions with 10 µL of extracted DNA, 1 µL 
each of 10 mM forward and reverse primer pairs, and 13 µL of AccuStart II PCR SuperMix (Quanta BioSciences, 
Gaithersburg, MD, USA). Reaction conditions consisted of an initial 2 min denaturation at 95 °C, followed by 
30 cycles of 20 s at 95 °C, 15 s at 50 °C, and 60 s at 72 °C and finally a 10 min extension at 72 °C. PCR products 
were quantified using a PicoGreen assay (Invitrogen, Carlsbad, CA, USA) with a Tecan plate reader using exci-
tation and emission wavelengths of 480 nm and 520 nm, respectively (Tecan Group, Männedorf, Switzerland). 
Samples were pooled in approximately equimolar ratios. The initial pool volume was reduced with a vacuum 
concentrator to approximately 2 mL and was cleaned with a QIAquick PCR purification kit (Qiagen, Hilden, 
Germany); libraries were eluted in 30 µL elution buffer. Libraries were quantified with a Qubit High Sensitiv-
ity assay (Thermo Fisher Scientific, Waltham, MA, USA) and fragment sizes were analyzed using TapeStation 
D1000 ScreenTape (Agilent Technologies, Santa Clara, CA, USA).

Libraries containing samples from 2015 were sequenced at the Hubbard Center for Genome Studies at the 
University of New Hampshire on an Illumina HiSeq (Illumina, San Diego, CA, USA) using v2 chemistry with 
500 cycles of 2 × 250 bp paired-end reads. Samples collected in 2016 were sequenced on a MiSeq machine at 
TGen North using v3 chemistry with 600 cycles of 2 × 300 bp paired-end reads. Raw sequence reads are available 
at NCBI BioProject PRJNA560640.

Sequence processing. Raw demultiplexed sequences were trimmed using Cutadapt v-2.350 and imported 
into QIIME  251. Sequences were denoised using DADA2 v1.10.052 with the QIIME 2 q2-dada2 function ‘qiime 
dada2 denoise-paired’ with default settings except for the additional parameters ‘--p-trunc-len-f 181’ and 
‘--p-trunc-len-r 181’, resulting in a set of representative amplicon sequence variants (ASVs) for each library. 
Library-specific sequences and ASV tables were merged into a single dataset using ‘qiime feature-table merge’ 
and ‘qiime feature-table merge-seqs’ commands, respectively. The resulting study-wide collection of ASVs were 
further clustered at 98.5% identity using ‘vsearch --cluster_size’ with default parameters. Note that these sequence 
clusters, herein referred to as operational taxonomic units (OTUs), represent the clustering of exact sequence 
variants, rather than a conventional notion of an OTU that is often derived from clustering raw sequence data 
directly.

Biological mock community samples were sequenced in eight of nine libraries shared with New Hampshire 
guano samples; these mock data were used in a separate  experiment32. Both positive and negative control sam-
ples were removed from the dataset, as were the ASVs matching the expected biological mock sequences. The 
GitHub repository for this project provides additional details regarding data processing (‘sequence_processing.
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md’) and sequence quality control processes (‘contamination_evaluation.md’) https:// github. com/ devon orour 
ke/ nhgua no/ blob/ master/ docs/.

Representative sequences were classified using a custom database curated with reference sequences and taxo-
nomic information obtained from the Barcode of Life Data System (BOLD)  database53. The development and 
use of this curated reference set was described  previously54. Briefly, we first obtained the BOLD COI sequences 
using a custom R script that queried the BOLD API using the ’bold’ R  package55. Reference sequences were 
filtered for nucleotide ambiguity and homopolymer runs (no more than 5 degenerate bases per sequence or 
12 homopolymers) with ’qiime rescript cull-seqs’, as well as for length (min 250 bp, max 1600 bp) with ’qiime 
rescript filter-seqs-length’. The resulting sequences and their associated taxonomic identities were dereplicated 
by applying a Least Common Ancestor (LCA) method that gave preference to sequences represented most fre-
quently with ’qiime rescript dereplicate --p-mode ’super’ --p-derep-prefix’. Remaining sequences were trimmed 
to boundaries defined by our COI primer sequences by performing multiple sequence alignment of reference 
and primer sequences with  MAFFT56. The remaining primer-trimmed, nucleotide quality and length-filtered 
references were further filtered for length and subsequent gaps removed with ’qiime rescript degap-seqs’, retaining 
only reference sequences with a minimum length of 170 bp. Finally, these reference sequences were dereplicated 
a second time with the same LCA method used earlier with ’qiime rescript dereplicate’. The database consists of 
739,345 unique COI reference sequences and taxonomic labels.

We used a hybrid approach in classifying representative sequences, prioritizing exact matches from VSEARCH 
first, then retaining Naive Bayes classifications with sufficient information. The naive Bayes classifier was trained 
using the RESCRIPt command ’qiime rescript evaluate-fit-classifier’, producing the QIIME object required for 
Naive Bayes classification. We then classified the representative sequences using VSEARCH and naive Bayes 
approaches separately. For VSEARCH, we required 100% identity across 94% query coverage, with ’qiime feature-
classifier classify-consensus-vsearch’, while default parameters were used in the naive Bayes classification process 
with ’qiime feature-classifier classify-sklearn’.

All bat-associated sequences classified were identified separately with naive Bayes and VSEARCH, with both 
read abundances and sample occurrences. The three OTUs classified as a bat by VSEARCH were identical to the 
taxonomic labels assigned by naive Bayes classifications, though the naive Bayes classifier had three additional 
distinct labels of similar bat species. While we lacked visual confirmation of species identity for all sites, these 
data suggest our diet analyses are restricted to the little brown bat, as it was the only bat species from this region 
identified in our dataset.

For both VSEARCH and naive Bayes-classified OTUs, we separately filtered the dataset to retain only those 
OTUs with taxonomic family information assigned to phylum "Arthropoda". Thus, an OTU may be included that 
lacked genus or species labels, provided it retained an unambiguous family label. To select a final list of OTUs, 
we first retained VSEARCH-classified OTUs that fit these filtering criteria. Among VSEARCH-classified OTUs 
that did not pass this filtering threshold, we then selected from the naive Bayes-classified OTUs that met the 
same standard, when possible. In all, 559 OTUs were selected using the VSEARCH method initially, and 2,627 
subsequently from the naive Bayes method. We manually resolved a single label that was undefined by either 
classification method, OTU-1, which was classified as M. castanea after using NCBI  BLAST57 and discovering an 
exact match. Among all OTUs remaining across all samples, we next normalized samples using a method of scal-
ing with ranked subsampling using the SRS R  package58. We retained only those samples (and their OTUs) with a 
per-sample minimum of 1000 arthropod-classified reads for subsequent diversity analyses. These sequences were 
further used to generate a rooted tree using the function ’qiime phylogeny align-to-tree-mafft-fasttree’, applied 
for all phylogenetic-based estimates (Faith’s phylogenetic diversity and unweighted UniFrac).

Diversity analyses. Diversity analyses were conducted among all guano samples to identify the most fre-
quent taxa consumed by little brown bats throughout New Hampshire, as well as among particular subsets of 
samples to evaluate whether dietary richness and community composition varied among with particular collec-
tion sites or dates. Samples were grouped into 37-day sampling windows to maximize the greatest number of 
samples in the smallest range of time shared across the most locations that generated sufficient sequence data 
(Table S2). For example, window 3 was a sampling period from March 16 to April 22, window 4 was April 23 to 
May 29, and window 8 was September 17 through October 24. Windows with a shorter time period, say monthly, 
did not contain enough samples to robustly compare across the season or spatially. We applied the same methods 
for each spatial and/or temporal investigation. Samples were assessed for species richness using three metrics: 
observed OTUs, Shannon’s entropy, and Faith’s phylogenetic diversity. Kruskal–Wallis tests were then applied to 
evaluate group differences, and a post hoc Dunn’s test (with Benjamini–Hochberg correction) assessed the statis-
tical significance of particular pairwise comparisons between groups. Community composition was calculated 
following a binary presence-absence transformation of sequence counts with Dice-Sorensen and Unweighted 
UniFrac distance measures. We evaluated differences in group medians and group dispersions with ‘adonis2’ and 
‘betadisper’ functions in  Vegan59, respectively. Principal coordinates analyses (PCoA) were completed with the 
‘ordinate’ function in  Phyloseq60 for each distance matrix. Indicator species analyses were completed with the R 
function ‘multipatt’ from the R ‘indicspecies’  package61, and restricted our analyses to those arthropod orders 
detected in at least 2% of samples in at least one group. Further descriptions of the bioinformatic steps, associ-
ated scripts, and related files for database construction, classification, and diversity analyses are available in the 
‘diversity_analyses’.md’ document in the project GitHub repository (see Data Accessibility below).

Pest analysis. To identify whether taxa classified in our dataset were considered forest or agricultural pests, 
we cross referenced lists maintained by the U.S. Forest Service (USFS) and the U.S. Department of Agricul-
ture (USDA). We used a custom R script, pest_work.R, to perform the comparisons, which were restricted to 

https://github.com/devonorourke/nhguano/blob/master/docs/
https://github.com/devonorourke/nhguano/blob/master/docs/
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first identifying how many sequence variants were exact species matches, then expanding the search to identify 
instances in which common genera were shared. This was done because there were instances in which the USDA 
did listed taxa as ambiguous species (e.g., Malacosoma sp.) thus even if we classified our taxa to a species level, 
an exact match was not possible.

Additional software. Note that additional software within the QIIME environment such as  Pandas62 
and  BIOM63 were used, as was a suite of R libraries including  ape64,  btools65,  cowplot66,  decontam67,  FSA68, 
 qiime2R69,  ggmap70,  ggpubr71,  ggrepel72,  indicspecies61,  landscapemetrics73,  lubridate74,  magicfor75,  Matrix76, 
 multcompView77,  pairwiseAdonis78,  phyloseq60,  raster79,  reshape280,  scales81,  sf82,  SRS58,  svglite83,  tidyverse84, 
 urbnmapr85,  usedist86, and  vegan59.

Data availability
Data are provided as private-for-peer review (shared publicly). All scripts, supplementary figures and tables, and 
metadata is currently stored at the following GitHub repository: https:// github. com/ devon orour ke/ nhgua no. 
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