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Effective deep learning for oral 
exfoliative cytology classification
Shintaro Sukegawa1,2*, Futa Tanaka3, Keisuke Nakano2, Takeshi Hara3,4, Kazumasa Yoshii3, 
Katsusuke Yamashita5, Sawako Ono6, Kiyofumi Takabatake2, Hotaka Kawai2, 
Hitoshi Nagatsuka2 & Yoshihiko Furuki1

The use of sharpness aware minimization (SAM) as an optimizer that achieves high performance for 
convolutional neural networks (CNNs) is attracting attention in various fields of deep learning. We 
used deep learning to perform classification diagnosis in oral exfoliative cytology and to analyze 
performance, using SAM as an optimization algorithm to improve classification accuracy. The whole 
image of the oral exfoliation cytology slide was cut into tiles and labeled by an oral pathologist. 
CNN was VGG16, and stochastic gradient descent (SGD) and SAM were used as optimizers. Each was 
analyzed with and without a learning rate scheduler in 300 epochs. The performance metrics used 
were accuracy, precision, recall, specificity, F1 score, AUC, and statistical and effect size. All optimizers 
performed better with the rate scheduler. In particular, the SAM effect size had high accuracy 
(11.2) and AUC (11.0). SAM had the best performance of all models with a learning rate scheduler. 
(AUC = 0.9328) SAM tended to suppress overfitting compared to SGD. In oral exfoliation cytology 
classification, CNNs using SAM rate scheduler showed the highest classification performance. These 
results suggest that SAM can play an important role in primary screening of the oral cytological 
diagnostic environment.

Oral cancer is a life-threatening malignant tumor of the head and neck region, with an estimated 350,000 new 
cases and more than 170,000 deaths worldwide  annually1. Most of the histological types of oral cancer are squa-
mous cell carcinomas. Treating oral cancer when it has already advanced in stage has been reported to have a 
significant impact on the patient’s post-treatment quality of life and is associated with a reduced possibility of 
complete  recovery2–4, which make early detection and treatment of paramount importance.

Histological diagnosis is required when malignancy or dysplasia of the oral cavity is suspected. However, 
biopsy is invasive because it involves surgical resection. Therefore, oral exfoliative cytology, a minimally invasive 
examination modality, is attractive and effective for initial diagnosis and screening. The purpose of oral cytology 
is primary screening to determine whether to make a histopathological diagnosis to obtain a definitive diagnosis 
and to screen out whether malignancy or dysplasia is  suspected5. The liquid-based cytology (LBC) method, in 
which cells are dispersed in a fixative solution and a thin layer of cells is generated on a slide, not only has the 
advantage of less chair-side work in clinical practice but also of standardizing the diagnosis because the prepared 
specimen is a thin-layered smear with few overlapping  cells6. The development of the LBC method provides 
accurate and standardized diagnoses and has made oral cytology more accessible.

The clinical flow of cytological diagnosis consists of rough screening by cytopathologists and definitive diag-
nosis by pathologists. First, cytological technicians or cytopathologists manually mark a key area of diagnosis 
using an ink marker. The marked area is then subjected to an appropriate secondary review by a  pathologist7. 
Unfortunately, manual testing to detect abnormal areas on oral cytopathological slides is a very tedious process 
for professional cytologists. Moreover, a lot of training is required to accurately diagnose abnormal cells manually 
under a microscope. Therefore, computer-aided technology is a boon for efficient diagnosis.

In recent years, deep learning has been developed and applied in various fields. The convolutional neural 
network (CNN), which originated from the neocognitron proposed by  Fukushima8, is a neural network in 
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which layers are connected by local coupling of common weights; it has brought about a revolutionary change 
in the field of image recognition. Deep learning using CNN has had a great effect on the classification of medi-
cal  images9,10. The development of various deep learning CNN  models11,12 and various optimization algorithms 
to improve the classification accuracy is rapidly progressing. There are various optimization algorithms, and 
in recent years, Sharpness Aware Minimization (SAM)13 has been reported as an effective learning method for 
CNNs. SAM is an optimization algorithm published by Google Research. Until now, the parameters were learned 
so that loss was minimized, but SAM is a new method for updating the parameters in consideration of minimum 
loss and the flatness of the surroundings.

Therefore, we hypothesized that using SAM as an optimization algorithm would improve the accuracy of 
the classifier. The purpose of this study was to perform two classifications of oral exfoliative cytology using deep 
learning and to analyze the performance using SAM as an optimization algorithm to improve classification 
accuracy.

Results
Searching for the optimal ρ in SAM. The results of the grid search for the optimal ρ search when using 
SAM as an optimizer are shown in the learning curve (Fig. 1). In general, it was shown that the larger ρ, the more 
epoch is required for convergence. The results of the grid search for the optimal ρ search when using SAM as 
an optimizer are shown in learning curves. In Epoch300, the convergence was good when ρ was 0.01 or 0.025. 
Overfitting occurs at ρ = 0.1. In the comparison of ρ = 0.025 and 0.01 in Loss, 0.025 was more stable.

Based on this result, ρ = 0.025 was adopted in this study to compare the performance of deep learning at 300 
epochs.

Comparison of learning curves between optimizer SAM and SGD with and without a learning 
rate scheduler. Figure 2 shows the learning curve for each deep learning model. Interestingly, as the learn-
ing progressed, the dissociation in the training and validation data in accuracy and loss was smaller in SAM than 
in stochastic gradient descent (SGD). In other words, SGD showed overfitting with increasing epochs. On the 
other hand, even with increasing epochs, SAMs tended to be less likely to show overfitting. We also found that 
the time to learning was shortened by adding a learning rate scheduler.

Comparison of optimizer SAM and SGD with and without a learning rate scheduler. Table 1 
shows the results of the performance metrics with and without the learning rate scheduler in the SGD and 
SAM optimizers. In SGD, the introduction of learning rate scheduling improved all performance metrics except 
precision. In addition, in SAM, the introduction of learning rate scheduling improved all performance. Of 
all the models, the one with the highest AUC was the one that introduced the learning rate into the SAM. 
(AUC = 0.9328) (Supplementary Fig. S1).

Comparison of optimizers SAM and SGD with and without a learning rate scheduler. For each 
performance metric, we performed a statistical evaluation for each model difference in Table 2. The introduction 
of the learning rate scheduler showed a statistically significant difference in P-values below 0.05, except for preci-
sion in SAM. Especially in the case of SAM, by adding a learning rate scheduler, very large effects in accuracy 
and AUC were obtained (accuracy:11.226, AUC: 10.997). In addition, statistically significant differences were 
found in all of the statistical comparisons of SGD and SAM by P-value with the learning rate scheduler. In the 

Figure 1.  Learning curve by grid search for SAM ρ determination. (A) accuracy score (B) loss scoreIn 
Epoch300, the convergence was good when ρ was 0.01 or 0.025. In the comparison of ρ = 0.025 and 0.01 in Loss, 
0.025 was more stable.
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effect size comparison, the AUC was 9.529, and the difference in the optimizer under the same deep learning 
conditions showed a very large effect size equivalent to "Huge" by SAM.

Visualization of each model classification by Grad‑CAM and attention heatmap. Figure  3 
shows an image that visualizes the area of interest for classification decisions in a deep learning model. In the 
VGG16-based CNN model, Grad-CAM was used to visualize the final layer of the convolutional layer or the 
feature area of the oral scraping cytopathological classification with a heat map.

In the positive label, it can be seen that we are paying attention to atypical cells with a high nuclear ratio 
(N/C ratio) in the cytoplasm as a characteristic region and an increased amount of chromatin in the cell nucleus. 
Among the deep blue-stained cells, we focused on cells with a high N/C ratio and classified them as a positive 

Figure 2.  Learning curve in each CNN model.

Table 1.  Comparison of optimizer SAM and SGD with and without a learning rate scheduler. SD, standard 
deviation; 95% CI, 95% confidence interval; AUC, Area under the ROC curve.

Optimizer Learning rate

Accuracy Precision Recall F1 score AUC 

SD SD SD SD SD

95% CI 95% CI 95% CI 95% CI 95% CI

SGD

w/o scheduler

0.8879 0.8518 0.6501 0.6937 0.9020

0.0016 0.0099 0.0089 0.0095 0.0075

0.8873–0.8885 0.8482–0.8553 0.6469–0.6533 0.6903–0.6971 0.8993–0.9047

With scheduler

0.8970 0.8049 0.7581 0.7780 0.9098

0.0026 0.0066 0.0064 0.0057 0.0030

0.8961–0.8979 0.8026–0.8073 0.7558–0.7604 0.7759–0.7800 0.9087–0.9108

SAM

w/o scheduler

0.8870 0.8529 0.6438 0.6872 0.8766

0.0004 0.0024 0.0017 0.0019 0.0069

0.8868–0.8871 0.8521–0.8538 0.6432–0.6444 0.6875–0.6879 0.8741–0.8791

With scheduler

0.9016 0.8534 0.7139 0.7578 0.9328

0.0018 0.0072 0.0124 0.0098 0.0016

0.9010–0.9023 0.8509–0.8560 0.7094–0.7183 0.7543–0.7614 0.9322–0.9334
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class. In the negative label, the superficial cells stained in orange and red did not increase the amount of chro-
matin, and cells with a low N/C ratio were used as the basis for judgment. In addition, the negative label showed 
that the classification was predicted by focusing on the entire field of view.

Discussion
The CNN model using SAM introduced by the learning rate scheduler showed the highest classification perfor-
mance with 90.2% accuracy and AUC 0.93 in a limited number of epochs (epoch 300) and was able to suppress 
overfitting. The most effective deep learning model for oral exfoliation cytology was the CNN model using SAM 
as the optimizer and incorporating the learning rate scheduler.

Table 2.  Statistical evaluation of optimizers SAM and SGD with and without a learning rate scheduler. AUC, 
area under the ROC curve; LRS, learning rate scheduler.

Performance metrics Model B Model A A–B P value Effect size

SGD

Accuracy w/o LRS With LRS 0.0091 < .0001 4.143

Precision w/o LRS With LRS  − 0.0468 < .0001 5.463

Recall w/o LRS With LRS 0.1080 < .0001 13.721

F1 score w/o LRS With LRS 0.0843 < .0001 10.609

AUC w/o LRS With LRS 0.0078 < .0001 1.348

SAM

Accuracy w/o LRS With LRS 0.0147 < .0001 11.226

Precision w/o LRS With LRS 0.0005 0.733 0.090

Recall w/o LRS With LRS 0.0701 < .0001 7.832

F1 score w/o LRS With LRS 0.0706 < .0001 9.894

AUC w/o LRS With LRS 0.0562 < .0001 10.997

SAM versus SDG with scheduler

Accuracy SDG SAM 0.0046 < .0001 2.047

Precision SDG SAM 0.0485 < .0001 6.924

Recall SDG SAM  − 0.0442 < .0001 4.432

F1 score SDG SAM  − 0.0201 < .0001 2.476

AUC SDG SAM 0.0230 < .0001 9.529

Figure 3.  Visualization of regions of interest for CNN classification in oral exfoliative cytopathology 
classification. In the heat map visualization, the warmer the color, the greater the effect on label classification.
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There are no reports on the accuracy of classification using deep learning in oral exfoliative cytopathology. 
Sunny et al.14 reported the application of deep learning in oral cytopathology. Their study investigated the clini-
cal usefulness of the system in combination with CNNs in the classification of atypical cells. This report showed 
that the use of a CNN-based risk stratification model improved the detection sensitivity of malignant lesions 
(93%) and high-grade OPML (73%). However, the classification accuracy of CNN was not verified. By contrast, 
our study is the first to evaluate classification accuracy using deep learning models optimized in oral exfoliative 
cytopathology.

The diagnosis of oral exfoliative cytopathology is difficult. With the introduction of the LBC method, the 
issue of cell overlap has  decreased6 but it still remains. In addition, the number and type of cells are very large 
compared to cervical cytology, making judgment difficult for instance. A lot of deep-learning research on cervical 
cytopathology has been undertaken, and the accuracy is very  high15–17. This is because the state of each cell can 
be judged. On the other hand, oral exfoliative cytopathology requires experience and skill because it is necessary 
to judge abnormalities from the entire visual field. This difficulty is an obstacle to the efforts of deep learning for 
oral cytopathological diagnosis classification.

In this study, we compared the SGD and SAM as optimizers. SAM has been the focus of attention in recent 
years, updating the state of the art (SoTA) with as many as nine datasets, including ImageNet (88.61%), CIFAR-10 
(99.70%), and CIFAR-100 (96.08%)13. The introduction of SAM has contributed to a revolutionary improvement 
in the accuracy of image classification. It has also been suggested that loss flatness plays an important role not 
only in accuracy but also in generalization performance and robustness. Another advantage of SAM is that it is 
difficult to overfit. When the number of epochs was increased, the CNN model using an optimizer other than 
SAM was overfitted, whereas SAM was difficult to overfit, even when the number of epochs was  increased13. 
In our study, SGD tended to overfit, while SAM tended to avoid overfitting as the number of epochs increased.

During the early learning stages of deep learning, the network changes rapidly, and the linear scaling rules do 
not work. It has been reported that this can be mitigated by a less aggressive learning rate usage strategy at the 
start of  training18. However, although a low learning rate can be expected to converge stably, there is a problem 
with learning speed. One solution is to warm up the learning rate gradually from a small value to a large  value19. 
This avoids a sudden increase in the learning rate and allows for an optimal convergence at the beginning of 
training. The SAM used in this study required time to converge. Therefore, sufficient learning could not be per-
formed within a limited number of epochs, and underfitting was possible without the introduction of a learning 
rate scheduler. On the other hand, if the learning rate remains high, efficient learning will be achieved, but this 
will prevent the network from handling noisy data. Therefore, lowering the learning rate after some learning 
helps the network converge to a local minimum and mitigate the effects of  vibration20. By adopting warm-up 
and step-decay as the learning rate scheduler in this study, we found that the accuracy was improved in both 
SGD and SAM optimizers. Therefore, it was suggested that the learning rate scheduler plays an important role 
in the deep learning of oral exfoliative cytopathology.

In this study, the effect size was calculated in addition to the P-value as a method for evaluating the compari-
son of performance metrics in deep learning. Effect size is an indicator of the effectiveness of an experimental 
operation and the strength of the association between  variables21. In the evaluation of the effect of introducing 
the learning rate scheduler in this study, the P values   were all 0.05 or less. By considering this and the effect size, 
it was possible to evaluate the strength of the effect of introducing the scheduler. Oral exfoliative cytopathology 
has shown that the introduction of a scheduler into SAM is particularly effective. In addition, we believe that the 
detected effect size will be an important prior study to help calculate sample size in studies in cytopathological 
classification using deep learning.

In the future, the study of classification models with our CNN may bring a major shift in the diagnostic flow 
of oral exfoliative cytopathology. In this study, AUC had 93% accuracy for the classification of normal findings 
and suspected malignancy or dysplasia. If deep learning technology can be applied as a primary screening tool 
for cytopathological diagnosis, it will contribute to the field of pathology, which is understaffed. In addition, the 
images divided using OpenSlide are numbered so that the location of the slide can be specified. This presents a 
shortcut for practical clinical applications. In the future, we look forward to further research so that more robust 
diagnostic analysis can be performed using data for oral scraping cytopathology performed at multiple centers.

This study had some limitations. First, data collection was in a single facility and was not externally validated. 
Internal validity can be evaluated by confidence intervals from datasets using cross-validation, but verification 
using external data will be required in the future. Second, the data bias in this study was large. The number of 
positive labels was only 881 while that of negative labels was 5113. Therefore, adding or resampling the data 
should also be considered as an approach to imbalanced data. However, undersampling, the main method of 
resampling, misses important  data22. On the other hand, oversampling has a risk of  overfitting22. Therefore, it 
will be necessary to consider the addition of specificity obtained from resampling analysis and indicators such as 
the PR curve that plots the prediction for recall. Third is a need to consider other CNN models,  optimizers23 and 
learning rate  scheduling24. Currently, there are numerous types of optimizers. In addition, there are also many 
methods for scheduling the learning rate. However, choosing the best CNN model, optimizer and scheduling the 
learning rate for your dataset is a difficult problem because it is computationally  expensive25. It will be necessary 
to search for optimum CNN model selection and best parameter tuning in the future.

Conclusions
In this study, we explored an effective deep learning model for oral exfoliative cytopathological classification 
using SGD or SAM as an optimizer, with and without a learning rate scheduler. The CNN model using SAM 
introduced by the learning rate scheduler showed the highest classification performance in a limited number 
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of epochs and was able to suppress overfitting. These results suggest that SAM can play a very important role in 
primary screening of the oral cytological diagnostic environment.

Materials and methods
Study design. The aim of this study was to analyze the classification performance for oral exfoliative cytol-
ogy diagnosis using a deep learning model using a supervised learning CNN and to analyze the effect of using 
SAM as an optimization algorithm.

Ethics statement. This study was approved by the Kagawa Prefectural Central Hospital Ethics Committee 
(approval number: 977). This institutional review board reviewed our study, which has a non-interventional 
retrospective study design and is an analytical study with anonymized data, and waived the need for informed 
consent. Therefore, written and verbal informed consent was not obtained from the study participants. This 
study was conducted in accordance with the Declaration of Helsinki and according to the rules approved by the 
ethics committee.

Image data preparation. In this study, we used eight glass slides prepared using the LBC method. The 
breakdown of the eight slides included four cases of tongue cancer, two cases of buccal mucosal cancer, and two 
cases of tongue leukoplakia. The glass slides were scanned using Aperio AT2 scanners (Leica Biosystems, Buf-
falo Grove, IL) at 40 × magnification to create a Whole Slide Image (WSI). The WSIs were tiled using OpenSlide 
(version 3.4.1, University of Pittsburgh, Pittsburgh, Pennsylvania). OpenSlide is a C language library developed 
by a research group at Carnegie Mellon University.

The WSI was then tiled using the open-source library  Openslide26 (version 3.4.1, University of Pittsburgh, 
Pittsburgh, Pennsylvania). OpenSlide is a C language library developed by a research group at Carnegie Mellon 
University. Because WSI is compatible with each magnification, it is possible to evaluate cytopathology at the 
optimum magnification, so we divided it into 16 layers at a magnification of 10 to 400 times. The pathologist 
determined the optimal magnification for diagnosis from these images as the 14th level, and the image was 
cut out and extracted in tiles. The clipped image was output in a Portable Network Graphics (PNG) format of 
256 × 256 pixels (Fig. 4).

Image data annotation and selection. The oral cytology diagnosis from the fragmented images was 
annotated by two cytopathologists. The images were labelled according to consistency in the diagnosis of the 
two pathologists and an additional diagnosis of a highly specialized doctor was sought in the case of controversy. 
Images for which proper diagnosis was not possible due to excessive overlap of cells, poor focus, etc., or images 
without cells were excluded from this study. Tiles were first classified into five categories based on the Papanico-
laou classification. Classes I and II were classified with a negative label, and classes III, IV, and V were classified 
with a positive label (Table 3). Figure 5 shows the overall flow of this study.

Figure 4.  Automatic division of WSI using OpenSlide. Images can be acquired from different depth levels. In 
this study, images with a depth of 14th level were used.
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CNNs model architecture. VGG1627 is a representative network of CNNs developed at Oxford University 
and submitted to the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) in 2014. VGG16 has a 
structure in which the "convolution layer/convolution layer/pooling layer" is repeated twice, and the "convolu-
tion layer/convolution layer/convolution layer/pooling layer" is repeated three times, followed by three fully 
connected layers. It was reported that VGG16 is a model that can be expected to further improve robustness in 
recent  year28. Therefore, we selected VGG16 as the CNN model in this study.

VGG16 CNN models have adopted fine-tuning using the ImageNet database. The deep learning classifica-
tion task process was implemented using Keras (version 2.7.0), Tensorflow (version 2.4.0), and Python language 
(version 3.7.10).

Data set and model training. The CNN model training was generalized using K-fold cross-validation 
in the deep learning algorithm. Model validation was evaluated using 4-fold cross-validation to avoid overfit-
ting and bias and to minimize the generalization error. The dataset was divided into four random subsets using 
stratified sampling, and the same class distribution was maintained for training, validation, and testing across all 
 subsets29. Within each fold, the dataset was split into separate training and test datasets in a ratio of 9:1. Addi-
tionally, the validation data consisted of 10% of the training data. The model averaged four training iterations 
to obtain prediction results for the entire dataset, with each iteration retaining a different subset for validation.

For the loss function, the cross-entropy obtained from the following equation was used:

Table 3.  Label data distribution.

Class Number of images Description (From papanicolaou, 1954)

Negative label

ClassI 2210 Absence of atypical or abnormal cells

ClassII 2903 Atypical cytology, but no evidence for malignancy

Positive label

ClassIII 225 Cytology suggestive of, but not conclusive for, malignancy

ClassIV 416 Cytology strongly suggestive of malignancy

ClassV 240 Cytology conclusive for malignancy

Total 5994

Unclassifiable images 3720

Figure 5.  Overall flow of deep-learning classification model research of oral exfoliative cytopathology.
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ti: true label,  yi: predicted probability of class i.
In our study, different image data augmentation methods including, rotation, flipping, and shifting, were 

randomly applied to generate training images. The details are explained in the supplementary materials.

Optimization algorithm. Although there are many types of  optimizers30, in this research, we made a compari-
son with SAM, representing SGD, which is currently used by many researchers.

Stochastic gradient descent (SGD). In deep learning, learning is advanced so that the error between the correct 
answer and the prediction becomes small. One commonly utilized algorithms is SGD. SGD updates the param-
eters using the derivative of the loss function. In addition, by using randomly selected data to update the param-
eters, it is possible to prevent falling into a local minimum value. As an advanced version of SGD, we selected 
SGD with momentum, which suppresses vibration by considering the moving  average31. SGD with momentum 
is expressed by the following formula:

wt: t-th  parameter, η: learning rate.∇L (w): Differentiation with parameters of loss function, α: Momentum.

Sharpness aware minimization (SAM). SAM was used to verify the effective learning method of the  CNN13. 
The loss function of SAM is defined by the following algorithm (a): The SAM minimizes equation (b), includ-
ing this. In addition, ρ is called the neighborhood size, which is a hyper-parameter set during tuning. In SAM, 
the base optimizer and SAM are used in combination to determine the final parameters using a conventional 
algorithm. This study was based on the SGD.

S: set of data, w: parameter, λ: L2 regularization coefficient.
Ls: Loss function, ρ: neighborhood size.
In this study, the optimum ρ was examined by performing a grid search from {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}.

Deep learning procedure. Learning rate scheduler. In June 2017, Facebook Inc. proposed a warm-up 
strategy that gradually increased the learning rate at the start of learning and stabilized  learning19. Warmup sets 
the initial learning rate to be smaller than usual and gradually increases it to the normal learning rate, and an 
efficient learning effect can be expected to result from this  approach32. Warmup as a learning rate scheduler is 
shown by the following equation:

On the other hand, learning rate decay is a method used to improve the generalization performance of deep 
learning, and it is a method to lower the learning rate when learning has progressed to some extent. Learning 
rate attenuation is known to improve  accuracy18. In this study, we also examined the effects of warmup and step-
decay as a learning rate scheduler shown in Supplementary Fig. S2.

The optimizer performed SGD with momentum and SAM. The learning rate was 0.001 for SGD with momen-
tum. The existence of the learning rate scheduler was verified for each optimizer. The learning rate was 0.001, and 
the warm-up and step-decay as the learning rate scheduler were performed with the learning rate scheduler as the 
initial learning rate of 0.01. All models analyzed 300 epochs and 32 mini-batch sizes. This process was repeated 
30 times on both models of each optimizer using different random seeds for each CNN model.

Performance metrics and statistical analysis. All CNN models were evaluated using accuracy, preci-
sion, recall, specificity, F1 score, and AUC calculated from the receiver operating characteristic curve (ROC) as 
performance metrics.

Visualization of a computer‑assisted diagnostic system. It is important to visualize the rationale for 
image prediction using a CNN. Gradient-weighted class activation mapping (Grad-CAM) targets CNN-based 
image recognition  models33. This method gives a judgment basis to the model itself by weighting the gradient 
with respect to the predicted value. In this study, a heat map was used to emphasize the part that served as the 
basis for judgment according to its importance. Grad-CAM uses the final convolution layer of the VGG16 model.

Statistical analysis. Statistical assessments of the classification performance of each CNN model were per-
formed on the data analyzed 30 times because there are no previous studies on deep learning of oral cytology 

L(w) = −
∑

i=0

ti log yi

�wt = η∇L(w)+ α�wt−1

wt = wt−1 −�wt

min
w

LSAMS (w)+ ��w�22 (a)

LSAMS (w) = max
�ε�p≤ρ

Ls(w + ε) (b)

rwarmup = 10

(

−base+ base
interval×epoch

)

× lrinit
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classification. All metrics in this study were analyzed using the JMP Statistical Software Package Version 14.2.0 
for Macintosh (SAS Institute Inc., Cary, NC, USA). Differences were considered statistically significant at P val-
ues less than 0.05. The normal distribution of continuous variables was evaluated using the Shapiro–Wilk test. 
The difference in classification performance between each CNN model was calculated for each performance 
metric using the Wilcoxon test. Effect  sizes34 were calculated as Hedges’ g (unbiased Cohen’s d) using the fol-
lowing equation:

M1 and M2 are the means for the CNN model (optimizer; SGD or with/without learning rate scheduler) and 
CNN model (optimizer; SAM or with/without learning rate scheduler), respectively. s1 and s2 are the standard 
deviations for the CNN model (optimizer; SGD or with/without learning rate scheduler) and CNN model (opti-
mizer; SAM or with/without learning rate scheduler), respectively. n1 and n2 are the numbers for the CNN model 
(optimizer; SGD or with/without learning rate scheduler) and CNN model (optimizer; SAM or with/without 
learning rate scheduler), respectively.

Effect sizes were categorized based on the criteria proposed by Cohen and expanded by  Sawilowsky35: large 
effect was 2.0 or more, very large effect was 1.0, large effect was 0.8, medium effect was 0.5, small effect was 0.2, 
and a very small effect was 0.01.

Data availability
The data are not publicly available due to privacy. The data presented in this study are available on request from 
the corresponding author.
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