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The impact of alkaline treatments 
on elasticity in spruce tonewood
Raffaele Malvermi1*, Michela Albano2,3, Sebastian Gonzalez1, Giacomo Fiocco2, 
Fabio Antonacci1, Marco Malagodi2,3 & Augusto Sarti1

It is commonly believed that violins sound differently when finished. However, if the role of 
varnishes on the vibrational properties of these musical instruments is well-established, how the 
first components of the complete wood finish impact on the final result is still unclear. According to 
tradition, the priming process consists of two distinct stages, called pre-treatment and sizing. The 
literature reports some recipes used by old Cremonese luthiers as primers, mainly based on alkaline 
aqueous solutions and protein-based glues. In this manuscript, we analyze the impact of these 
treatments on the mechanical properties of the material. The combination of two pre-treatments 
and three sizes is considered on nine different plates. We compare the vibrational properties before 
and after the application and assess the effects of the different primers, also supported by finite 
element modeling. The main outcome is that the combination of particular treatments on the violin 
surface before varnishing leads to changes not only to the wood appearance, but also to its vibrational 
properties. Indeed pre-treatments, often considered negligible in terms of vibrational changes, 
enhance the penetration of the size into the wood structure and strengthen the impact of the latter on 
the final rigidity of the material along the longitudinal and radial directions.

Wood finish is one of the most fascinating and delicate processes in violin making. It is a common belief, in 
fact, that different aspects of the violin, from its durability to its visual appeal and perceived timbre, depend on 
how the maker designs the finish and applies it to the instrument. According to Koen Padding1, it is the finish 
what makes or breaks a violin that sounds very good in ‘white’. In this regard, classical Cremonese varnishes 
set the bar in aesthetic terms thanks to the transparent yet colorful effect that is still appreciated by musicians 
nowadays. Following the tradition, luthiers still pay great attention in refining their recipes to reach a similar 
trade-off between elegant appearance and desired sound radiation capability.

Because of the important role that this step has in the uniqueness of a violin, makers still keep their own 
methods and discoveries secret. Nonetheless, some common practices can be outlined. The surface of the tone-
wood usually undergoes three main types of treatment during the finishing process. First, the plates are pre-
treated with alkaline solutions to enhance wood durability and prevent biological attacks2. We will refer to these 
as pre-treatments. In a second step, the wood is prepared for varnish through the application of a protein-based 
compound that generally includes animal glues or caseinate. These glues, denser than the previous solutions, 
can seal the surface pores and avoid a potential soaking of the varnish. The process is known under different 
names: sizing, sealing, filling or grounding. In this manuscript, we will denote it as sizing. After these priming 
steps, the violin is ready to be varnished.

The use of primers in the past has been proved by the analytical investigation carried out on historical 
artworks3–6 and musical instruments7, and its impact has been mainly observed in prevention and wood 
appearance8,9, i.e. leading to either a darkening or discolouring of the material. Among the physical and chemi-
cal pre-treatments available in the art and crafts literature, treating the wood in alkaline medium is one of the 
most reported. In particular, two main pre-treatments can be considered: on the one hand the ammonia fuming, 
which simulates the old common practice to place the violin on a smoldering dung pit10 and, on the other hand, 
a lye-based solution usually applied with a brush or a sponge.

To the best of our knowledge, research has focused the attention only on varnish, probably driven by the 
greater amount of information available on its chemical composition with respect to primers11,12. Indeed, it is 
commonly accepted that varnish does not only contribute to the aesthetic appearance of violins, but it also plays 
an important role in the wood protection13 and sound production14–20. Conversely, very few works suggested 
possible chemical compositions for primers and provided a tentative explanation about their function2,21. Primers 
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may produce a variation on the wood structure extended in depth to a relevant portion of its thickness. However, 
how deep a prescribed combination of pre-treatment and size can penetrate inside the tonewood and which 
changes the primer induces to the elastic properties of the treated material are still open questions that call for 
an in-depth study from the standpoint of vibrational analysis.

By using a multi-disciplinary approach including vibration tests, Finite Element (FE) modeling and Scanning 
Electron Microscopy with Energy Dispersive X-ray (SEM-EDX) analysis, we studied the penetration of primers 
in the wood structure and their impact on its material properties. We first applied a selection of two alkaline pre-
treatments and three protein-based sizes over one side of a set of Spruce plates, as traditionally done by luthiers 
which varnish only the outer surface of the violin. Vibration tests were first performed on untreated plates, and 
then repeated after both pre-treatment and size were applied. The data obtained in terms of modal frequencies 
and density allowed us to estimate the variation in the specific stiffness characterizing the treated plates with 
respect to the original ones. Subsequently, we employed FE analysis to fit the measurements, study the penetra-
tion depth of each primer and estimate the change in density in the portion of wood affected by treatments. Due 
to the small value chosen for the thickness of the specimens, and the different moisture exchange rate observed 
for the two faces and caused by one-sided applications, the so-called ‘flying wood’ or ‘cupping’ phenomenon 
occurred22. The consequent geometrical changes were taken into account inside the FE model. For a subset of 
the specimens, considerations extracted from simulations were supported with the actual evaluation of the 
penetration depths through SEM-EDX.

Results
Frequency Response Functions (FRFs) were collected on a pair of fixed points over the specimens (Fig. 1a) 
to study how the treatments affect the free vibration and the stiffness of tonewood. Different chemicals were 
combined and applied to a total of six plates (Fig. 1b): (i) an alkaline solution based on potassium (KOH); (ii) 
an alkaline medium based on ammonia ( NH3 ); (iii) animal glue (AG); (iv) animal glue with the addition of 
kaolin (AGK); (v) a sizing based on caseinate (C). Three additional plates were only sized. We estimated the 
initial elastic parameters of the untreated samples, which we will refer to as white, as in23. Figure 2 shows the 
comparison between the FRFs measured for plate 4 and the result of a FEM simulation using the estimated 
material properties.

Influence on wood stiffness.  The impact of pre-treatments and sizing on wood stiffness was assessed by 
measuring the change in the longitudinal and radial Young’s moduli and in the density of the specimens. We 
focused on these material properties since they have been proved to be important for determining the vibroa-
coustic properties of complete instruments23,27–29. Indeed, their correlation with the first modes of the instru-
ment is found to be higher than others30. Moreover, luthiers usually focus on the Young’s modulus along the 
principal dimensions of the wedge as they can infer them empirically31 and they are used to define acoustic 
indicators for instruments (e.g. anisotropy ratio15).

The Young’s moduli were estimated from the frequency of modes (0,2) and (2,0) using the Caldersmith’s 
formula26. The relative change in the specific stiffness, i.e. the ratio between the measured Young’s modulus Ê 
and the measured density ρ̂ , was computed along the longitudinal and radial wood directions after each treat-
ment stage. The corresponding material properties obtained for the white samples where used as reference in 
the relative difference.

Figure 3 shows the resulting values of δ(ÊL/ρ̂)
j
t and δ(ÊR/ρ̂)

j
t , estimated for each plate j after the application 

of each treatment t. Green markers are associated to values obtained after the pre-treatment ( t = p ) while orange 
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Figure 1.   (a) Diagram of the plate geometry, with the location of the excitation (highlighted in orange) and 
measurement ( highlighted in light blue) points chosen for hammer impact testing. (b) Table listing the nine 
Spruce plates and details on the different primers applied.
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markers correspond to values after the sizing ( t = s ). Error bars represent the estimate error, computed starting 
from the uncertainties in the measured FRF, the plate dimensions and the density.

The two proposed pre-treatments show opposite behaviors with respect to wood stiffness. On the one hand, 
specimens pre-treated with KOH (plates 4–6) are characterized by an average decrease equal to − 6.9(±2.0)% in 
δ(ÊL/ρ̂)

j
p while the estimated δ(ÊR/ρ̂)

j
p is comparable to the measurement error. On the other hand, plates pre-

treated with NH3 (7–9) show an unclear modification of the along-grain stiffness, i.e. average δ(ÊL/ρ̂)
j
p equal to 

2.4(± 2.2)%, while an average increase of 6.1(± 2.5)% can be noticed in δ(ÊR/ρ̂)
j
p . However, the pre-treatment 

alone leads to variations that are limited to 10%. The same variation can be observed within wood blocks cut 
from the same tree32.
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Figure 2.   Comparison between FRF measured (in cyan) and FEM simulation (in orange) obtained with the 
estimated elastic constants. In the example, plate 4 is considered. The resulting magnitudes are normalized 
between 0 and 1. Measurements from white specimens were fitted as in23 and using Rayleigh damping with 
constants α = 10 [ s−1 ] and β = 2× 10

−6 [s], according to24. The eigenfrequencies obtained numerically and 
corresponding to resonances in the measure are highlighted with dashed red lines. In the measurement points 
chosen, modes with a nodal line along the longitudinal axis of symmetry are attenuated, e.g. (1,1) (colored in 
gray), making the peaks of interest easier to identify. The mode shape associated to each resonance is depicted 
above the plot, denoted with a notation based on nodal lines and widely used in the literature25.
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Figure 3.   Relative variation in the longitudinal and radial specific stiffness observed at the end of each 
treatment stage (green: pre-treatment, orange: sizing). Values are expressed in percentage and represented with 
squares. Error bars represent the estimation error. Left: Estimated variation for the longitudinal specific stiffness 
δ(ÊL/ρ̂) , with a maximum error of 2.7%; Right: Estimated variation for the radial specific stiffness δ(ÊR/ρ̂) , with 
a maximum error of 3.0%. Estimations are based on Caldersmith’s equations26, assuming the contribution of 
Poisson’s ratios as negligible.
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Changes in the specific stiffness become relevant only when plates are also sized. Indeed, δ(ÊL/ρ̂)
j
s is greater 

than 10% if the treatment combination AGK (plates 2, 5 and 8) is used. If pre-treatments analysed in combi-
nation with AG or C (plates 4, 6, 7 and 9) are considered, δ(ÊL/ρ̂)

j
s is in average 7.0(±2.3)%. Conversely, the 

application of glues without additional particles (AG, C) and without a pre-treatment shows an increase in line 
with the measurement error (plates 1 and 3). The radial specific stiffness seems to be affected by every sizing, 
regardless of the presence of pre-treatments. Indeed, δ(ÊR/ρ̂)

j
s is always larger than 7%, also for plates which 

underwent no pre-treatment (1-3). Moreover, the use of animal glue with a dispersion of kaolin (AGK) leads 
to a more pronounced stiffening of the wood structure across the grains, with an increase up to 20%. Interest-
ingly enough, primers based on KOH and organic glues (KOH+AG, KOH+C) seem to impact moderately on 
δ(ÊR/ρ̂)

j
s , with variations around 5%.

Treatment penetration.  In order to analyze the penetration of the treatments, we employed the FEM-
based measurement fitting explained in23, modifying the FE model. The model was defined assuming a change 
in the parameters of the treated side of the plate with respect to untreated wood, together with the introduction 
of the arching due to the cupping phenomenon. Figure 4a shows the transversal profile of the ’virtual’ specimen, 
in which the plate consists of two different materials. The material on top, which is assumed to be noticeably 
thinner than the other, models the penetration of the treatment.

We simulated the vibrational behavior of the virtual plate varying the penetration depth hl randomly in the 
range [100, 1000] µm and the most relevant properties of the material on top (i.e. density, longitudinal and radial 
Young’s moduli, longitudinal to radial shear modulus) around the corresponding optimal values found for the 
white plate. The properties of the second material were left fixed during the simulation campaign, and equal to 
those estimated for the untreated wood.

With the new model, the optimization performed did not provide a unique set of optimal parameters for the 
treated wood section, since the cost function used was severely affected by local minima. Therefore, we analyzed 
the histogram of the penetration as obtained from the local minima of the cost function.

The analysis revealed that a range of ‘preferential’ depths exists for each primer under study. Figure 4 shows 
the distribution of input depths hl that, given a specific treatment, make the FE model best approximate the 
modal frequencies measured in the corresponding plate. Distributions are represented with different smoothed 
histograms for the pre-treatment ( t = p , dashed lines) and the sizing ( t = s , solid lines) stages, and grouped by 
pre-treatment used: plates 1–3 (only sized, Fig. 4b), plates 4–6 (pre-treated with KOH, Fig. 4c) and plates 7–9 
(pre-treated with NH3 , Fig. 4d). For each histogram, the range with the largest number of occurrences (i.e. for 
which the number of occurrences is greater than 80% of the max) is highlighted in color.
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Figure 4.   (a) Diagram of the transversal profile assumed in the FE model for the characterization of the 
treated side of the specimen. (b) Distribution of penetration depths hl making the FE model best approximate 
the modal frequencies of plates 1-3, only sized. (c) Distribution of penetration depths hl making the FE model 
best approximate the modal frequencies of plates 4-6, pre-treated with KOH. (d) Distribution of penetration 
depths hl making the FE model best approximate the modal frequencies in plates 7-9, pre-treated with NH3 . 
Histograms are evaluated when plates are only pre-treated ( t = p , dashed lines) and after the application of the 
complete primers ( t = s , solid lines). Colored regions highlight the ranges of preferential values characterizing 
each combination of treatments.
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If we look at the penetration depth of the pre-treatments (dashed lines), a range of depths concentrated within 
300–650 µm for KOH (plates 4–6, highlighted in light blue) and between 600 and 900 µm for NH3 (plates 7-9, 
highlighted in light red) are observed.

After the application of the sizing, these ranges shift to lower values. The histogram obtained for the KOH+AG, 
KOH+AGK and KOH+C primers (plates 4–6, solid blue line) shows a slight shift of the region with the larg-
est number of occurrences from 300–650 µm to 250–550 µm (colored in blue). The effect of sizes seems more 
prominent for glues combined with NH3 (plates 7–9, solid red line) where the new range is located between 200 
and 500 µm (colored in red).

Plates where sizes were applied directly show small values of hl , concentrated between 140 and 270 µm 
(highlighted in yellow).

Similar considerations on the penetration depth of primers can be formulated by observing the results of 
the SEM-EDX transversal analysis on cross-sectional samples, which reveals the variation of the potassium (K) 
relative abundance as a function of depth.

Figure 5 (Left) shows the profiles measured for the plates treated with KOH, C and NH3+C, along with a 
control plate, left untreated. Indeed, even though K was detected at lower counts also in the wooden structure, 
the EDX analysis highlighted that K can be considered as a marker of the potassium-based treatments (i.e. 
involving KOH and C).

It can be seen that when a section of the sample has been treated, the profile shows higher counts down to 
a certain depth. The profile becomes then comparable with the control for higher depths. We thus interpreted 
the change in the slope of the K counting profile as the limit of interaction between the portion of wood which 
probably underwent chemical modification or impregnation and the rest of the sample.

The limits of interaction were thus estimated by fitting the decaying part of the profiles with a piece-wise 
linear (or bilinear) function. The results are shown with vertical lines in Fig. 5 (Left) with the corresponding 
profile color.

Figure 5 (Right) shows a final comparison between the penetration depths extracted from the SEM-EDX 
measurements (yellow bars) and the mean of the range of preferential depths found for plates 3, 6 and 9 through 
FE analysis (violet bars). On the one hand, the potassium counting profiles reveal larger counts until 200 µm 
for C (solid brown line), around 350 µm for KOH (dashed blue line) and around 300 µm for NH3 +C (solid red 
line). On the other hand, an average preferential depth of 191 µm , 426 µm and 348 µm was found for C, KOH 
and NH3+C, respectively.

Density change in the treated section.  We performed the analysis conducted on the distribution of the 
simulated penetration depths also on the other control parameters characterizing the material on top of the FE 
model. The resulting distributions revealed different material changes as a function of the primer.

Figure 6 (Left) shows the histograms of the change in the equivalent density of virtual specimens. The equiva-
lent density is obtained as the weighted sum of the estimated layer density ρl and the original density (i.e. 
measured for the white plates). The weights used are the penetration depth hl and h− hl , respectively. The vari-
ations are collected from all the plates after each treatment stage (pre-treatment: green bars, sizing: orange bars) 
and expressed in percentage. A Gaussian fit was performed for each histogram to estimate the mean µ and the 
standard deviation σ . Figure 6 shows the resulting probability density functions (dashed black lines) superim-
posed to the corresponding histograms. The parameters of the fit obtained for NH3 only are ( µp

NH3
= −0.78% , 

σ
p
NH3

= 0.14% ), the ones obtained for KOH only are ( µp
KOH = −0.22% , σ p

KOH = 0.09% ) and those obtained 
after the sizing (regardless of the pre-treatment used) are ( µs

ALL = 0.72% , σ s
ALL = 0.29% ). It can thus be noticed 
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Figure 5.   Left: Semi-quantitative line profiling of potassium (K) analyzed with SEM-EDX on plates subject 
to potassium-based treatments (i.e. involving KOH and C). The lines represent the potassium concentration 
evaluated at different depths while colored regions highlight the feasible limits of interaction between the wood 
and the different treatments. The limits were estimated by fitting a bilinear model to each profile decay; Right: 
Comparison between the penetration depths estimated from SEM-EDX profiles (yellow bars) and the mean 
values of the preferential depth ranges found through FE analysis (violet bars). The analysis is limited to plates 
subject to potassium-based treatments.
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that plates affected by alkaline pre-treatments show a reduced density, which is lower when NH3 is used, while 
the application of a denser matter such as protein-based glues results in an average increase with respect to the 
original value.

By analyzing more in detail the variation induced after the sizing, it can be seen that pre-treatments induce a 
density increase which is greater than the variation encountered if plates are only sized. Figure 6 (Right) shows the 
Gaussian fit of the histograms computed considering the application of the complete primers and grouping the 
plates by the pre-treatment used. In this case we obtained ( µs

U = 0.30% , σ s
U = 0.42% ) for the untreated (U) plates 

1–3 (solid pink line), ( µs
KOH = 0.67% , σ s

KOH = 0.13% ) for plates 4–6 (dashed purple line) and ( µs
NH3

= 0.94% , 
σ s
NH3

= 0.26% ) for plates 7–9 (dashdotted line). Interestingly enough, the mean obtained for plates which under-
went no pre-treatment (0.3) is lower than the ones obtained from pre-treated plates (0.67, 0.94).

The density changes obtained through FEM modeling are in line with the density values measured after each 
treatment stage. Indeed, an average variation of −0.78± 0.12% was observed after pre-treating the specimens 
with NH3 , while an average decrease equal to −0.19± 0.08% was found for plates treated with KOH. Concerning 
the plates after the sizing stage, an increase in the density was measured for both plates only sized ( 0.46± 0.36% ), 
plates pre-treated with KOH ( 0.80± 0.21% ) and plates pre-treated with NH3 ( 0.67± 0.10%).

Discussion
In this study, a multi-disciplinary approach consisting of vibrational measurements, FEM modeling and SEM-
EDX investigation has been employed to characterize the impact of Cremonese traditional alkaline pre-treatments 
and sizing on the elasticity and vibration of Spruce tonewood, typically used for the production of soundboards 
in violin making. To the best of our knowledge, this is the first systematic study in this direction. Pre-treating the 
wood eases the penetration of sizes into the wood pores, inducing a variation in the material parameters, such 
as its density and stiffness, which is greater than the one observed for wood which underwent only the sizing 
stage. As a consequence, also the vibrational properties of the tonewood plate are more affected. These findings 
may be crucial for makers, so that the contribution of each stage of the finishing to the final sound is taken into 
account. Indeed, the impact of the first wood treatments has been always considered marginal with respect to 
the varnish, and less efforts were devoted to clarify this aspect from a quantitative point of view.

Vibration tests revealed a change in the first modal frequencies of the specimens, and thus in the specific 
stiffness along the most relevant directions. Although the application of the pre-treatment may not induce rel-
evant modifications by per se, the combined effect with sizes leads to an enhanced stiffening of the whole plate, 
especially along the wood grain. The effect is more pronounced if kaolin particles are dispersed into the treat-
ment: as an example, the mixture of animal glue and kaolin showed the largest variation in the specific stiffness 
in both longitudinal and radial directions of the plate. This evidence opens the door to further investigations 
for characterizing the variety of inorganic particles used in wood finishes33,34, to study whether the particle size 
or concentration can control these material changes. Moreover, focusing on one treatment combination and 
increasing the number of specimens used may lead to more informative and representative results.

FEM modelling and SEM-EDX analysis highlighted the different penetration of alkaline-based treatments, 
both before and after the sizing. Analyzing the pre-treatment only, NH3 may penetrate more than KOH. The 
different behavior highlighted for the two pre-treatments may be a consequence of the different application 
procedure: indeed, ammonia fuming involves the whole volume of the specimen while water-based applications 
such as KOH affect only the specimen’s surface.
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Figure 6.   Left: Distribution of changes in the equivalent density of the FE model δρ . The equivalent density is 
obtained as the weighted sum of the estimated layer density ρl and the density measured originally. The weights 
used are the penetration depth hl and h− hl , respectively. Histograms are computed after both the treatment 
stages (pre-treatment: green, sizing: orange) collecting the values in percentage such that the FE model best 
approximate the modal frequencies in each plate. Dashed lines correspond to the histogram fits by means of 
Gaussian probability density functions; Right: Gaussian fit for δρ after the sizing stage, computed for plates 
grouped by pre-treatment used. Pre-treatments induce a density increase due to the sizing which is greater than 
the variation encountered if plates are only sized.
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When the combination of pre-treatment and sizing is considered, an increase in the penetration depth can 
be observed if compared to the direct application of sizes on untreated plates, especially when KOH is applied. 
This result, together with a reduction of the density in the upper portion of pre-treated specimens, and thus of 
the equivalent density of specimens, may confirm the action of alkaline treatments as an artificial support in 
wood drying or aging2.

Methods
Materials.  Nine Spruce rectangular plates (Picea abies L., purchased at Rivolta Wood, Italy) with average 
density equal to 400 kgm−3 ( ±5 kgm−3 , at 20 °C and 50% RH) and dimensions 450× 190× 3.5 mm (L × R × T)  
were selected from 5 pairs of book-matched samples. The selected plates were all harvested in 2005 in Val di 
Fiemme, Italy, and aged in identical conditions. The specimens were stored in a humidity-controlled room at 20 °C  
and 50% RH during the whole measurement campaign. The moisture content of each plate has been tracked and 
updated after each treatment using a resistance moisture meter with surface-contact electrodes. With the same 
frequency of acquisition, we measured and tracked also the density. Following the finishing procedure presented 
in21, two types of alkaline medium were selected to emulate historical pre-treatments10,33: a 1 M aqueous solution 
at pH = 13 of potassium hydroxide (KOH - pellets, Carlo Erba, Italy) and ammonia ( NH3 ) vapor (Ammonia 
30% v/v, Bresciani s.r.l. Italy). We chose ammonia fuming and potassium hydroxide as evidences of the modifi-
cation of the wood structure were found on a different set of Spruce plates and a similar number of specimens 
per treatment combination, according to21. During the first stage of the campaign, KOH was spread with a brush 
over one face of the plates, while NH3 was applied by inserting the specimens into sealed boxes, saturated with 
ammonia vapor, for 96 hours. At this stage, part of the samples was left untreated and kept as control. After a 
curing time of three months, the final measurements for the pre-treatment (p) stage have been accomplished. In 
the second stage (s), three different sizes have been applied with a brush: (i) a solution with 10% of rabbit glue 
dissolved in water (AG—rabbit glue Oporto extra, Bresciani s.r.l. Italy); (ii) a mixture of 10% rabbit glue enriched 
with 1% kaolin Al2Si2O5(OH)4 (AGK); and (iii) potassium caseinate prepared by adding casein powder (cross-
linked casein, Farmacia Leggeri, Italy) to distilled water (15% w/w), subsequently dissolved in KOH solution 0.5 
M (C), according to an ancient recipe35,36. As a result, nine different combinations of pre-treatments and sizes 
were studied (Fig. 1b). All the specimens underwent a further drying period of three months before the final 
measurements. To partially correct the cupping effect occurred in plates due to one-sided applications, weights 
were applied on the specimens during the drying periods.

Vibration tests.  The Frequency Response Functions (FRFs) were measured by means of hammer impact 
testing. A structure made of wood and rubber bands was built to simulate free boundary conditions during the 
test. Four rubber bands were used for the suspension of the plates, letting the sample in vertical position and 
minimizing the contact surface37,38. In this configuration, also the resting position of the hammer results vertical 
after the hit, avoiding the occurrence of accidental secondary strikes during the acquisition. A dynamometric 
hammer with light tip (086E80, by PCB Piezotronics) and an uniaxial accelerometer (352A12, by PCB Piezotron-
ics) were used to generate an impulsive excitation and measure the harmonic response. The excitation and the 
measurement points were placed along the axis of symmetry parallel to the plate length, at 45 mm from the edges 
(i.e. 10% of the total length) as depicted in Fig. 1a. An advantage of using such pair of points on the plate is that 
modes less correlated to the Longitudinal and Radial Young’s moduli exhibited an attenuated peak amplitude. In 
this way, the peaks of interest were easily identified inside the acquired frequency responses. For each measure-
ment, six time-domain signals of two seconds sampled at 48 kHz were acquired. FRFs were estimated following 
the definition of the H1 estimator39. Details on the estimations performed starting from measured FRFs can be 
found in Supplementary Information.

FEM modeling.  A two-step Monte-Carlo optimization procedure was used to characterize first the origi-
nal material of the samples (i.e. before the application of any chemicals) and, at a later stage, the section of the 
specimens affected by the treatments. In particular, the first step consisted in the assessment of the material 
parameters ( ρ,EL,ER,ET ,GLR ,GRT ,GLT ,µLR ,µRT ,µLT ) of the white plate given the corresponding set of meas-
ured modal frequencies. Since wood is an orthotropic material, a different mechanical behaviour is observed 
along the different axes of the (L × R × T) reference system. A Monte-Carlo sampling approach was employed 
to estimate the parameters. The dataset consisted of 3000 realizations of plates with varying material proper-
ties, to be used in the FE analysis. The parameters were sampled from different distributions around a nominal 
value. The nominal values of EL and ER were obtained through the Caldersmith’s formula from the knowledge 
of the modal frequencies. The remaining nominal values were taken from the literature32. The reference mate-
rial used was Sitka Spruce, not a common material in European violin making tradition, but with mechanical 
properties known and similar to Spruce tonewood. A table resuming the distributions and the nominal values 
used for the sampling is provided in Supplementary Information (Table S1). For the FE analysis a 3D model of 
the specimens was fed to COMSOL Multiphysics. The resulting tetrahedron mesh was analysed multiple times 
with the “Solid Mechanics” module of the software, assuming free boundary conditions and defining the mate-
rial of the model each time with a different tuple of the dataset. For each realization in the dataset, an eigenfre-
quency study was performed to compute the frequency and mode shape of the first 15 modes. The estimated 
parameters are those of the item in the dataset whose modal frequencies are closest to the measured ones, as 
in23. A further frequency-domain study was performed to validate the final solution, comparing the resulting 
FRF to the measured one. In this process, Rayleigh damping40 was introduced in the model with constants 
α = 10 s−1 and β = 2× 10−6 s. The damping model was chosen according to previous applications of numeri-
cal modeling in the context of musical instruments23,24. The initial and final values of the material parameters 



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13335  | https://doi.org/10.1038/s41598-022-17596-z

www.nature.com/scientificreports/

( ρ,EL,ER,ET ,GLR ,GRT ,GLT ,µLR ,µRT ,µLT ) obtained during the first step of the optimization are reported in 
Supplementary Information (Tables S2, S3 and S4).

The mechanical parameters of the treated layer at the treatment stages p and s were estimated through 
a modified version of the Monte-Carlo optimization proposed in23. The proposed method works under the 
assumption that all the plates can be modeled after pre-treatment and sizing by a two-layer structure, the upper 
and lower layers being, respectively, treated and non-treated wood. Given the aforementioned model, the esti-
mated parameters are the thickness hl of the treated layer, along with its most important mechanical parameters 
(i.e. ρl ,EL,l ,ER,l ,GLR,l ), starting from the knowledge on the modal frequencies observed in treated wood and 
the parameters found for the untreated wood. The geometry was modified by introducing a parametric cross-
section in the RT plane to account for the cupping effect41. Furthermore, the resulting 3D model of the plate with 
parametric cross-section was partitioned into two layers, with thickness hl and h− hl , respectively. The arching 
height of the plate was controlled through the value Hj

t , which was monitored before and after each treatment 
stage. The material parameters of the untreated layer are those obtained with the Monte-Carlo simulation before 
the pre-treatment. The nominal values of the distribution used for the Monte-Carlo optimization are those of 
the untreated wood (see Table S1 in Supplementary Information). For each plate j and each treatment stage t, a 
dataset � ∈ R

M×5 of M = 3000 tuples was created and fed to the FE model obtaining the first 15 modes in terms 
of eigenfrequency and mode shape. The ordering of the modes in the simulated data changed slightly from the 
reference ones due to the introduction of the arching and the variation in the material properties. Mode matching 
was accomplished before the optimization using the Modal Assurance Criterion (MAC) as similarity metric42. A 
reference set of mode shapes was obtained for each plate through simulation using the FEM model. In this case, 
the model was tuned to fit the FRF measured on the white specimen. For each tuple in � , a set of candidate modes 
was synthesized and compared to the reference set. Pairs of reference and candidate mode shapes maximizing 
the MAC were identified at the end of the process.

An estimate based on finding the realization in the dataset that minimizes the difference between simulated 
and measured modal frequencies is not suitable at this stage. In fact, such a cost function exhibits too many 
local minima. Therefore, we extended the analysis to the lowest 200 minima. The parameters of the selected local 
minima are organized in histograms. Finally, the counts obtained from plates sharing the same pre-treatment 
were summed together in a cumulative histogram, from which the estimates have been obtained. Further details 
concerning the FEM modeling of the cupping phenomenon and the analysis accomplished can be found in 
Supplementary Information.

SEM‑EDX micro‑analysis.  SEM-EDX micro-analysis was performed on cross-sectional samples embed-
ded in epoxy resin (Epofix Struers and Epofix Hardener with ratio 15:2) and dry-polished with silicon carbide 
fine sandpapers (1200–8000 mesh). The analyses were performed on the specimens treated with potassium 
hydroxide and potassium caseinate. The semi-quantitative line profiling of K was acquired from the up-radial 
treated surface of the specimen (including around 100 µm of the embedding resin on the top) through its depth. 
Measurements were acquired every 2 µm along a line, exploring around 900 µm of the cross-sectional samples. 
Elemental micro-analysis was carried out using the Bruker Quantax 200 (Billerica, MA, USA) energy-dispersive 
X-ray spectrometer coupled to the FE-SEM Tescan Mira 3XMU-series (Brno, Czech Republic) scanning elec-
tron microscope. Measurements were carried out in high-vacuum mode. This required the metallisation of the 
surface by coating a graphite film with the Cressington 208HR sputter coater. Spectra were collected at the 
following parameters: accelerating voltage equal to 20 kV, analysis time per spot equal to 100 s, and working 
distance equal to 15 mm. The semi-quantitative data were obtained by processing the experimental results with 
the EDAX Genesis software (version 6.04). An estimate of the actual penetration depths was obtained by fitting 
a piece-wise linear (i.e. bilinear) function to the decaying part of the profiles. Resulting depth values correspond 
to the location of the intersection between the two segments of the fitting function along the x-axis.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to ongoing 
research, but are available from the corresponding author on reasonable request.
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