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Transcriptomic data exploration 
of consensus genes and molecular 
mechanisms between chronic 
obstructive pulmonary disease 
and lung adenocarcinoma
Siyu Zhang1, Kun Pang2, Xinyu Feng1 & Yulan Zeng1*

Most current research has focused on chronic obstructive pulmonary disease (COPD) and lung 
adenocarcinoma (LUAD) alone; however, it is important to understand the complex mechanism 
of COPD progression to LUAD. This study is the first to explore the unique and jointly molecular 
mechanisms in the pathogenesis of COPD and LUAD across several datasets based on a variety of 
analysis methods. We used weighted correlation network analysis to search hub genes in two datasets 
from public databases: GSE10072 and GSE76925. We explored the unique and jointly molecular 
mechanistic signatures of the two diseases in pathogenesis through enrichment analysis, immune 
infiltration analysis, and therapeutic targets analysis. Finally, the results were confirmed using real-
time quantitative reverse transcription PCR. Fifteen hub genes were identified: GPI, EZH2, EFNA4, 
CFB, ENO1, SH3PXD2B, SELL, CORIN, MAD2L1, CENPF, TOP2A, ASPM, IGFBP2, CDKN2A, and ELF3. 
For the first time, SELL, CORIN, GPI, and EFNA4 were found to play a role in the etiology of COPD 
and LUAD. The LUAD genes identified were primarily involved in the cell cycle and DNA replication 
processes; COPD genes we found were related to ubiquitin-mediated proteolysis, ribosome, and T/B-
cell receptor signaling pathways. The tumor microenvironment of LUAD pathogenesis was influenced 
by CD4 + T cells, type 1 regulatory T cells, and T helper 1 cells. T follicular helper cells, natural killer 
T cells, and B cells all impact the immunological inflammation in COPD. The results of drug targets 
analysis suggest that cisplatin and tretinoin, as well as bortezomib and metformin may be potential 
targeted therapy for patients with COPD combined LUAD. These signatures may be provided a new 
direction for developing early interventions and treatments to improve the prognosis of COPD and 
LUAD.

Chronic obstructive pulmonary disease (COPD) is a disease characterized by persistent and irreversible air-
flow limitation. The main symptoms of COPD are coughing sputum and shortness of  breath1,2. Due to its high 
morbidity, prevalence, and mortality, COPD has become one of the most impactful chronic respiratory diseases 
worldwide; it harms human health, resulting in large economic and social burdens. There are many known 
causes of this disease. Smoking is a risk factor for  COPD3. Other elements are crucial for the pathogenesis, 
including immunological reactions, inflammation and heredity risk factors. However, their mechanisms are not 
fully understood. In conclusion, COPD has negative economic and social consequences. Research is needed on 
the pathogenesis of COPD. A clear understanding of the risk factors for COPD can promote early intervention, 
reducing exposure to risk factors and other measures to prevent the occurrence of COPD.

Lung cancer has become one of the most common cancers in the history of the world, according to the latest 
statistics on all cancers released in  20184. In non-small-cell lung cancer (NSCLC), lung adenocarcinoma (LUAD) 
is the primary histological subtype of lung cancer, with a high mortality rate and recurrence  rate5. Although mod-
ern therapeutic procedures have made considerable improvements, the recurrent mortality rate remains high. 
Understanding the clinical significance of proteins, nucleic acids, and other macromolecules in the occurrence 
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and development of LUAD has the potential to help the treatment of disease and related prognosis, and it is also 
conducive to risk-stratified disease management. To date, most research focuses on how aberrant gene expression 
and mutations are linked to lung adenocarcinoma progression and carcinogenesis. Consequently, more research 
into the biology and pathophysiology of LUAD is essential.

It is known that COPD and LUAD exhibit heterogeneity in the clinical presentations and disease progres-
sions. However, the coexistence of COPD and LUAD is common, and progression of COPD to LUAD often has 
a poor prognosis. Both COPD and LUAD are common respiratory diseases that share similarities. In terms of 
etiology, COPD and lung adenocarcinoma share common risk factors, such as cigarette smoke exposure, chronic 
inflammation, gene methylation, and environmental  factors6. They also have the same clinical symptoms, such 
as cough and sputum. Persistent bronchial and alveolar inflammatory responses in the long-term course of 
COPD may have a crucial role in lung cancer induction in the early  stages7. COPD patients have a higher relative 
chance of developing lung  cancer8. In addition, a number of possible mechanisms may explain the relationship 
between COPD and LUAD, including genetic, epigenetic modifications and oxidative stress  factors9. Neverthe-
less, the existing studies have mostly focused on a single disease and the complex disease mechanism between 
COPD to LUAD is not well understood, and to date no genetic biomarkers have been developed for screening 
COPD patients who are at high risk for LUAD. Because of the threat to human survival and the burden on social 
resources, it is extremely important to explore the biological mechanisms to provide a new direction for develop-
ing early interventions and treatments to improve the prognosis of COPD and LUAD.

In this study, two large-scale microarray datasets, GSE76925 and GSE10072, were analyzed. Bioinformatics 
analysis was performed on lung tissue datasets in this work. Although blood is the most commonly available 
biomarker for histology studies, it is more subject to environmental influences, demographic features, and 
comorbidities, all of which might cause measurement changes that are undesirable. Lung tissue is more stable 
than blood, stores more information, and provides more insight into disease mechanisms than blood. Due to 
the complex evolutionary mechanism of COPD and LUAD, multiple analysis methods were used for multiple 
datasets, both individually and in combination, to fully analyze the two diseases from multiple perspectives. 
To gain a deeper understanding of genetic factors, weighted gene coexpression network analysis (WGCNA) 
in bioinformatics was used to analyze the key genes related to these two diseases, which were both unique 
and shared, and then combined with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) to analyze the functions, molecular mechanisms, and pathways of key genes. The immune response in 
the tumor microenvironment is now an important factor in determining the aggressiveness and progression of 
tumors. This research aims to assess the immune status of the two diseases by examining the distribution and 
function of immune cells and investigating connections between the expression of immune cytokines and key 
genes, which could be crucial for improving COPD and LUAD immunotherapy. Additionally, the Drug-Gene 
Interaction Database (DGIDB) was used to identify drug targets linked to the disease’s pathophysiology, which 
may guide the early intervention and treatment of patients with COPD and LUAD. Finally, real-time quantita-
tive reverse transcription PCR (RT–qPCR) was used for cytological experimental verification. By exploring the 
unique and jointly biological mechanisms of the pathogenesis of COPD and LUAD in multiple datasets and from 
multiple viewpoints, this research will provide new directions for developing early interventions and treatments 
to improve the prognosis of COPD and LUAD.

Materials and methods
Data collection and processing. We used "COPD," "LUAD," and "Homo sapiens" as keywords to retrieve 
the transcriptome spectrum of the COPD and LUAD datasets from the Gene Expression Omnibus. We found 
two expression datasets with readily available data that matched our search criteria, GSE10072 and GSE76925. 
Gene expression profiles of 58 LUAD patients and 16 healthy subjects (58 lung tumor tissue and 49 normal lung 
tissue) were found in GSE10072 (Supplementary Table S1). The GSE76925 dataset consisted of gene expres-
sion profiles from 111 COPD patients and 40 healthy individuals (Supplementary Table S2). The other detailed 
messages of the two datasets may be found in Supplementary Table S3. Based on the Robust Multichip Average 
method of the single-channel Affymetrix chip, we used the Bioconductor Affy package to process and normal-
ize the GSE10072 gene expression  data10. The data in GSE76925 were processed using the R package to apply a 
log2 transformation to the original matrix and implement background correction and quantile  normalization11. 
We downloaded the two gene expression datasets that had been processed. Subsequently, we matched the probe 
number with the Gene symbol according to the illuminaHumanv4. DB R package. The probe ID with the high-
est average expression value was selected when multiple probes were found corresponding to one ID. Then, the 
Limma package in R was used to identify the differentially expressed genes between COPD and LUAD. Two 
basic criteria based on the P values and log2FC values of the genes were used to identify differentially expressed 
genes (DEGs). The corrected P value (adj.P.Value) was obtained. The adj.P.Val < 0.05 and |log2FC|> = 1 were 
selected as the threshold for DEG screening criteria. Finally, the expression matrices of GSE10072 and GSE76925 
were produced. Figure 1 shows a flowchart of all steps involved in our analysis.

Identification of DEGs and candidate genes. The DEGs between COPD and LUAD were identified 
using the linear regression model software package in R, Limma. The t test method was used to identify the 
differentially expressed genes. The P value and log2FC value of the genes, as mentioned earlier, were calibrated 
through multiple experiments, and then the adjustment P value (adj. P. val) was obtained. The adj. P. Val and 
log2FC used to screen for DEGs. These DEGs were used as a verification set. In the same way, the screening 
condition adj. P. Val < 0.05 was chosen to find candidate genes in the two datasets. We focused on analyses of 
these genes.
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Weighted gene co-expression network analysis (WGCNA). Weighted gene coexpression network 
analysis (WGCNA) is a method of categorizing genes into different modules according to certain conditions to 
identify biologically relevant information. In COPD-special and LUAD-special sections, we selected candidate 
genes for WGCNA (adj. P. Val < 0.05). To analyze the consensus section, we used the tutorial on the WGCNA 
website.

To thoroughly explore correlated gene modules, the WGCNA package in R was used to perform WGCNA 
processing on the candidate genes. First, we clustered the samples in the expression matrix (distinct from the 
candidate gene clustering described later); the purpose was to assess whether there were obvious outliers in the 
sample. Datasets containing the corresponding clinical characteristics, and the samples in the datasets were 
mapped to the clinical characteristics one-by-one. Subsequently, cyberspace construction and module detection 
were performed. Similar genes were divided into standard modules to obtain a hierarchical clustering dendro-
gram for module identification. Modules with clinical significance were selected and discussed. Gene significance 
(GS) and module membership (MM) were two key indicators used to identify modules closely related to clinical 
features. Finally, we selected modules that were highly related to specific clinical features for further analysis.

Screening for hub genes. To improve the accuracy of the process of identifying pivotal genes, a method 
of taking the intersection of the candidate genes after WGCNA analysis and the diseases differential genes were 
used.

Pathway enrichment analysis. To perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses of genes in significant modules and plot the relevant graphs, we used the “Cluster-
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Figure 1.  A flowchart showing all the steps involved in our analysis.
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profiler” program in R software. Both Go and KEGG data are publicly available  databases12–16. We also chose adj. 
P. Val < 0.05 as a screening condition in the enrichment analysis.

Immune cell infiltration analysis. To determine the abundance of 24 types of immune cells in COPD 
and LUAD, the GSE76925 and GSE10072 gene expression data were uploaded to the Immune Cell Abundance 
Identifier online analysis  website17. Box plots were used to graphically represent the difference in immune cell 
infiltration distribution between the disease group and the normal group. Related heatmaps were produced to 
visualize the relationship between 24 immune cells and key genes. We used the R packages “ggplot2” and “cow-
plot” to draw plots. The samples with a P value < 0.05 were screened to select meaningful immune cells.

Identification of candidate drug-targets. To identify the candidate drug targets in COPD and LUAD, 
the important modules genes from WGCNA analysis were uploaded to the Drug-Gene Interaction Database 
(DGIDB)18. DGIDB was be able to automatically analyze all gene-related drug targets. Finally, the results were 
plotted using R to map the drug target network plots. The drug with the most nodes was selected as a potential 
drug target.

Real-time quantitative reverse transcription PCR. Real-time quantitative reverse transcription PCR 
(RT–qPCR) was used to verify the expression levels of key genes in COPD and LUAD at the cellular level. The 
Homo sapiens cell lines of LUAD are H1299 and A549. The COPD cell line was based on the FTC approach and 
experimental experience, and the normal pulmonary epithelial cell line BEAS-2B was stimulated with 8% CSE 
smoke for 24 h to form a COPD disease  model19. All cell lines are derived from ATCC. Total RNA was extracted 
from cell lines using the TRIzol (Vazyme) reagent. RT–qPCR was performed using the HiScript II Reverse Tran-
scriptase (Vazyme) kit and SYBR Green qPCR MasterMix kit (Seven), and expression levels were normalized to 
GAPDH and quantified using the 2 − ΔΔ (ct) method. Gene-specific primers synthesized by Gene create com-
pany (Wuhan China) are listed in Supplementary Table S4.

Results
Identification of DEGs. In this study, we used two microarray datasets herein known as GSE10072 and 
GSE76925. The GSE10072 dataset consisted of 58 lung tumor tissue and 49 normal lung tissue, of which the 
total number of genes was 12,402. According to the screening conditions adj. P. Val < 0.05 and |log2FC|> = 1, we 
obtained 558 DEG datasets, comprising 185 upregulated and 373 downregulated genes, which were screened 
out. In addition, 111 experimental data points from COPD patients together with 40 data points from healthy 
controls were selected from GSE76925. This dataset included 17,130 genes in total. After analyzing, the dataset 
showed 301 differentially expressed genes; 46 genes were upregulated, and 255 genes were downregulated. The 
quality of the microarray data was assessed by principal component analysis (PCA). PCA plots showed a clear 
separation in COPD datasets and LUAD datasets (Fig.  2). Detailed information on all DEGs in LUAD and 
COPD can be found in Supplementary Table S5.

Weighted gene co-expression network analysis. Disease‑specific analysis. Disease-specific candi-
date genes, 2740 genes in COPD and 4657 in LUAD (adj. P. Val < 0.05) were used to establish coexpression 
network structures unique to each disease. We used the "WGCNA" package in R to construct a scale-free co-
expression network. We chose β = 8 to maximize the scale-free topology fitting of the candidate gene WGCNA 
network while maintaining high average connectivity (Supplementary Figure S1). Then, sample clustering was 
performed to detect outliers in these samples. Outlier values were removed from the set of LUAD samples (Sup-
plementary Figure S1). Supplementary Figure S2 provided clinical features among the candidate genes. Figure 3 
showed hierarchical clustering dendrogram of functionally similar genes. We obtained three target modules in 
COPD and 15 modules in LUAD. One critical module was identified for COPD (denoted in blue) and two were 
identified for LUAD (denoted in turquoise and blue). The scatter plots of the GS and MM of these modules were 
also generated (Fig. 3).

Consensus network analysis. We chose β = 9 to maximize the scale-free topology fitting of the candidate gene 
WGCNA network (Supplementary Figure S3). If the two diseases presented similarly in the same clinical trait, 
the same color was applied to both modules; if the presentation of the diseases was different, then the module 
was colored gray. Thus, a total of 7 modules were obtained for COPD-LUAD. Based on module-trait association 
and P-value, the turquoise module exhibited the most highly positive correlation (Fig. 3).

Screening for the hub genes. Candidate genes were identified using the screening conditions of MM 
and GS. Subsequently, we determined the top 5 to be the essential genes. COPD genes: SH3PXD2B, CORIN, 
SELL, TRAF3IP3, BHLHE22; LUAD genes: IGFBP2, CDKN2A, MUC5B, CEACAM5, ELF3, MAD2L1, BUB1B, 
CENPF, TOP2A, ASPM; COPD-LUAD essential genes: GPI, EZH2, EFNA4, CFB, ENO1. The results and screen-
ing conditions are reported in Table 1.

Enrichment analysis. The enrichment analysis included KEGG and GO. KEGG pathway analysis showed 
that LUAD blue module target genes were significantly enriched in metabolic pathways, the cell cycle, DNA 
replication, the p53 signaling pathway, pathways in cancer, and necroptosis. GO enrichment analysis showed 
that target genes concentrated mainly on protein and binding nucleoplasm. KEGG pathway analysis also indi-
cated that turquoise module was predominantly associated with the Rap1 signaling pathway, focal adhesion, 
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MAPK, and PI3K-Akt signaling pathway. GO enrichment analysis showed that genes were mainly in the cytosol 
and plasma membrane. We conducted KEGG pathway enrichment analysis of the COPD blue module, which 
identified ubiquitin-mediated proteolysis, ribosome, ubiquitin-mediated proteolysis, and the T/B-cell receptor 
signaling pathway. GO enrichment results for the blue module included protein binding and cytosol. The KEGG 
pathways for the consensus turquoise module were oxidative phosphorylation, proteasome, spliceosome, and 
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RNA transport. The GO analysis revealed that the COPD-LUAD turquoise module was primarily enriched in 
the protein binding nucleoplasm. The detailed results were shown in Fig. 2 and Supplementary Table S6.

Analysis of the immune cell infiltration. First, we studied the difference in the infiltration of 24 immune 
cell types in COPD and LUAD patients compared with normal controls. The proportions of follicular helper T 
cells (Tfh), natural killer T cells (NKT) and B cells in COPD patients from GSE76925 were considerably higher 
than those in the control group, as shown by the box plots. The proportion of CD8 + naive cells, T helper 17 
(Th17) cells, and monocytes were lower in COPD patients than in normal controls. In GSE10072, the abundance 
of CD4 + T cells, type 1 regulatory T cells (Tr1), and T helper 1 (Th1) cells were higher in LUAD patients than in 
normal controls. On the other hand, the percentages of CD4 + naive cells, mucosal-associated immune T cells 
(MAIT), dendritic cells (DC), monocytes, macrophages, natural killer cells (NK), and neutrophils were relatively 
low. The detailed results were shown in Fig. 4, Supplementary Figure S4 and Supplementary Figure S5. Second, 
we also made connections between immune infiltrating cells and key genes. NKT cells were strongly positively 
linked to hub genes, including GPI and ENO1, while Th17 cells were negatively correlated with EZH2 and SELL 
genes in COPD. The results also revealed that monocytes had a negative correlation with the CFB gene. In addi-
tion, the Th1-cell level was most strongly associated with MAD2L1 and GPI in LUAD; in contrast, the CENPF 
gene was most negatively correlated with macrophages and NK cells (Supplementary Figure S6).

Identification of candidate drug-targets. The drug most frequently found in the LUAD blue mod-
ule and turquoise module was cisplatin; The prominent drug in the COPD blue module was Tretinoin. In the 
COPD-LUAD turquoise module, bortezomib and metformin were identified as the main drug- targets. The 
results obtained from DGIDB were presented in Fig. 5.

Validation by real-time quantitative reverse transcription PCR. RT–qPCR was used to confirm the 
differential expression of hub genes. Overall, when COPD and LUAD samples were compared to those of nor-
mal controls, a total of 10 of the 15 genes analyzed were significantly differentially expressed. The findings were 
in accordance with the array analysis. COPD-specific genes (CORIN, SELL, SH3PXD2B) and LUAD-specific 
critical genes (ASPM, CENPF, MAD2L1, TOP2A, CDKN2A, ELF3, IGFBP2) were expressed at higher levels in 
comparison to normal controls. TRAF3IP3, BHLHE22, MUC5B, CEACAM5, and BUB1B, on the other hand, 
exhibited no differences in gene expression. The results are shown in Fig. 6.

Discussion
Because of the threat, they pose to human survival and the toll they take on society, it is extremely important 
to explore the biological mechanisms of COPD and LUAD, to improve the treatment and prevention of these 
conditions. COPD and LUAD are both common respiratory diseases, with differences and similarities. Previous 

Table 1.  Hub Genes in Target Modules. Abbreviations: COPD = Chronic obstructive pulmonary; 
LUAD = lung adenocarcinoma; GS = Gene significance; MM = module membership; log2FC = log2FoldChange; 
adj.P.Val = adjust P-Value.

Sample Hub genes Modules screening conditions GS MM log2FC t P-Value adj.P.Val

LUAD

MAD2L1 Blue

MM > 0.8 and GS > 0.2

0.696 0.953 1.421 10.140 2.11E-17 4.76E-16

BUB1B Blue 0.677 0.947 1.421 9.588 3.82E-16 7.09E-15

CENPF Blue 0.722 0.941 1.342 10.885 4.19E-19 1.22E-17

TOP2A Blue 0.804 0.936 2.456 14.141 2.20E-26 1.73E-24

ASPM Blue 0.699 0.935 1.483 10.227 1.33E-17 3.12E-16

LUAD

IGFBP2 turquoise

MM from large to small and 
GS > 0.2

0.418 0.065 1.054 4.901 3.35E-06 1.33E-05

CDKN2A turquoise 0.562 0.059 1.020 7.157 1.02E-10 8.56E-10

MUC5B turquoise 0.393 0.085 1.211 4.324 3.40E-05 0.000115

CEACAM5 turquoise 0.603 0.092 2.285 7.970 1.70E-12 1.85E-11

ELF3 turquoise 0.626 0.094 1.003 8.344 2.50E-13 3.09E-12

COPD

SELL Blue

MM > 0.5 and GS > 0.2

0.304 0.702 1.025 3.934 0.000127 0.001955

CORIN Blue 0.342 0.620 1.275 4.481 1.45E-05 0.000485

SH3PXD2B Blue 0.402 0.594 1.032 5.398 2.54E-07 5.06E-05

TRAF3IP3 Blue 0.393 0.584 1.062 5.256 4.91E-07 6.89E-05

BHLHE22 Blue 0.441 0.546 1.137 6.052 1.07E-08 1.14E-05

COPD-LUAD

GPI turquoise

MM > 0.3 and GS > 0.2

0.317 0.773 0.350 4.079 7.26E-05 0.001336

EZH2 turquoise 0.267 0.489 0.547 3.407 0.000842 0.006832

EFNA4 turquoise 0.229 0.630 0.361 2.887 0.004461 0.02228

CFB turquoise 0.228 0.484 0.388 2.874 0.004639 0.02287

ENO1 turquoise 0.209 0.708 0.174 2.590 0.010535 0.041609
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Figure 4.  (A), the abundance of differentially expressed immune cells in COPD. (B), the abundance of 
differentially expressed immune cells in LUAD. Green represents the control group, and red represents COPD 
patients. COPD: chronic obstructive pulmonary disease; LUAD: lung adenocarcinoma; HC: control group.
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studies generally focused on one disease, and little research had been conducted to clarify the complex disease 
mechanism connecting COPD and LUAD, and to date, no genetic biomarkers have been developed for screening 
COPD patients who are at high risk for LUAD. To test for differential genes in smoking-related LUAD, Landi et al. 
created the LUAD-related dataset  GSE1007220. Morrow et al. generated the COPD-related dataset GSE76925 to 
analyze global gene  transcription21. In the current study, the GSE10072 and GSE76925 datasets were analyzed 
again. However, the enrichment analysis in this study differed from Landi et al. in that it was done after the 
WGCNA key module was obtained. Unlike Morrow et al. approach the screening of significant genes in this 
work combined the relevant modules produced by WGCNA with DEGs to improve the accuracy of the results. 
In addition, immune infiltration study of the diseases and drug targets prediction were carried out, which were 
not covered in Morrow et al. and Landi et al. investigations. In our present study, we identified the 4 important 
modules, COPD (blue), LUAD (turquoise and blue) and COPD-LUAD (turquoise), involved in COPD and LUAD 
pathogenesis by WGCNA using bioinformatics. We screened important key genes in each module and confirmed 
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the findings with RT–qPCR experimental verification. The functions, molecular mechanisms and pathways of key 
genes were then analyzed in combination with GO and KEGG to provide insight into these genes. We also found 
significant differences in immune cell infiltration between the disease and normal groups. The roles of key genes 
involved in many immune responses and immune cell chemotaxis were also found. Meanwhile, we obtained drug 
targets from the DGIDB database for four modules related to disease pathogenesis. This study bridges the gap 
between Omics analyses and clinical applications by examining the unique and jointly biological mechanisms 
of COPD and LUAD pathogenesis in multiple datasets and from multiple perspectives. It may be provided new 
directions for the development of early interventions and treatments to improve COPD and LUAD prognosis.

We obtained four hub genes, MAD2L1, CENPF, TOP2A, and ASPM, in the LUAD blue module. Mitotic arrest 
deficiency protein 2 (MAD2L1) and abnormal spindle microtubule assembly (ASPM) have been identified as 
vital mediators of the chromosomal control pathways. Type IIA topoisomerase (TOP2A) regulates the specific 
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Figure 6.  (A), RT–qPCR was used to detect the expression of different genes in LUAD and normal cells. 
(B), RT–qPCR was used to detect the expression of different genes in COPD and normal cells. “*” p < 0.05, 
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spatial structure (topological structure) by relaxing the positive and negative DNA supercoil structures during 
DNA replication and transcription and solves the problem of chromosome aggregation and mutual separation 
of chromatids. The gene located on chromosome 1q41 is centromere protein F, encoding Centromere protein 
F (CENPF), which is part of the centromere kinetochore  complex22. The occurrence of most cancers is related 
to unstable factors in cell formation. Dysregulation of cell cycle pathways, including spindle assembly, resulting 
in unstable chromosomal structures or massive aneuploidy chromosomal aberrations, leads to  tumorigenesis23. 
MAD2L1 participates in motorcycle control of the mitotic spindle assembly checkpoint. Overexpression of 
MAD2L1 can lead to lung carcinoma  susceptibility24,25. It was further confirmed in the experiment that the 
expression of MAD2L1 in LUAD tissue was higher than the average amount. These findings also suggest that 
increased genetic diversity contributes to altered tumor survival and chemoresistance and that cell cycle path-
ways, including disruption of spindle assembly, have been the focus of recent chemotherapeutic drug develop-
ment, such as paclitaxel and colchicine bases.

Through correlation analysis between WGCNA and clinical indicators, we found that the turquoise mod-
ules had the strongest negative correlation with disease. The LUAD turquoise module screened for five central 
genes (IGFBP2, CDKN2A, MUC5B, CEACAM5, ELF3), and these genes in LUAD may be closely related to 
tumorigenesis. Cyclin-dependent kinase inhibitor 2A (CDKN2A) is an essential cell cycle regulating factor, and 
a study found that the absence of CDKN2A promoted the progression of lung cancer and that it was correlated 
with poor  survival26.

We found that 3 genes were overexpressed in the COPD group (SH3PXD2B, CORIN, SELL). The L-selectin 
gene (SELL) is also known as CD62 L, which is a type-I transmembrane glycoprotein and cell adhesion molecule. 
CORIN is a member of the trypsin superfamily of type II transmembrane serine proteases. To date, there is no 
direct evidence that CORIN and SELL are implicated in the development and progression of COPD. To the best 
of our knowledge, this is the first time that the association of CORIN and SELL with COPD has been reported. 
Nevertheless, the effects of CORIN and SELL on inflammation and immunity have been  demonstrated27,28. SH3 
and PX domains 2B (SH3PXD2B) is involved in encoding the cohesive protein of the same name, which triggers 
the extracellular matrix (ECM) to produce elastase. Furthermore, elastase leads to the degradation of pulmonary 
elastin, which leads to the occurrence of emphysema, further affecting the formation and progression of COPD 29.

The five hub genes in the COPD-LUAD consensus consist of EZH2, EFNA4, CFB, ENO1 and GPI. Interest-
ingly, ENO1 and GPI are the first discoveries of new genes involved in the combined pathogenesis of COPD and 
LUAD. Enolase 1 (ENO1) glycolytic enzyme catalyzes the transformation of 2-phosphoglycerate to phospho-
enolpyruvate to preserve aerobic  glycolysis30. The present study determined that ENO1 is overexpressed in LUAD, 
consistent with published studies. ENO1 is involved in proliferative invasion, tumor metastasis and progression 
in LUAD through glycolysis and the PI3K/Akt  pathway31. Patients with NSCLC with high ENO1 expression had 
relatively low disease-free survival and overall survival and were positively correlated with TNM  stage32. The 
developmental mechanism of ENO1 and COPD has not been reported. However, it has been reported previously 
that because COPD is a long-term chronic inflammatory response, the function of neutrophils has a certain 
degree of influence on its pathogenesis. Neutrophils need to generate intracellular glycogen reserves through the 
glycolytic pathway to maintain their own cellular  functions33. The impaired glycolytic pathway involving ENO1 
has an impact on neutrophil function. Consequently, these findings support the idea that hat overexpression 
of these genes plays a significant role in COPD, LUAD, and both, and that they might be therapeutic targets.

The infiltration of immune cells has a crucial function in the progression of illnesses. Finding precise diag-
nostic markers and assessing the immune cell infiltration pattern in disease has far-reaching implications for 
improving their prognosis. The lungs of chronic obstructive pulmonary disease patients are prone to inflam-
mation, which is linked to aberrant immunological responses. Immune cell infiltration in COPD and LUAD 
was considerably different from that in normal controls, according to our findings. The Tfh, NKT and B-cell 
expression abundance in COPD was considerably higher than that in the control group. Tfh cells are a type of 
CD4 + T-cell that promotes B-cell survival, affinity maturation, and recombination. However, an overactive Tfh 
cell response can result in a variety of autoimmune disorders, including rheumatoid  arthritis34. Tfh cells have 
been observed in the early stages of COPD (GOLDI/II), which is compatible with the findings of this investiga-
tion. B cells and NKT cells are both lymphocytes, which are another type of immune  cell35. Previous research 
reported an increase in NKT cells in COPD patients’ bronchoalveolar lavage and generated sputum, as well as 
cytotoxicity against autologous lung epithelial  cells36. Increased abundance of Tfh, NKT and B cells in patients 
with chronic obstructive pulmonary disease may help explain the relationship between lung inflammation and 
immune response in COPD patients, potentially paving the way for disease-targeted immunotherapy.

The richness of CD4 + T cells, Tr1, and Th1 were significantly higher in LUAD samples when compared to that 
in the control group. CD4 + T cells are essential in host defense, immunological modulation, and autoimmune 
disease. CD4 + T cells have been found to steadily grow during the shift from normal lung tissue to  LUAD37. 
Th1 cells are helper T cells that secrete cytokines that regulate cell development, differentiation, inflammation, 
and immunological  responses38,39. Th1 expression was found to be higher in LUAD, which contradicts previ-
ous research that found Th1 cytokine levels to be lower in lung cancer patients, Th1 cells to play an antitumor 
role, and Th2 cells to promote tumor  growth40,41. The fundamental reason for this is that the research topics are 
diverse. This research focuses on LUAD, a lung cancer subtype. Second, tumor occurrence and recurrence are 
complicated processes that may be influenced by patient-specific alterations in Th1 and Th2 cytokines. The exact 
regulatory mechanism is still a mystery.

In terms of potential drug targets, we identified cisplatin and tretinoin, as well as bortezomib and metformin. 
Cisplatin chemotherapy is the basis for the treatment of LUAD patients today. Cisplatin chemotherapy function 
and mechanism of action are related to its cross-linking with guanine and adenine on DNA, obstructing the 
DNA self-repair mechanism, causing permanent sabotage to DNA, and subsequently inducing carcinoma cell 
 apoptosis42. Although there is no reported use of tretinoin for improved prognosis of COPD, a basic study found 



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13214  | https://doi.org/10.1038/s41598-022-17552-x

www.nature.com/scientificreports/

that Tretinoin significantly treatment abrogated elastase-induced pulmonary emphysema in  rats43. Bortezomib 
was consistently identified as an important drug target in the analysis of the COPD-LUAD module. Inhibition 
of the proteasome leads to disruption of the dynamic balance of proteins, which adversely affects the cellular 
signaling  cascade44. Bortezomib and carfilzomib are both proteasome inhibitors and are among the major back-
bone drugs in oncology therapy. Although bortezomib is primarily used in the treatment regimen for multiple 
myeloma, it has been reported to have potential benefits in the treatment of lung  carcinoma45. Recent studies 
suggest that recognition of the proteasome may be a potential therapeutic target for restoring respiratory mus-
cle function in patients with  COPD46,47. Metformin may reduce the accumulation of advanced glycation end 
products by activating amp-related protein kinase (AMPK), thereby reducing airway inflammation, increasing 
lung capacity, and may improving the prognosis of  COPD48,49. Furthermore, a previous study reported that use 
of metformin was inversely associated with pulmonary cancer  risk50. Consequently, cisplatin and tretinoin, as 
well as bortezomib and metformin may be potential targeted therapy for patients with COPD combined LUAD. 
However, there are currently difficulties in repurposing of drug targets. With the exception of cisplatin, which 
is more likely to cause drug resistance, all of the drug targets we evaluated are currently often used to treat 
other illnesses. With the gradual development of Druggable Genome, a technique that directly detects genomic 
sequences to establish the relationship between gene sequence changes and pharmacological effects, we can 
anticipate drug reuse in the future. It’s interesting to note that the technology is currently employed in clinical 
settings, including genetic testing for cardiovascular  medications51.

Our research has some limitations. First, the study’s samples are limited. More samples and prospective 
investigations are needed in the next study to fully examine and validate our findings. Second, we lack datasets or 
lung tissues about COPD combined with LUAD. We will employ clinically matched COPD combined with LUAD 
samples in the future to confirm the protein expression level of hub genes using western blot analysis. Third, the 
drug targets identified in this study are based only on a predictive analysis of the disease’s major modules and 
have yet to be empirically validated. In terms of theoretical mechanisms, the medications we acquired may be 
suitable for improving the prognosis of both disorders. More clinical investigations are needed in the future to 
establish the validity and reliability of the findings of this study. Moreover, the datasets in this study involved 
information on demographic characteristics, and differences between disease and control groups regarding 
demographic characteristics may lead to potential bias in the results of our analysis.

In summary, our research found important genes linked to COPD and LUAD, both individually and jointly. 
CORIN and SELL, as well as EFNA4 and CFB, were identified for the first time to play a role in the etiology of 
COPD and LUAD. We discovered the high expression of immune cells in the immunological microenvironment 
of COPD and LUAD patients. We also found that cisplatin and tretinoin, as well as bortezomib and metformin 
may be potential targeted therapy for patients with COPD combined LUAD. In fact, we clearly explored the 
unique and jointly molecular mechanisms of the pathogenesis of COPD and LUAD in multiple datasets and from 
multiple viewpoints, providing a new direction for developing early interventions and treatments to improve 
the prognosis of COPD and LUAD.

Data availability
COPD and LUAD datasets from publicly available database: Gene Expression Omnibus. The accession number of 
both datasets are GSE 10072 and GSE 76925. All the procedures were performed in accordance with the relevant 
guidelines and regulations. Further inquiries can be directed to the corresponding author.
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