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Predicting outcome of patients 
with prolonged disorders 
of consciousness using machine 
learning models based on medical 
complexity
Piergiuseppe Liuzzi1,2,5, Alfonso Magliacano3,5, Francesco De Bellis3, Andrea Mannini1* & 
Anna Estraneo3,4

Patients with severe acquired brain injury and prolonged disorders of consciousness (pDoC) are 
characterized by high clinical complexity and high risk to develop medical complications. The present 
multi-center longitudinal study aimed at investigating the impact of medical complications on 
the prediction of clinical outcome by means of machine learning models. Patients with pDoC were 
consecutively enrolled at admission in 23 intensive neurorehabilitation units (IRU) and followed-up 
at 6 months from onset via the Glasgow Outcome Scale—Extended (GOSE). Demographic and clinical 
data at study entry and medical complications developed within 3 months from admission were 
collected. Machine learning models were developed, targeting neurological outcomes at 6 months 
from brain injury using data collected at admission. Then, after concatenating predictions of such 
models to the medical complications collected within 3 months, a cascade model was developed. 
One hundred seventy six patients with pDoC (M: 123, median age 60.2 years) were included in the 
analysis. At admission, the best performing solution (k-Nearest Neighbors regression, KNN) resulted 
in a median validation error of 0.59 points [IQR 0.14] and a classification accuracy of dichotomized 
GOS-E of 88.6%. Coherently, at 3 months, the best model resulted in a median validation error of 0.49 
points [IQR 0.11] and a classification accuracy of 92.6%. Interpreting the admission KNN showed how 
the negative effect of older age is strengthened when patients’ communication levels are high and 
ameliorated when no communication is present. The model trained at 3 months showed appropriate 
adaptation of the admission prediction according to the severity of the developed medical complexity 
in the first 3 months. In this work, we developed and cross-validated an interpretable decision support 
tool capable of distinguishing patients which will reach sufficient independence levels at 6 months 
(GOS-E > 4). Furthermore, we provide an updated prediction at 3 months, keeping in consideration the 
rehabilitative path and the risen medical complexity.

After a severe acquired brain injury (sABI), patients can exhibit prolonged (> 28 days from onset) disorders of 
consciousness  (pDoC1,2). In particular, eye-opening (spontaneously or in response to stimuli) in absence of any 
intentional behaviors defines the Vegetative State/Unresponsive Wakefulness Syndrome (VS/UWS3), whereas 
presence of inconsistent but reproducible intentional behaviors is a clinical marker of minimally conscious 
state  (MCS1,4). The mortality rate of patients with pDoC is higher in the first than in the second year after brain 
injury in both diagnostic  groups5, and consciousness recovery occurs more frequently in patients in MCS than 
in patients in VS/UWS6–8. To date, the prognostication of patients with pDoC admitted to neurorehabilitation 
setting (i.e. in the post-acute phase) is based on markers strictly related to brain damage and patients’ character-
istics at admission. Previous studies identified demographic/etiology information (i.e., younger age, female sex, 
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traumatic etiology, time since  injury6,9–12), clinical characteristics (i.e., the level of responsiveness assessed by 
validated behavioral  scales13) and neurophysiological findings (i.e., presence of bilateral somatosensory evoked 
 potentials14) as predictors of a better recovery in the medium-long term, both in terms of survival and func-
tional recovery. However, the high clinical complexity and instability of patients with pDoC requires to take 
into account further factors that could not be present at  admission1,3. Among these factors, the occurrence of 
severe medical complications (MCs) during the hospital stay seems to have a large impact on outcome up to 
one year and  longer15. Most MCs in pDoC are directly related to the brain injury, as paroxysmal sympathetic 
 hyperactivity16 or epileptic  seizures17, or are developed as a consequence of severe disability or medical devices, 
e.g. heterotopic  ossifications18 and  pneumonia19. The occurrence of such MCs is associated with a higher fre-
quency of rehospitalization and with a worse functional outcome in  acute20,21 and rehabilitative  settings15,17,22–24 
respectively.

Given the clinical variability of patients with pDoC during the rehabilitative path, Clinical Decision Support 
Tools can play a role in supporting the clinical team. In general terms, it is a technical solution devoted to improv-
ing healthcare delivery by enhancing medical decisions with available knowledge. Such knowledge may result 
from machine learning (ML)-based methods, trained on patients’ clinical and instrumental  data25. In particular, 
learning algorithms can integrate patient information from many, interacting, sources and extract from data 
their relations with a prognostic outcome. Advantages of support tools in healthcare include the possibility to 
contain costs, improve the clinical workflow, increase patients’ safety, support diagnosis, and promote treatment 
 personalization25,26. In this regard, concerning pDoC patients, ML-enabled solutions were proposed, targeting 
prognostic estimations for  decannulation27 and recovery of  consciousness28–31. To our knowledge, previous 
solutions adopted data recorded at early stage after admission, disregarding the occurrence of MCs within the 
rehabilitative path. Given the high relevance of  MCs15,18,32, we are convinced that intaking data collected during 
the hospital stay would foster the improvement of prognostic predictions. Up to our knowledge, the information 
on complications has always been merged together with clinical and instrumental variables, without evaluating 
whether complications could improve the prediction made at admission and/or the mutual influence between 
arisen complications and admission prognosis.

Here, we used a ML approach to a retrospective analysis of data from a multicenter longitudinal study on 
a cohort of patients with pDoC. First, we aimed at predicting clinical outcome at 6 months post-injury based 
on demographical, etiology and clinical data collected at admission in intensive rehabilitation units. Thereaf-
ter, the prediction model had been adjusted with information on MCs collected within the first 3 months of 
the rehabilitative path. In this context, such innovative use of ML models allowed to create algorithms which 
move from a cross-sectional-based prediction of outcomes, in favor of a dynamic prediction system that can 
be updated during the patient  stay33. Among the ML techniques chosen, simple algorithms were employed in 
order to maximize generalization capabilities and to understand whether simple, classical models were already 
sufficient to predict the outcome. Lastly, to bolster interpretability of the results, explainability methods based on 
Shapley Values were applied to the best performing ML solutions in the form of the SHapley Additive exPlana-
tions (SHAP)  technique34,35.

Materials and methods
Study design and population. The present study retrospectively analyzed data on a large cohort of 
patients with pDoC enrolled in a multi-center, observational, longitudinal design (see details in Estraneo et al.36). 
Inclusion criteria were: (i) age ≥ 18 years; (ii) diagnosis of pDoC (VS/UWS or MCS) according to standardized 
criteria for VS/UWS and  MCS4,37; (iii) traumatic or non-traumatic (i.e., anoxic or vascular) brain injury; (iv) 
time post-injury ranging from 28 days to 3 months. Exclusion criteria were: (i) mixed etiology; (ii) previous his-
tory of neurologic or psychiatric diseases.

Data collection and outcome definition. Data collected at study entry included demographics (age, 
sex), medical history (injury timing, etiology), the best total and sub-scores out of at least  five38,39 Coma Recovery 
Scale-Revised (CRS-R40) evaluations, the level of functional disability indexed by the Disability Rating Scale total 
score  (DRS41,42), the level of clinical complexity as measured by the Early Rehabilitation Barthel Index  (ERBI43), 
medical comorbidities before the brain injury as assessed by the Cumulative Illness Rating Scale  (CIRS44), pres-
ence of medical devices (e.g. for supporting respiratory functions, feeding). Full details about variable collection 
at admission are reported in Estraneo et al.36 and in Fig. 1A.

Moreover, MCs occurring in the first 3 months of neuro-rehabilitation stay were assessed by direct clinical 
observation of hospital staff and grouped into 10 categories, and their severity was rated on a 1–3 scale (mild, 
moderate or severe) on the basis of the ‘intensity’ of the required therapeutic interventions according to Estraneo 
et al.15. A MCs total score  (MCtot), ranging 0–28, was computed by summing up the ratings in the individual MCs 
categories. The checklist for MCs categorization is described in Supplementary Materials A.

The primary outcome was the clinical diagnosis and functional state at 6 months post-injury, as assessed by 
the Glasgow Outcome Scale-Extended (GOS-E45). For the purpose of statistical analysis, the GOS-E score was 
dichotomized into GOS-E > 4 indicating ‘favorable outcome’ (i.e., from low-moderate disability to good recovery) 
vs. GOS-E ≤ 4 indicating ‘unfavorable outcome’ (i.e., from high-severe disability to death). See Supplementary 
Materials B for GOS-E description.

Statistical analysis. Continuous variables were expressed via medians and interquartile ranges, whereas 
categorical variables as counts and percentages. Univariate correlations were computed between independent 
variables and the target set to GOS-E > 4 versus GOS-E ≤ 4. Specifically, logistic regressions were applied for 
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continuous independent variables and chi-square test for categorical independent variables. When appropriate, 
Fisher’s exact test was adopted. The level of significance was set at p-value = 0.05 (2-tailed).

Model selection. Data at admission were split using a k-fold cross-validation strategy with the number of 
folds set to five. By such strategy, three models were compared: Elastic-Net (EN), Orthogonal-Matching Pur-
suit (OMP), K-Nearest-Neighbor (KNN) and a Support Vector Regressor (SVR) (Fig. 1B). The optimization 
of models hyperparameters aimed to minimize k-fold cross-validation error with the target set equal to the 
GOS-E value at 6 months. Each of the training set in cross-validation splits was resampled to overcome data-

Figure 1.  Work pipeline starting from data collection (A) at the admission (light blue, ADM-DB) and MCs at 
3 months (green, 3M-DB). In the model selection, the k-fold cross-validated admission model predictions are 
attached, following the same k-fold split, to the MCs at 3 months (B). Together, these data are used to train and 
cross-validate the 3-month model. Both models have the GOS-E value at discharge as target. (C) Representative 
example of how weights assigned patient-wise to the independent variables contribute to the overall prediction 
(left) and how predictions are dichotomized for model comparison (right).
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set imbalance, using the Synthetic Minority Oversampling TEchnique (SMOTE)46. Predictions from models 
trained using data at admission were attached to the 3-months MC dataset, split using the k-fold cross-validation 
indexes adopted in the previous step. For each of the admission models’ predictions, three 3-month models were 
deployed, specifically an EN, an OMP and a KNN. Consequently, nine models resulted using the full dataset, 
considering all 3 × 3 combinations of regressors. K-fold cross-validation accuracies were computed for all mod-
els and compared. Furthermore, actual and predicted values were dichotomized in GOS-E > 4/GOS-E ≤ 4 in 
order to retrieve accuracy, sensitivity and specificity of the dichotomized outcome classification.

Optimization was performed using the Optuna  library47 and all ML models were implemented utilizing the 
Scikit-Learn  library48.

Model interpretability. Different methods to interpret Machine Learning black-boxes are currently avail-
able in  literature49. Such methods allow to investigate the feature contribution to the predictions. Elastic-Net or 
OMP, and more in general Generalized Linear Models, already allow for interpretability and explainability meas-
ures, by assigning to each independent variable the height of its related regression coefficient βi and therefore 
calculating the effect of the feature vector x onto the prediction via the product βx . Nevertheless, given the k-fold 
cross-validation implementation, each patient ends up k − 1 times in a training set and only once in a validation 
set. Consequently, k models will result in a parameter estimate βN . Accordingly, evaluating feature importance 
via averaging the k coefficients β is possible, but has two major drawbacks. Firstly, the resulting variability in the 
parameters estimates can be relevant. Secondly, Shapley values does not only provide mean trends derived from 
the full data as for β regression coefficients but offers a patient-wise estimation of feature contribution to the 
predictions (Fig. 1C).

Ethics. This study was approved by the Ethics Committee of the coordinator center (Fondazione Pascale 
IRCCS, Napoli, Protocol number 1/16, 15.06.2016) and confirmed by the local ethics committees of each center 
involved in the study and performed according to the ethical standards of the Declaration of Helsinki (1964) 
and its later amendments. We have to specify that the Ethics Committee of Fondazione Pascale is the Campania 
Regional Reference Center for the Scientific Institutes of Research and Care (IRCCS). This is the reason why 
the Ethics Committee of Fondazione Pascale was in charge of approving the project, even though no author is 
affiliated there. The list of 23 local ethics committees/institutional review boards which participated in the study 
is reported in the Supplementary Materials C. The Legally Authorized Representative of all patients enrolled in 
the study provided written informed consent. The original forms were collected and stored at each participant 
centre in accordance with national regulation on the protection of personal data, and anonymized data were 
then centralized in one secured database.

Results
Univariate analysis. Overall, 176 patients with DoC were included in the study (104 males; median 
age = 60.2 years [IQR 21.7]; median time post-insult = 1.3 months [IQR 1.23]) of whom the 51.7% (n = 91) were 
in a VS/UWS (Table 1). Detailed data at study entry were reported  elsewhere36.

Younger age, entry diagnosis of MCS (χ2 = 12.22, p = 0.001), and lower DRS score (OR 0.735; CI 0.641–0.842; 
p < 0.001) were significantly associated with a more favorable outcome at the 6-month follow-up. Furthermore, 
the CRS-R total score (OR 0.752; CI 0.669–0.846; p < 0.001) was significantly higher in patients with favorable 
outcome (median 12.5 points [IQR 6]) than in patients with unfavorable outcome (median 7 [IQR 6]). Similarly, 
all the CRS-R sub-scores were significantly higher in patients with favorable outcome (p < 0.001). As regard 
medical devices, the presence of feeding supports was significantly associated with the outcome (χ2 = 14.99, 
p = 0.004). In particular, the presence of percutaneous endoscopic gastrostomy at admission was significantly 
associated to a worse functional outcome (χ2 = 6.759, p < 0.01).

Moreover, patients with a favorable outcome showed a lower  MCtot score (OR 0.882; CI 0.793–0.980; 
p = 0.020). Among the MCs categories, the presence of respiratory complications during the hospital stay was 
found to be associated with the unfavorable outcome (OR 0.682; CI 0.477–0.974, p = 0.035) (Table 2). No other 
significant relations were found between the 6-month outcome and single MCs categories (all p > 0.05).

ML model predictions and interpretation. Optimization results for each of the admission and 3-month 
models were reported in Supplementary Materials D. Respectively, admission models resulted in a median abso-
lute validation error of 0.70 points [IQR 0.19] for the EN, of 0.71 [IQR 0.25] for the OMP, of 0.63 [IQR 0.14] 
for the KNN and of 0.73 points [IQR 0.16] for the SVR. By dichotomizing the predictions in GOS-E ≤ 4 and 
GOS-E > 4, the best solution at admission resulted in the KNN with a classification accuracy of 88.6% (Fig. 2A). 
The model resulted in a sensitivity of 94.4% and specificity of 62.5%. Among the models built at admission, EN, 
KNN and SVR improved when concatenating a KNN. Respectively, the EN–KNN combination resulted in a 
median absolute validation error of 0.53 points [IQR 0.22], the KNN–KNN combination resulted in a median 
absolute validation error of 0.49 points [IQR 0.20] and the SVR–KNN combination in a median absolute valida-
tion error of 0.50 points [IQR 0.23]. The KNN–KNN model, resulted the best performing 3-months solution 
with a sensitivity of 96.5%, a specificity of 74.2% and classification accuracy of 92.6% (Fig. 2B) very similar to the 
SVR–KNN combination (sensitivity of 96.5%, specificity of 71.9% and accuracy of 92.0%).

The calculation of SHAP values from the best admission KNN resulted in age being the feature with the 
strongest weight in predicting GOS-E > 4. Older age, presence of more invasive feeding strategies, higher dis-
ability rates (lower DRS) were all found affecting the prediction of GOS-E (Fig. 3A). When evaluating marginal 
joint probabilities between predictors, a clear interaction effect resulted between age and CRS-R communication 
score (Fig. 3C). Specifically, beside the inverse relationship between age and its SHAP value ( R = −0.948 ), an 
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Table 1.  Admission descriptive and inferential statistics for admission variables. CIRS: Cumulative Illness 
Rating Scale, MCS Minimally Conscious State, TBI Traumatic Brain Injury, ERBI Early Rehabilitation Barthel 
Index, DRS Disability Rating Scale, CRS-R Coma Recovery Scale-Revised, PEG Percutaneous endoscopic 
gastrostomy, NGT nasogastric tube.

GOS-E ≤ 4 GOS-E > 4
OR/[χ2]/
{Fisher’s} OR, 95% CI p-value

Clinical and functional evaluations

Age, years 63.43 [21.82] 51.23 [36.04] 0.960 0.941–0.980 < 0.001

Gender, M 104 (70.3) 19 (67.9) [0.065] – 0.799

Time post-insult, days 1.38 [1.20] 1.08 [1.19] 0.685 0.390–1.202 0.188

CIRSsev 0.36 [0.57] 0.36 [1.05] 1.410 0.677–2.937 0.359

CIRScom 1.5 [3] 1 [5] 1.048 0.894–1.228 0.565

Clinical State, MCS 63 (42.6) 22 (78.6) [12.223] – 0.001

Etiology [3.431] – 0.330

TBI 50 (33.8) 11 (39.3) [0.315] – 0.575

Anoxic 29 (19.6) 3 (10.7) {1.248} – 0.422

Vascular 60 (40.5) 14 (50.0) [0.865] – 0.352

ERBI − 175 [50] − 225 [81] 0.994 0.986–1.003 0.212

DRS 24 [4] 21 [7] 0.735 0.641–0.842 < 0.001

Pressure Sores 63 (42.6) 7 (25.0) [3.034] – 0.082

Lacunar Skull 21 (14.2) 5 (17.9) [0.252] – 0.616

CRS-R total score 7 [6] 12.5 [6] 0.752 0.669–0.846 < 0.001

Auditory 1 [1] 2.5 [2] 2.926 1.853–4.620 < 0.001

Visual 1 [2] 3 [2] 1.865 1.346–2.585 < 0.001

Motor 2 [2] 3 [3] 1.962 1.434–2.683 < 0.001

Oro-motor 1 [0] 2 [1] 3.948 2.023–7.690 < 0.001

Communication 0 [0] 1 [1] 5.008 2.200–11.399 < 0.001

Arousal 2 [1] 2 [0] 3.384 1.794–8.201 0.001

Supports

Resp. Support [0.894*] – 0.744

Autonomous 71 (48) 16 (57.1) [0.792] – 0.373

Autonom. w. O2 68 (45.9) 11 (39.3) [0.422] – 0.516

Ventilation 9 (6.1) 2 (3.6) [0.277] – 0.706

Tracheostomy 141 (95.3) 24 (85.7) {3.669} – 0.055

Feeding support [14.987] – 0.004

PEG 92(62.2) 10 (35.7) [6.759] – 0.009

NGT 50 (33.8) 14 (50) [2.676] – 0.102

Per OS 5 (3.4) 1 (3.6) [0.003] – 0.959

Urinary catheter 146 (98.6) 28 (100) {0.383} – 1.000

Intensive monitoring 80 (54.1) 20 (71.4) [2.897] – 0.100

Table 2.  Admission descriptive and inferential statistics for 3-months complications.

GOS-E ≤ 4 GOS-E > 4 OR OR, 95% CI p-value

Medical complications

Endocrino-metabolic 0 [1] 0 [1] 0.647 0.392–1.069 0.089

Cardiac 0 [1] 0 [1] 0.695 0.447–1.082 0.107

Musculoskeletal 1.5 [3] 1 [2] 0.833 0.623–1.114 0.217

Gastro 0 [1] 0 [1] 0.928 0.617–1.396 0.721

Urinary 0 [1] 0 [1] 0.679 0.438–1.053 0.084

Respiratory 1 [2] 0 [1] 0.682 0.477–0.974 0.035

Neurosurgical 0 [0] 0 [0] 0.929 0.597–1.446 0.745

Epilepsy 0 [0] 0 [0] 0.858 0.448–1.642 0.644

Heterotopic Ossification 0 [0] 0 [0] 1.370 0.820–2.287 0.229

Paroxysmal sympathetic hyperactivity 0 [1] 0 [0] 0.641 0.271–1.513 0.310

Medical  Complicationstot 5 [5] 4 [5] 0.881 0.793–0.980 0.020
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increase of the effect of the age on the GOS-E is seen in patients with higher communication levels. In particular, 
older age has a significatively more negative effect on the GOS-E in patients with higher CRS-R communication 
values ( R = −0.981 in patients with CRS − Rcomm = 1 vs R = −0.950 in patients with CRS − Rcomm > 1) . Also, 
the age-VS interaction significantly influenced the value of the age SHAP value ( pinteraction

[

age × VS
]

< 0.001 , 
OR 1.165, CI 1.137–1.192) similarly to CRS-R communication score.

Furthermore, the interaction effect between the admission state of consciousness and the type of feeding 
showed how enteral nutrition contributes negatively to the GOS-E prediction when patient are mostly in MCS 
( pinteraction[PEG × VS] < 0.001 , OR 0.603, CI 0.526–0.690). The negative effect of the presence PEG, almost turns 
neutral in patients in a VS (Fig. 3D). Conversely, the ‘positive’ effect of being fed via NGT results significantly 
stronger in patients in a VS than in a MCS ( pinteraction[NGT × VS] < 0.001 , OR 0.826, CI 0.720–0.948).

The highest absolute SHAP values in the KNN–KNN solution were observed for the normalized GOS-E 
prediction of the admission KNN, followed by  MCtot (Fig. 3B). Coherently, higher GOS-E predictions at admis-
sion yielded positive contributions on the 3-months GOS-E prediction as well as a lower number of MCs. The 
interaction between the combined effects of the GOS-E admission prediction and  MCtot (Fig. 3E) showed that 
the KNN-KNN model assigned a stronger importance to the GOS-E prediction at admission in patients with 
fewer MCs ( pinteraction[GOS − ET0 ×MCtot ] < 0.001 , OR 1.355, CI 1.280–1.433). Overall, a negative absolute 
contribution to the GOS-E prediction was also provided by a higher number of respiratory and musculo-skeletal 
complications.

Discussions
An accurate prognosis of pDoC is crucial for optimizing patients’ management, but clinicians often have to deal 
with a high variability in patients’ clinical conditions throughout the rehabilitative path, in particular due to 
frequent occurrence of medical complications. In this multicenter, longitudinal study we enrolled a cohort of 
176 patients with prolonged VS/UWS and MCS and evaluated their functional outcome up to 6 months after 
traumatic or non-traumatic brain injury. Because of the importance of a dynamically-evolving  prognostication33, 
we developed a cascade ML model that, beside training and validating a model at admission, we added data col-
lected at 3 months onto the prediction of the admission model. Differently from previous studies in  literature16,32, 
in the present work data at admission and at 3 months were used in two separate models, connected by the 
prediction of the first model. In this way, it is possible to investigate the effect of MCs (risen in the first 3 months 

Figure 2.  Confusion matrices of classification: predicted values were reported on the x-axis while actual values 
on the y-axis. In the upper part  (A), the confusiom matrices of the four admission models were reported. In 
the lower part results after the 3-months adaptation of each approach were compared (B). All 4 × 4 possible 
combinations of classifiers were compared: for each of the columns, models built using the prediction of 
admission model on top were reported.
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of stay in rehabilitative units) on the prediction done at admission. Furthermore, it does not only lead to the 
evaluation of accuracy changes between admission and 3-months based models, but also it relates the severity/
number of medical complications developed with the prediction done at admission. Such techniques, based on 
the evaluation of marginal probabilities after calculation of Shapley values allow to investigate the interaction 
effects between independent variables, without increasing the cardinality of the predictors. With such methods, 
data-driven confirmations of known trends in the prognosis of patients with a DoC could be retrieved.

We considered as an outcome of interest the level of disability as classified by the GOS-E score. Notwithstand-
ing even a minimal improvement in the level of consciousness can be important for patients’  relatives50 and for 
identifying patients with higher likelihood of further clinical  improvement51, here we aimed at predicting the 
level of functional independence according to a 30-year  literature52,53.

Our ML algorithm, based only on demographical and clinical data collected at admission, was able to predict 
patients’ functional outcome at 6 months with 88.6% accuracy. We observed that younger age, higher CRS-R 
total and sub-scores, absence of an enteral feeding device and lower DRS total score were significant predictors 
of a favorable outcome. Several studies demonstrated that age is one of the main predictors of the functional 
improvement in patients with  pDoC15,32,54, probably in relation with more premorbid medical  illnesses55 and 
lower age-related brain  plasticity56 in the elderly. In addition, we found a significant interaction between age and 
the level of consciousness at admission. More precisely, results showed that the weight of  age in predicting the 
functional outcome increased as a function of the entry diagnosis (i.e., MCS rather than VS/UWS) and of the 
CRS-R communication sub-score. It could be speculated that the influence of age might be negligible in VS/UWS 
patients, that are often characterized by a more severe brain  injury57,58 and worse general clinical  conditions54 with 
respect to patients in MCS. A similar explanation might be applied to the interaction between age and CRS-R 
communication sub-score since the communication sub-scale of the CRS-R collected at admission could only 
assume the 0 or 1  values59, indicating respectively a diagnosis of VS/UWS or MCS, and actually representing a 
dichotomic index of level of consciousness.

Figure 3.  SHAP values were computed for both the admission KNN (A) and the 3-months KNN–KNN (B) 
and they are reported on the x-axis, after ordering features by the mean of the absolute SHAP value. Most 
relevant marginal interactions are represented for both the admission model (C,D) and the 3-months model (E).
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We found a significant role of the CRS-R total score in predicting a favorable outcome. This finding sup-
ported the prognostic validity of CRS-R total score, in keeping with previous longitudinal studies on clinical 
 improvement6,13,54,60,61 and disability  level61 in individuals with pDoC. Since the CRS-R total score summarizes the 
scores of six sub-scales with hierarchically-organized items, it could be considered an indirect index of severity 
of brain  injury62, with higher scores corresponding to higher-level neurologic functioning.

Similarly, we observed that the level of disability at admission as assessed by the DRS was a significant 
predictor of the GOS-E score at 6 months. This result is in line with previous  literature5,54,63 suggesting a strict 
relationship between these two clinical tools evaluating functional independence.

We also found that the lack of enteral feeding device is associated with favorable functional outcome, and that 
this effect is more evident for patients in MCS than in VS/UWS. This finding would confirm that early recovery 
of non-automatic oral feeding is related to recovery of higher cognitive function, particularly in patients in MCS, 
in whom conscious behavioral responses can be  present64.

Our model was improved by including information on patients’ MCs collected within the first 3 months of 
intensive rehabilitation, resulting in a prediction accuracy of 92.6%. In particular, the cascade model showed 
how the update of the predictions directly reflects the medical complications risen in the first 3 months of stay 
in rehabilitation units, by correcting the GOS-E admission prediction proportionally with  MCtot. In other words, 
for patients who had fewer MCs in the first 3 months, the GOS-E predicted at admission had a higher impact 
than for patients who had more MCs. This finding is in line with previous studies showing that MCs arising in 
the first 3 months may significantly affect functional  outcomes15,17,20–24.

Our results are in line with the study of Lucca et al. 32, which reported an area under the curve of 0.876 when 
predicting changes in functional disabilities (assessed by DRS) by using data taken during intensive care and at 
admission to rehabilitation unit. In that study, the impact of MCs on the prediction of functional outcomes was 
evaluated via a multivariate regression analysis which allows for the investigation of independent predictors but 
cannot cope with interaction effects. By these means, the authors found that the total number of MCs was signifi-
cantly associated with the worse outcome. Coherently, our univariate findings showed that a smaller number of 
MCs increased likelihood of better recovery. Moreover, we also found the presence of respiratory complications 
to be predictive of a worse functional outcome, as in previous works targeting both level of  consciousness36 and 
functional  independence22,24. Moreover, the authors reached similar results targeting the dichotomized version 
of the GOS-E scale and reporting a validation area under the curve of 0.78 with models trained with data taken 
at  admission63. It must be mentioned, though, that our case mix included TBIs, anoxic and vascular etiologies 
notably increasing the complexity of the prediction task with respect to only TBIs, as in Farzaneh et al.65.

In this respect, our analysis comparing traumatic versus vascular versus anoxic etiology did not reveal sig-
nificant association with outcome. Even contrasting traumatic versus non-traumatic etiology (i.e., grouping 
vascular and anoxic etiology in one non-traumatic subsample) we did not find significant association with 
outcome (p = 0.575, χ2 = 0.315). The lack of association of etiology with outcome in our sample could seem at 
odds with previous studies reporting a better prognosis in individuals with traumatic brain  injury63. However, 
it must be considered that the studies on the relationships between traumatic brain injury and outcome have 
often been performed at early stages of disease, whereas here we dealt with post-acute rehabilitative stage and 
focused on survivors who had not recovered consciousness within 1 month post onset. At this stage, information 
about etiology seems not able to provide solid prognostic cues for recovery. This consideration is consistent with 
findings from several studies on samples with similar features, i.e. with prolonged  DoC6,54.

Analogously, we must also comment on the fact that at admission other possible predictors of outcome, 
such as tracheostomy and non-invasive ventilatory support did not significantly differ between patients with 
good or poor outcome. These findings could be likely ascribed to the fact that these factors were present in most 
individuals enrolled in this study, and so could hardly discriminate individuals with different outcomes. For 
instance, tracheostomy was present in the 95.3% of patients with GOS-E < 4 at discharge and 85.7% of patients 
with GOS-E > 4, and the difference in frequency of tracheostomy between the two groups only approached the 
significance level (p = 0.055). By the same reasoning, ventilatory support was very frequent. In particular, ~ 50% 
of patients in respectively the favorable/unfavorable outcome received a respiratory support  (O2 support or non-
invasive ventilation). Also, merging persons with  O2 support and persons with non-invasive ventilatory support 
and comparing them with those without any support, we did not find significant associations with outcome 
(p = 0.373, χ2 = 0.792). Also, the median value for musculo-skeletal-cutaneous complications was found to be 
1.5 in the GOS-E < 4 and of 1 in the GOS-E > 4 group, not allowing for a distinction between the two groups.

The present study had several limitations. Firstly, it must be acknowledged that clinical characteristics related 
to the ICU period can notably affect the outcome. Therefore, by adding such characteristics (e.g., Marshall scores, 
ICU vital supports) model accuracy could certainly be improved, but these data were not available. Further-
more, interactions between acute setting features, admission variables and MCs risen within the first 3 months 
would be allowed to emerge. Secondly, pharmacological interventions (beta-blockers, etc.) may affect/prevent 
the emergence of some symptoms (e.g. paroxysmal sympathetic hyperactivity), but could not be included in 
analysis since out of the scope of this work. Thirdly, the generalizability of the proposed model needs to be 
tested on prospective external validation sets and the improvements carried into clinical practice must be evalu-
ated following standard decision support tools validation procedures. Nevertheless, the multicentric nature of 
the study (N = 23), the geographically distant hospitals and the validation approach implemented ensures the 
validity of the results. Overall, the proposed algorithm works with no instrumented data, avoiding costly and 
invasive examinations (e.g.  fMRI66) and utilizing straightforward checklists and clinical scales. Interpretable 
and explainable models as the one proposed here, not only could increase trustworthiness of the solution, but 
also provide contributions of the features to the predictions in a patient-specific manner. Fourthly, a limitation 
in the dichotomization of the GOS-E score might result in the ceiling effect on the range of good  recovery67. In 
our case mix (only patients with a DoC) only 7 (4%) and 3 (1.7%) patients respectively scored 7 and 8 on the 
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GOS-E scale 6 months after the event. This finding shows how such ceiling effect is negligible when evaluating 
patients with acquired prolonged DoC with respect to patients with only a sABI who recovered consciousness 
at an earlier stage after onset.

A last limitation could relate to the type of coding we used for medical complications. Our checklist coded 
medical complications as a function of the system/organ involved, and did not distinguish them for type or etiol-
ogy (e.g., as far as the genito-urinary tract is concerned, infections, bleeding, urinary stones, urinary obstructions 
and renal insufficiency were merged in the same category). For this reason, we could have underestimated the 
prognostic value of infectious conditions, such as those of the urinary tract or of the respiratory system which 
are very frequent in individuals with prolonged DoC, although, by considering them within medical complica-
tions of the respective system/organ, we took into account their possible contribution to outcome prediction. By 
the same token, we considered spasticity (one possible predictor of outcome in  DoC68) among the pathologies 
of musculoskeletal-cutaneous system, so we could not evaluate the individual prognostic value of spasticity 
alone. Future studies might obtain further prognostic information by adopting more fine-grained checklist for 
medical complications.

In conclusion, ML offers promising and automated medical reporting and prognosis algorithms, but at the 
moment such models are rarely deployed in daily clinical  settings65. To improve transparency and practicality, 
we proposed a machine learning-based framework that is explainable and that is based on affordable features, 
with no instrumental requirements. Using this model, we found that functional outcome of patients with pDoC 
at 6-month post-injury can be predicted at admission with an accuracy of 88.6%. Thereafter, the adjustment 
of this model with information on MCs arising within the first 3 months of hospitalization led the accuracy of 
prediction to 92.6%. Such accuracies were obtained with relatively simple algorithms, increasing the generaliza-
tion capabilities of the solution, demonstrating how even classical ML techniques may be sufficient to accurately 
predict functional outcome of patients with DoC. Surely, with more complex/deep models better accuracies may 
be obtained although conditioned to the need of having a much greater number of samples. Overall, we believe 
that this model could effectively support clinicians and patients’ caregivers in the decision-making about treat-
ment and rehabilitative path.

Data availability
The data that support the findings of this study will be made available from the corresponding author upon 
request for replication purposes.
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