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Physical interpretation of nonlocal 
quantum correlation through local 
description of subsystems
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Qiongyi He1,2,4,5,6 & Jianwei Wang1,2,4,5,6

Characterization and categorization of quantum correlations are both fundamentally and practically 
important in quantum information science. Although quantum correlations such as non-separability, 
steerability, and non-locality can be characterized by different theoretical models in different 
scenarios with either known (trusted) or unknown (untrusted) knowledge of the associated systems, 
such characterization sometimes lacks unambiguous to experimentalist. In this work, we propose 
the physical interpretation of nonlocal quantum correlation between two systems. In the absence 
of complete local description of one of the subsystems quantified by the local uncertainty relation, 
the correlation between subsystems becomes nonlocal. Remarkably, different nonlocal quantum 
correlations can be discriminated from a single uncertainty relation derived under local hidden state 
(LHS)–LHS model only. We experimentally characterize the two-qubit Werner state in different 
scenarios.

Quantum correlation between two or more subsystems that cannot be described by local-causal theories is a key 
resource in quantum information  science1–20. A crucial task is to characterize, categorize and certificate different 
quantum correlations. In general, quantum correlations can be described by the joint probability distribution of 
the events measured in the subsystems. For the bipartite quantum systems, the correlation is defined by

where ρAB is the unknown state composed by Alice’s and Bob’s systems, and �Ai
a  ( �Bj

b  ) is the projective meas-
urement having outcomes of a (b) for the Ai ( Bj ) observable. The characterization of correlation of the state 
ρAB implies the measurement of the probability distribution P . For example, to certify the Bell nonlocality, the 
distribution P has to violate Bell  inequalities2,5,21. Quantum correlations are further categorized by  entanglement6 
and quantum  steering3,7,22. Wiseman et al. proposed a framework to describe all the three quantum correlations 
for the bipartite system by considering three different scenarios having either known (trusted) or unknown 
(untrusted) knowledge of the  system7,8,23: (1) ρAB is entangled if P can not be generated by a separable state 
having trusted measurement devices in both subsystems. (2) ρAB is steerable if P can not be produced by a local 
hidden state (LHS) model, in the case that one subsystem owns trusted measurement device while the other 
remains untrusted. (3) ρAB is Bell nonlocal if P is incompatible with the local hidden variable (LHV) interpreta-
tion and both measurement devices are untrusted. Categorizing quantum correlations regarding their capability 
of controlling measurement apparatuses have enabled important applications in quantum information, e.g., 
device independent (DI) or one-side DI quantum key  distribution24–26 and randomness  generation27. We however 
note that non-separability, steerability, and Bell nonlocality can only be verified by the violations of their own 
inequalities, asking for a general framework of characterizing quantum correlations. The conceptual definition 
of known or unknown systems may also lead to confusion and ambiguity to experimentalist who usually can 
well control the system and measurement apparatuses (Fig. 1).
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In this work, we propose a more physical interpretation of different nonlocal quantum correlations from com-
plete local description of the subsystems that can be quantified by the local uncertainty relation of the subsystems. 
Our idea is inspired by the Einstein’s  comment1 and Bell’s seminal  work2 on incompleteness of quantum theory 
supplemented by LHV. We here ask a similar question: when two systems A and B are quantumly correlated, is 
there any complete local description of one of the subsystems, say, B has nothing to do with A, or vice versa? We will 
show how the local uncertainty relation derived using the complete local description of subsystems can help 
in discriminating different nonlocal quantum correlations. We remark that our way of characterizing quantum 
correlations represents the fundamental connection of quantum nonlocality and uncertainty relation. Note that, 
in the previous  works2,5,7,8,21,23,28,29, the criteria of on discrimination of different non-local quantum correlations 
are based on different forms of uncertainty relation formulated under LHS-LHS, LHS-LHV, LHV-LHV model. 
Here, we introduce single uncertainty relation (inequality (2)) formulated under LHS-LHS model, and this 
uncertainty relation can discriminate three different kinds of nonlocal correlations, e.g., entanglement, steering, 
Bell nonlocal correlation. See the Fig. (2) for more clear picture.

Figure 1.  Characterization of different nonlocal quantum correlations of the shared state ρAB in a single local-
description model. Bob’s task is to characterize quantum correlations by the violations of the local-uncertainty 
relations. LHSni  , i = 1, 2, 3 , refers to different Bob’s strategies in different scenarios to verify nonlocal correlations 
including entanglement, steerability and Bell nonlocality. n is the number of measurement. Bob first asks Alice 
to minimize his uncertainty about the state of the system B by communicating Ni-cbits (classical bits) to Alice. 
Alice then measures the appropriate observable Aj on the system A and communicates the {a, Aj} information 
back to Bob. Given the {a, Aj} information, Bob checks the uncertainty of the state of his system B. If the certain 
local-uncertainty relation is violated as Eq.(2) shown, Bob confirms that the shared state ρAB is either entangled, 
steerable, or Bell nonlocal. The figure is taken form the source https:// www. dream stime. com/ and then it has 
been modified for the present scenarios.

Figure 2.  S, E, St, and B correspond to separable, entangled, steerable, and Bell nonlocal correlation, 
respectively. Entanglement, steerability, and Bell nonlocal correlation are confirmed if the observed correlation 
P of Eq. (1) can not be explained by the theoretical models LHS–LHS, LHS–LHV, and LHV–LHV, respectively. 
Less assumption about the associated systems makes the correlation more nonlocal. In this work, we 
discriminate the degree of nonlocality under a single theoretical model, LHS–LHS with the help of proposed 
uncertainty relation of inequality (2). Here, the violation of the inequalities Fn

1 ≤ Cn1 (5), Fn
2 ≤ Cn2 (3) and 

Fn
3 ≤ Cn3 (4) validates entanglement, steerability and Bell nonlocal correlation, respectively.

https://www.dreamstime.com/
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Verification of different nonlocal correlations through complete description 
of subsystems
Let us first consider the following game. Alice prepares a joint system of A and B in an unknown state ρAB , and 
sends the subsystem B to Bob. While Bob may think that Alice can cheat him by preparing the state according 
to the LHS model, ρLHS

AB =
∑

i piρ
A
i ⊗ ρB

i  , where ρA
i  ( ρB

i  ) is Alice’s (Bob’s) local state, pi ≥ 0 and 
∑

i pi = 1 . For 
ρLHS
AB  , the system B has complete local description, {pi , ρB

i } . Here Bob tends to characterize the nonlocal quan-
tum correlations of the state ρAB with the help of the local uncertainty relation. Bob asks Alice to minimize the 
uncertainty of the state of system B by communicating k-cbit (classical bit) information. Given the k-cbit, Alice 
measures an observable of Ai , and sends back the measurement outcome a together with Ai to Bob. Finally, Bob 
checks whether the joint probability distribution P can be describe by the complete local description of ρLHS

AB  . 
This description is certified by the uncertainty of their outcomes characterized by the condition V(a, b|i, j) (where 
i, j represent Alice’s and Bob’s choice of observables {Ai} and {Bj} , respectively). Bob can confirm that the state 
ρAB is entangled if the following local uncertainty relation is violated

where Vk(a, b|i, j) , k ∈ {1, 2, 3} , represents three different conditions of quantum correlations ( V1 for entangle-
ment, V2 for steering, and V3 for Bell nonlocality); where n is the number of measurement performed on A and 
B and chosen as n = 2, 3 in our work (also in the experiment), which however can be chosen to an arbitrary 
number (see the Supplementary Materials). The upper bound Cnk  is obtained by maximizing Fn

k  over the state 
of ρLHS

AB  and Alice’s all possible strategies. The violation of inequality (2) implies that the shared state ρAB cannot 
be written in the form of ρLHS

AB .
Figure 1 sketches three different scenarios for the characterization and certification of quantum correlations 

in a single local-description model. For simplicity, we start with the LHSn2 one, that is the LHS model description 
for quantum  steering4,7,8,30).

Verification of steerability. For the verification of steerability of the shared state ρAB , Bob asks to mini-
mize his uncertainty of observables Bi . He checks the uncertainty of their outcomes constrained by the condition 
of V2(a, b|i, j) = (−1)a+bδij , and the local uncertainty relation thus turns  into31,32

where the upper bound, C3
2 =

√
3 ( C2

2 =
√
2 ) for n = 3 ( n = 2 ) measurement setting corresponds to the local 

description of Bob’s system by the eigenstates of the observables (σx ± σy ± σz)/
√
3 ( (σx ± σz)/

√
2 ) (see Sup-

plementary Materials for details). The V2 shown as Eq. (3) represents Bob’s residual uncertainty of the observable 
Bi (randomly chosen from a set of non-commuting  observables33–35), given the {a, Ai} information from Alice. 
The classical communication of 1-cbit ( logn=2

2  ) or 1.58-cbit ( logn=3
2  ) is required from Bob to Alice when Bob 

randomly chooses Bi from a set of n = 2 or 3 observables, say, {σz , σx} or {σz , σx , σy} , respectively. The violation 
of inequality (3) indicates that the system B does not have complete local description independent of the system 
A, and the correlation is known as quantum  steering31,32,36.

Verification of Bell nonlocal correlation. For the verification of Bell nonlocal, Bob does not reveal the 
choice of observables and there is no communication from Bob to Alice. Given information from Alice, Bob esti-
mates the uncertainty from the measured probability distribution P . In the case of n = 2 measurement, the uncer-
tainty of input {i, j} and output {a, b} correlation is determined by the CHSH game(V3(a, b|i, j) = (−1)(a+b+ij) 
which corresponds to the winning condition of the Clauser-Horne-Shimony-Holt game)2,21,37. Thus, the local-
uncertainty Eq. (2) can be rewritten as

where F2
3 = |�A0(B0 + B1)� + �A1(B0 − B1)�| and the upper bound corresponds to local description of Bob’s 

system by the state, e.g., |0� . The V3 corresponds to Bob’s residual uncertainty of the randomly chosen observa-
bles of {B0 = σx , B1 = σz}33,38, with respect to Alice’s individual measurement from {A0,A1} . When the local 
uncertainty relation (4) is violated, Bob validates the Bell nonlocal  correlation2,21,37. The inequality (4) becomes 
a necessary and sufficient condition for Bell nonlocality for the 2-measurement settings and binary  outcomes39. 
Note that the LHS23 model is a stricter version of LHSn2 model, as the former represents a simultaneous steerability 
(uncertainty) of {B0, B1}37 while the later represents an individual steerability (uncertainty) of Bi with respect to 
Alice’s observable Ai . Therefore, the Bell nonlocal correlation becomes the strongest form of nonlocal correla-
tions – the violation of inequality (4) indicates the violation of inequality (3).

Verification of entanglement. To certify entanglement, Bob asks to minimize the value of b for the 
Bj measurement, randomly chosen from the set of non-commuting observables. The classical communi-
cation of 2-cbit (four possible combinations of {a,Bj} ) or 2.58-cbit (six possible combinations) is required 
from Bob to Alice, when n = 2 or 3-measurement is chosen, respectively. Bob evaluates the uncertainty of 

(2)F
n
k =

{ n−1
∑

i,j=0

1
∑

a,b=0

Vk(a, b|i, j)P(aAi , bBj |ρAB)
}

≤ C
n
k ,

(3)
{

F
n
2 =

n−1
∑

i=0

|�Ai Bi�|
}

≤
{

Cn
2 = max

{Ai},ρLHS
AB

[

F
n
2

]

}

,

(4)F
2
3 ≤

{

max
{Ai}, ρLHS

AB

[

F
2
3

]

= 2

}

,
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V1(a, b|i, j) = (−1)a+bδ(AiBj)δ(ab) , where b = b⊕ 1 . Applying the condition of V1 in the inequality (2), the local 
uncertainty relation turns into

where P(Ai , Bi) = P(0Ai , 1Bi )+ P(1Ai , 0Bi ) , 0 and 1 refer to measurement outcomes; where Cn=3
1 = 2 , 

Cn=2
1 = 1 corresponds to Bob’s local state, e.g., |0� (see details in Supplementary Materials). The V1 leads to the 

uncertainty of anti-correlated outcomes a⊕ b = 1 when Alice and Bob both performs measurement of the same 
observable, i.e, Ai = Bj on their respective subsystems. The violation of the local uncertainty relation in Eq.(5) 
can confirm the presence of  entanglement28,40–42. The uncertainty relation of Eq. (5) is the weaker form of Eq. (3), 
as quantum steering considers uncertainty of all possible combinations of {a, b} , while entanglement only takes 
uncertainty of anti-correlated outcomes. 

 Higher degree of nonlocality from more uncertainty of the condition Vk(a, b|i, j). For the 
purpose of connecting uncertainty relation  (2) with the degrees of nonlocality, we define normalized prob-
ability by Pn

k = Fn
k /max

[

Fn
k

]

 , where max
[

Fn
k

]

 corresponds to algebraic maximum of Fn
k  . The corresponding 

uncertainty is measured by the Shannon entropy, Hn
k = −Pn

k log 2
[

Pn
k

]

− (1− Pn
k ) log 2

[

1− Pn
k

]

 . Therefore, 
Hn

k determines the degree of uncertainty of the event Vk(a, b|i, j) , which corresponds to the correlation between 
Alice’s and Bob’s outcomes a and b. For entanglement, steerability and Bell nonlocal correlation H3

1 > 0.92 
(corresponds to the inequality (5), F3

1 > 2 and max
[

F3
1

]

= 3 ), H3
2 > 0.98 (corresponds to the inequality (3), 

F3
1 >

√
3 and max

[

F3
2

]

= 3 ), H2
3 > 1 (corresponds to the inequality (4), F3

1 > 2 and max
[

F2
3

]

= 4 ), recep-
tively. As a result, higher degree of nonlocality implies larger threshold value of uncertainty of the condition 
Vk(a, b|i, j).

Our local uncertainty relations as shown by inequalities of (3)–(5), which are all derived from a single inequal-
ity of (2) under different conditions, represent the more physical interpretation of different quantum correla-
tions including quantum entanglement, steering and Bell nonlocal correlation. We now take the Werner state of 
ρW = p ρ|φ−� + (1− p) I⊗I

4  as an example to test our local-description model in theory and experiment. ρ|φ−� 
is the density matrix of the singlet state of |φ−� = (|01� − |10�)/

√
2 , I is the identity matrix, and p ( 0 ≤ p ≤ 1 ) 

denotes the mixing parameter. The task now is to determine both in theory and experiment the bound of the 
p parameter, above which the inequalities (3)–(5) can be violated and thus the state ρW can be certified to be 
entangled, steerable, or Bell nonlocal. The results are shown in Fig. 3.

Experimental demonstration of different nonolocal correlations
We experimentally verified the three quantum correlations for the Werner state. Figure 4 shows the diagram of 
an integrated silicon-photonic quantum device that can generate, manipulate and analyze all four Bell  states43,44. 
The integrated quantum device offers high levels of controllability and stabilities of operating quantum states 
of  light45,46. The maximally entangled state has been created with a high fidelity of 0.951± 0.096 by performing 
quantum state tomography (QST). The experimental realization of the ρW state with a fully controllable mixture 
parameter p is enabled by the classical mixture of quantum states (see experimental details in Supplementary 
Materials).

Figure 3 shows the characterizations of entanglement, steering and Bell nonlocal, experimentally demonstrat-
ing the violations of their inequalities of (5), (3) and (4), respectively. In Fig. 3a, for n = 2 and 3-measurement 
settings, entanglement is confirmed for 1/2 < p ≤ 1 (black dotted) and 1/3 < p ≤ 1 (red shaded),  respectively28. 
Note that 3-measurement is sufficient to fully reveal entanglement of the ρW state up to the value obtained by 
QST (see Supplementary Materials and Fig. 5). In Fig. 3b, quantum steerability is certified when 1/

√
3 < p ≤ 1 

(red shaded) for the 3-measurement setting, larger than that for the 2-measurement setting having 1/
√
2 < p ≤ 1 

(black dotted). Increasing the number of measurement of n can relax the p value of demonstrating  steering31,32. 
For example, when implementing infinite measurement settings, the steerability inequality can be violated for 
1/2 < p ≤ 18. In Fig. 3c, it shows that the state is demonstrated to be Bell nonlocal for 0.7071 < p ≤ 1 . Unlike 
the steering and entanglement scenarios, increasing the number of measurement to three however does not 
relax the choice of p parameter. Bell nonlocality can be verified for 4/5 < p ≤ 1 using the I3322 inequality, as 
reported in Ref.47.

Figure 5 summarizes the bound of violating the LHS inequalities for entanglement, steering and Bell nonlo-
cal. We here consider the Fn

k  for the n = 2, 3 measurement settings, and for infinite measurements and for QST 
measurement. The regimes of p parameter obeying the LHS models are grayed, while the regimes for certificated 
entanglement, steerability, and Bell nonlocality are colored. In the F465

3  bar, the red regime was estimated with 
465 measurement  settings48, and the black one refers to an unknown  regime49.

Conclusions
In sum, we formulate single uncertainty relation under LHS-LHS model and different kinds of nonlocal cor-
relations can be discriminated through it. This is major improvement over previously used different uncer-
tainty relation based on different theortical models, e.g., LHS-LHS for entanglement, LHS-LHV for steering 
and LHV-LHV for Bell nonlocal correlation. We also show that different nonlocal quantum correlations have 
been characterized by the physical property, i.e, complete local description of one of the subsystems, which is 
quantified by the local uncertainty relation conditioned on the outcomes of subsystems. The violation of local 
uncertainty relation confirms the nonlocal correlation between subsystems. When increasing the uncertainty of 
the condition by restricting the communication between two parties, local uncertainty relation detects stronger 

(5)
{

F
n
1 =

n−1
∑

i=0

P(Ai , Bi)

}

≤
{

max
ρLHS
AB

[

F
n
1

]

= C
n
1
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form of nonlocal quantum correlation. Therefore, uncertainty of local description of one of the subsystems can 
be interpreted as nonlocal correlation between subsystems. As an example, in experiment, we have tested the 
uncertainty of local descriptions and the quantum correlation of subsystems prepared in the bipartite Werner 
states. The framework presented in this work may open new possibilities for interpretation of quantum correla-
tion with respect to other fundamental properties of the multipartite systems.

Figure 3.  Theoretical and experimental characterizations of (a) entanglement, (b) steerability, and (c) Bell 
nonlocality for the bipartite Werner state. The LHSni  , i = 1, 2, 3 and n = 2, 3 , refers to different LHS models in 
the three scenarios, see the derived local uncertainty relations of (3–5). All experiments were implemented on 
an integrated silicon-photonics quantum device. Points denote experimental data and lines denote theoretical 
prediction: circular and square points are for n = 3 and n = 2 measurement settings; blue and black lines are 
for n = 3 and n = 2 measurement, respectively. Red shaded (black dotted) regime in (a–c) identifies the p 
mixing parameter of the Werner state ρW , above which the state is certified as entanglement, steerable, and 
Bell nonlocal, for n = 3 ( n = 2 ) measurement settings, respectively. Horizontal dashed lines are plotted for the 
guidance the achievable upper bound of the inequality value, Fn

k  . Note error bars ( ±σ ) estimated from 20 sets of 
data are too small to be invisible in the plot.
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Data availability
The main data supporting the finding of this study are available within the article. Additional data can be pro-
vided upon request.
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