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Validation of droplet digital PCR 
for cytokeratin 19 mRNA detection 
in canine peripheral blood 
and mammary gland
Potsawat Tanvetthayanont1, Teerapong Yata2, Jiranun Boonnil3, Sasithon Temisak3* & 
Suppawiwat Ponglowhapan1*

In humans, peripheral blood cytokeratin 19 (CK19) mRNA-positive circulating tumor cells (CTCs) was 
utilized to identify early-stage breast cancer patients with micrometastatic disease who are at risk 
for disease progression and monitor treatment response in patients with advanced disease. To our 
knowledge, there has been little research regarding CK19 in canine mammary tumors (CMTs) using 
molecular methods. A droplet digital PCR (ddPCR) is proposed as a precise and sensitive quantification 
of nucleic acid targets. Hence, this study aimed to validate a newly designed assay for CK19 detection 
in canine blood and mammary tissue, along with the reference gene HPRT, by ddPCR. All primers and 
probes showed a precise match with the exon region of target genes. The assay exhibited PCR efficacy 
of 90.4% and 91.0% for CK19 and HPRT amplifications with linearity, respectively. The annealing 
temperature  (Ta) for duplex ddPCR was 55 °C, providing the highest concentrations of both genes 
tested by the synthetic plasmid DNA. The limit of detection (LOD) of CK19 and HPRT were 2.16 ± 1.27 
and 2.44 ± 1.31 copies/µL, respectively. Finally, the ddPCR assay was validated with canine peripheral 
blood, non-neoplastic mammary tissues and spiked samples. Our findings provide a new platform for 
CK19 studies in CMT diagnosis through blood and mammary tissues.

Canine mammary tumors (CMTs) are one of the most common neoplasia (28%) in female dogs, and approxi-
mately half of CMTs are malignant, which is a substantial health problem in this  population1,2. CMTs are a group 
of tumors that are heterogeneous in terms of morphology and biological behavior, and share similarities with the 
same disease in  humans3,4. Cytokeratin 19 (CK19) is a protein belonging to complex intracytoplasmic cytoskel-
eton that can be found in ductal epithelial cells. Previous studies on mammary tumors in  humans5 and  dogs6 
found that CK19 negative immunohistochemistry was associated with a high histological grade, lympho-vascular 
invasion and high Ki-67 index, and were estrogen receptor negative. Although excisional biopsy, sometimes 
combined with immunohistochemistry, is used as a routine diagnosis and treatment for CMTs, unfortunately 
they cannot identify early-stage breast cancer patients with micrometastatic disease. Currently, liquid biopsy is 
a new diagnostic method which uses blood to detect micrometastatic tumor  cells7–11. Circulating tumor cells 
(CTCs) detected by CK19 mRNA positive can be found in peripheral blood samples of breast cancer patients, 
and there are correlations between circulating CK19 mRNA positive and poor  prognosis7–11. Unfortunately, there 
is no study associated with CK19 detection in canine peripheral blood for CMT diagnosis.

In recent times, droplet digital PCR (ddPCR) is a new technology providing an absolute and precise quanti-
fication of target gene, with no requirement of a standard curve. ddPCR is based on water–oil emulsion droplet 
technology. A sample is fractionated into up to approximately 20,000 (nanoliter-sized) droplets, and PCR ampli-
fication of the template molecules occurs in each individual droplet. Following PCR, each droplet is analyzed or 
read to determine the fraction of PCR-positive droplets in the original sample. The fraction of positive droplets 
is then fitted to a Poisson distribution to determine the absolute initial copy number of the target DNA molecule, 
reported as copies/µL12,13. In the field of molecular oncology, many studies have demonstrated a high degree of 
sensitivity and precision of ddPCR, compared to quantitative real-time PCR (qPCR)12–15. Moreover, this tech-
nology has been applied to investigate the expression of genes in tumor tissue samples such as breast cancer and 
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gastric cancer in  humans16–19. Nevertheless, the use of ddPCR in veterinary oncology is limited, and there has 
been no study on CK19 mRNA detection in CMTs using ddPCR. To investigate this, a validation method for the 
gene detection is required. The objectives of this study were to develop and validate the assays for CK19 mRNA 
detection, along with the HPRT reference gene, by ddPCR in canine peripheral blood and mammary tissues.

Methods
Sample collections. The samples were canine peripheral blood (n = 3) and non-neoplastic mammary tis-
sues (n = 3) obtained from the dogs that were presented to the Division of Obstetrics, Gynaecology and Repro-
duction, Small Animal Teaching Hospital, Faculty of Veterinary Science, Chulalongkorn University between 
January and March 2021. The peripheral blood (5  mL) was collected from clinically healthy dogs based on 
screening tests including physical examination, hydration status assessment, CBC, serum biochemistry (alanine 
aminotransferase and creatinine) and diagnostic imaging (thoracic radiography and abdominal ultrasonogra-
phy). The non-neoplastic mammary tissues (50  mg) were collected from non-tumor mammary glands. The 
tissue was histopathologically examined to assure that there were no evidences of cancerous cells. Blood and 
tissue samples were stored immediately at 4 °C. Thereafter, the process of RNA extraction was performed within 
30–60 min. Synthetic plasmid DNA containing CK19 and HPRT was used as a positive template (Invitrogen, 
Massachusetts, United States) (see Supplementary Fig. S1).

RNA extraction. Blood of a healthy female dog (5 mL) was added in the ratio of 20 mL of 1X RBC lysis 
buffer (Cell Signaling Technology, Danvers, Morocco) to 1 mL of blood in a 50 mL centrifuge tube, then centri-
fuged at 10,000 × g for 5 min at 4 °C, and the supernatant was then removed without disturbing the cell pellet. 
Meanwhile, 50 mg of non-neoplastic canine mammary tissue was lysed and homogenized with tissue homog-
enizer (FastPrep-24 5G, MP biomedicals, California, United States). The mRNA from blood sample (cell pellet) 
and homogenized tissue were extracted using TRIzol reagent (ThermoFisher Scientific, Massachusetts, United 
States), following the protocol described in the kit description. Finally, the RNA pellets were resuspended in 
30 µL of RNase-free water and incubated in a heat block set at 55 °C for 10 min. The RNA was stored at − 80 °C 
until used. The RNA concentration was determined by a spectrophotometer (NanoDrop ND-1000; Peqlab, 
Erlangen, Germany) reading at 260 and 280 nm. The samples with a ratio of 1.8–2.0 (260/280) were included in 
the study. The RNA integrity was measured by a bioanalyzer (RNA600 Nano Chip) (Bioanalyzer2100, Agilent, 
California, United States). The RNA integrity number was above  520. DNA contamination was then treated 
with DNase I (TURBO DNase, Invitrogen, Massachusetts, United States), including 200 ng of total nucleic acid 
solution, 1 × buffer (10 × TURBO DNase Buffer) in the RNA sample, 2 U of DNase I and DEPC-treated water to 
50 µL final volume. The reaction was incubated at 37 °C for 30 min, and then EDTA was added to a final concen-
tration of 15 mM over 10 min at 75 °C to stop the reaction.

cDNA synthesis. Total RNA (1 µg) was reverse transcribed using a cDNA synthesis Kit (iScript Reverse 
Transcription Supermix Kit, California, United States). The reaction contained 4 µL of iScript RT Supermix, 1 µg 
of RNA template and nuclease-free water, used to dilute the total volume to 20 µL. The reactions were incubated 
at 25 °C for 5 min, 46 °C for 20 min and 95 °C for 1 min. No reverse transcriptase (no-RT) controls were also 
performed as described in the kit. The success of the cDNA synthesis was confirmed by PCR amplification of the 
canine housekeeping gene (HPRT). The cDNA was stored at − 80 °C until used.

Primer and probe design. This section describes the design of the primers and probes for CK19 and 
HPRT, using the Canis lupus familiaris keratin 19 (CK19) mRNA (NM_001253742.1) and the Canis familiaris 
HPRT mRNA (AY283372.1), respectively. All primers and probes were designed by Primer Express Software 
Version 3.0.1 (ThermoFisher Scientific, Massachusetts, United States) with default settings, which follow the 
primer and probe design  criteria21. The primers and hydrolysis probes for CK19 and HPRT were synthesized 
and purified by Macrogen Inc. (Seoul, Korea) (Table 1) and the locations of both primers are shown in Supple-
mentary Figs. S2 and S3 (reference genome: CanFam3.1). To check the specificity of the primers and probes, the 
Primer-BLAST22 and  BLAST23 were performed.

Quantitative real-time PCR reaction. Quantitative real-time PCR (qPCR) method was used first to test 
the assays before moving to the ddPCR platform. The synthetic plasmid DNA templates were used to test the 
assay and PCR efficacy. The concentration of this plasmid consists of  100–105 copies of plasmid DNA templates. 
To test the assay with RNA from one peripheral blood sample and one non-neoplastic mammary tissue, a ten-

Table 1.  Sequences of design primers and hydrolysis probes.

Gene Accession number 5′-sequence-3′ Product size in base pairs Genomic location (CanFam3.1 GCF_000002285.3)

CK19 NM_001253742.1
Forward CCA AGA TTG TCC TGC AGA TTGAC 
Reverse GCC TGC TCC GTC TCA AAC TT
Probe FAM-CCC GTC TGG CTG CGG ATG ACTTC-BHQ1

76 NC_006591.3 (21240778..21245039)

HPRT AY283372.1
Forward CGA GAT GTG ATG AAG GAA ATGG 
Reverse AGC AGG TCA GCA AAG AAT TTA TAG C
Probe Hex-CCA TCA CAT CGT AGC CCT CTG TGT GC-BHQ1

86 NC_006621.3 (105115732..105153702)



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13623  | https://doi.org/10.1038/s41598-022-17493-5

www.nature.com/scientificreports/

fold serial dilution of the cDNA from blood and non-neoplastic mammary tissue was made up with nuclease-
free water, creating a solution range of no-dilution to 1:1000.

The 20 µL qPCR mixture consisted of 10 µL Luna Universal qPCR Master Mix (BioRad, California, United 
States), 2.0 µL of DNA template, 300 nmol/L forward and reverse primers and 200 nmol/L probes. Three replicates 
of PCR were run to end point using a thermal cycler (CFX Connect Real-time PCR Detection System, BioRad, 
California, United States). The setting for PCR reaction was 1 cycle of 95 °C for 10 min, 45 cycles of 95 °C for 
15 s and 45 cycles of 60 °C for 30 s. No template control (NTC) was also included.

Droplet digital PCR reaction and the optimization of annealing temperature  (Ta). The PCR 
protocols followed the MIQE  guideline24 (see Supplementary Table S1). For optimization of  Ta,  103 copies of 
the synthetic plasmid DNA were used as the template, and the gradient temperature between 55 and 65 °C was 
determined. HindIII (5 U) (New England Biolabs, Massachusetts, United States) was added into the ddPCR 
reaction to digest a recognition site between the target sequences. There were 2 types of ddPCR assays, including 
duplex and singleplex. In the duplex assay, both CK19 and HPRT assays were added into the PCR reaction, while 
in the singleplex ddPCR only CK19 assay or HPRT assay was included in the PCR mixture.

The 20 µL of ddPCR mixture consisted of 10 µL 2 × ddPCR Supermix for Probes (BioRad, California, United 
States), 2.5 µL of the template DNA samples, 300 nmol/L of forward and reverse primers and 250 nmol/L probes. 
NTCs also were performed. The ddPCR mixture was loaded into ddPCR 96-well Plates (BioRad, California, 
United States), mixed and centrifuged for 30 s at 1000 rpm. The plate was placed into the Automated Droplet 
Generator (AutoDG, BioRad, California, United States) to partition the sample into droplets, which combined 
oil (Automated Droplet Generation Oil for Probes, BioRad, California, United States) and sample. Next, a 96-well 
PCR plate containing droplets was sealed with foil by a PX PCR Plate Sealer (BioRad, California, United States). 
PCR was run to end point using a thermal cycler (T100 Thermal Cycler, BioRad, California, United States). The 
PCR cycle of ddPCR was performed at 95 °C for 10 min, 40 cycles of 94 °C for 30 s, 1 min at optimal temperature 
for annealing and extension, and 1 cycle of 98 °C for 10 min.

The droplets were read by a droplet reader (QX200 Droplet Reader, BioRad, California, United States). The 
droplet reader read each droplet to qualify droplets with a target or without. Data was analyzed with QuantaSoft 
Software v.1.7.4.0917 (BioRad, California, United States). The quantification measurements of the target molecule 
were presented as the copies/µL of sample.

Limit of detection (LOD). The LOD is defined as the lowest PCR copy number concentration that can 
be discriminated from zero with a level of confidence of 95%, where at least 95% of the replicates are positive, 
and a minimum of ten replicates should be  performed25. To establish the measurement range, the synthetic 
plasmid DNA was prepared in the concentration range of 50,000–5 copies/µL in three replicates and used as the 
templates in ddPCR reactions. The copy number of the plasmid DNA were converted from ng obtained from a 
spectrophotometer (NanoDrop ND-1000; Peqlab, Erlangen, Germany). Then, to determine the LOD, the lowest 
concentration of the synthetic plasmid was measured by ddPCR with ten replicates.

CK19 detection in peripheral blood and mammary tissue by ddPCR. The cDNA from canine 
peripheral blood (n = 3) and non-neoplastic mammary tissues (n = 3) was performed under the aforementioned 
ddPCR conditions for detection of CK19 and HPRT. To verify the method, 50 mg of canine malignant mam-
mary tumor tissue (Tubulopapillary carcinoma) was performed a twofold weight reduction (50–1.56 mg) and 
then spiked into 5 mL of blood from a healthy female dog as positive controls. All samples were done in three 
replicates for the ddPCR method.

Statistical analysis. Descriptive statistics were used to describe the copy numbers of CK19 and HPRT. The 
copy numbers derived from replicates were presented as means and standard deviations.

Ethical approval. All procedures involving the handling and collection of samples were approved by the 
Institutional Animal Care and Use Committee of Chulalongkorn University (CU-IACUC approval number 
2131037) and performed in accordance with relevant guidelines and regulations. Informed consent and per-
missions were obtained from all the dog owners. This study was carried out in compliance with the ARRIVE 
guidelines.

Results
As the CK19 and HPRT sequences were different between dogs and humans (see Supplementary Figs. S4 and S5), 
in this study the primers of both CK19 and HPRT were newly designed precisely to the exon region of canine 
mRNA (see Supplementary Figs. S6 and S7). Hence, these assays can be used for detecting CK19 gene expression 
in dogs. The assays were blasted against the NCBI database and the probes were specific 100% match rate to Canis 
lupus familiaris keratin 19 mRNA and Canis familiaris HPRT mRNA, respectively (see Supplementary Figs. S8 
and S9). The assays were tested with qPCR using the synthetic plasmid DNA template. The results showed that the 
assays generated PCR amplification curves of CK19 and HPRT (see Supplementary Fig. S10) with PCR efficacy 
90.4%  (R2 = 0.994, slope = − 3.58) for the CK19 assay and 91.0%  (R2 = 0.993, slope = − 3.56) for the HPRT assay 
(see Supplementary Fig. S11). The PCR efficiency calculated from efficiency was  10−1/slope−1, where the slope was 
obtained from the linear regression. Moreover, cDNA from canine blood and non-neoplastic mammary tissue, 
were used as the template. The RIN of all mRNAs was above 5 (see Supplementary Fig. S12). The results showed 
that blood and non-neoplastic mammary tissue samples can also generate PCR amplification curves for HPRT 
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(see Supplementary Fig. S13). However, CK19 amplification curve was observed only in the tissue sample, there 
was no CK19 amplification curve in the blood sample (see Supplementary Fig. S14).

Next, the assays were moved to the ddPCR platform. As the ddPCR method is more precise and sensitive than 
qPCR, ddPCR was proposed in this study for absolute quantification and detection of small amounts of target 
DNA. The synthetic plasmid DNA was used as the template, to optimize the  Ta and for comparison between 
singleplex and duplex ddPCR assays. The results showed that at 55 °C, in both singleplex and duplex assays, the 
highest concentrations of CK19 and HPRT genes were provided, with no significant difference in concentrations 
between singleplex and duplex ddPCR assays (Fig. 1). Moreover, at this temperature (55 °C), positive droplets 
were clearly discriminated from negative ones in both singleplex (Fig. 2) and duplex ddPCR assays (Fig. 3). 
Therefore, 55 °C was used as the optimal  Ta for the ddPCR method to detect CK19 and HPRT. As there were no 
differences in quantification of CK19 and HPRT between singleplex and duplex ddPCR assays, the duplex assay 
was selected for further experiments in simultaneous detection of CK19 and HPRT, due to concerns regarding 
consumable cost, time consumption and technical errors.

LOD. The measurement range of the duplex ddPCR method in CK19 and HPRT detection is shown in Fig. 4. 
It was found that the relationship between the input plasmid DNA measured by spectrophotometer and the 
observed plasmid concentration by ddPCR was linear. The correlation coefficients  (R2) for CK19 and HPRT 
detection were 0.998 for both plots. At the lowest point of linear range, 5 copies/µL of plasmid DNA were used 
to determine the LOD and found that this concentration showed positive detection at 95% confidence (10 rep-
licates). At this point, the ddPCR yielded 2.16 ± 1.27 and 2.44 ± 1.31 copies/µL for CK19 and HPRT, respectively 
(see Supplementary Fig. S15).

Figure 1.  Comparison between singleplex and duplex ddPCR assays in quantification of CK19 and HPRT 
genes. The singleplex and duplex ddPCR assays measured the target genes across the different annealing 
temperatures.

Figure 2.  Singleplex ddPCR assays at different annealing temperatures for CK19 and HPRT detection. A 
thermal gradient PCR, ranging from 55 to 65 °C, showed in the 1D amplitude ddPCR plot of CK19 in FAM-
Channel (a) and HPRT in HEX-Channel (b). Black dot populations are negative droplets, blue dot populations 
are positive droplets for CK19 and green dot populations are positive droplets for HPRT.
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CK19 and HPRT detection in canine peripheral blood and mammary tissue by ddPCR. The 
optimized duplex ddPCR method for CK19 and HPRT detection was tested with RNA from peripheral blood 
and non-neoplastic mammary tissues. The ddPCR results showed that CK19 and HPRT genes were not found 
in no-RT controls from non-neoplastic mammary tissues and canine blood samples (Fig. 5a,c), nor in NTC 
(Fig.  5e), whereas CK19 and HPRT were both detected in cDNA from non-neoplastic mammary tissues 
(467 ± 79.3 copies/µL for CK19 and 79.5 ± 31.4 copies/µL for HPRT) (Fig. 5b) and in the synthetic plasmid DNA 
(239 ± 6.24 copies/µL for CK19 and 230 ± 6.56 copies/µL for HPRT) (Fig. 5f). However, in cDNA from canine 
blood samples, only HPRT (6005 ± 473.2 copies/µL) was observed by ddPCR (Fig. 5d). To verify the method, 
spiked samples (positive controls) were also investigated (see Supplementary Fig. S16). The results showed that 
CK19 and HPRT were detected in all spiked samples. And when the copy number ratio (copy number of CK19/
copy number of HPRT) were calculated, the  R2 = 0.9737 (Fig. 6).

Discussion
In human medicine, detection of CK19 mRNA-positive cells in peripheral blood using PCR technique is ben-
eficial to identify early-stage breast cancer patients with micrometastatic diseases and used for prognostications 
such as poor survival rate, disease free interval and overall survival  time7–11. Detection of CK19 mRNA-positive 
cells has been reported in approximately 31–38%7 and 40%10 of early-stage breast cancer patients. However, 
there has been no study associated with this aspect in CMTs yet. We decided to utilize an advanced technol-
ogy—namely, ddPCR—to investigate this gap, particularly the method validation. Although both qPCR and 
ddPCR can provide sensitive detection and precise quantification, qPCR itself depends on the relationship of the 
cycle threshold of a test sample to a standard curve. Moreover, distinct variation in assay PCR protocol and in 
materials used as calibration standards may be incomparable between different experiments, even when testing 
identical  materials15. While ddPCR can provide an absolute quantification of target gene precisely without the 

Figure 3.  Duplex ddPCR assays in optimization of the annealing temperature for CK19 and HPRT detection. 
A thermal gradient PCR, ranging from 55 to 65 °C, showed in the 2D amplitude plot of CK19 in FAM-Channel, 
and HPRT in HEX-Channel. Black dot populations are negative droplets, blue dot populations are positive 
droplets for CK19, green dot populations are positive droplets for HPRT and orange dot populations are positive 
droplets for both genes.
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standard curve. Furthermore, this advanced technology can find rare targets in complex backgrounds, detect 
small copy number variations (CNVs) and is highly tolerant to PCR  inhibitors26. Many studies have demonstrated 
that ddPCR is a more robust approach for CNVs and gene detection for oncology and virology, compared to 
 qPCR14,27. Therefore, in this study ddPCR was proposed as a promising technique for the study of CK19 and 
HPRT in canine gene expression tissue, and for detection of rare CTCs in canine blood.

In accordance with our samples of mammary tissues and whole blood samples, HPRT was selected as the 
reference gene in the present study. The advantage of the reference gene is not only due to its gene expression 
in normalization to ddPCR data, but it also acts as internal control gene that can verify the sample extraction 
and reverse transcription  methods28. Previous studies have investigated the reference genes for  dogs29–32. Their 
findings showed that HPRT was a good candidate for reference gene in dogs and HPRT is one of the most sta-
ble genes in mammary gland tissue and whole  blood29,30,32, while GAPDH was less stable in canine mammary 
 tissue33. In the results presented here, we found that canine blood and mammary tissues were rich in the HPRT 
gene, and it was concluded that HPRT gene can be used as reference gene in canine whole blood and mammary 
tissue, in line with previous  studies29,30,32.

The  Ta was optimized, and 55 °C was defined as the optimal temperature due to the highest concentrations of 
CK19 and HPRT genes being observed at this temperature. Both singleplex and duplex ddPCR were performed 
during optimization of  Ta. The results showed no differences in the concentrations of CK19 and HPRT genes 
between singleplex and duplex ddPCR assays. Hence, duplex ddPCR was selected for further investigation. The 
benefits of duplex ddPCR assays compared to singleplex are rapidity and cost-effectiveness34. Moreover, a duplex 
assay provides better precision in gene expression experiments because the target and normalizer genes are in 
the same well, thus, reducing technical errors as well as the amount of sample required.

Figure 4.  Measurement range for CK19 and HPRT detection by ddPCR. The linear range of CK19 (a) and 
HPRT (b) was specified using the synthetic plasmid DNA, in the range of 50,0000–5 copies/µL. DNA templates 
were plotted against input DNA using a spectrophotometer and against observed DNA using ddPCR. Error bars 
indicate standard deviations. The assays were performed in three replicates.
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The LOD of the duplex assays was assessed to define the lowest concentration which can be discriminated with 
a level of confidence of 95%25. The optimal assay was tested with RNA from peripheral blood and non-neoplastic 
mammary tissues. In canine mammary tissue, the expression of CK19 and HPRT was detected, while in the 
canine blood sample only HPRT was determined in both methods (qPCR and ddPCR). These results confirmed 
that the assays were verified. CK19 mRNA was not found in the blood of a healthy dog, this may be due to there 
being no CTCs containing the CK19 gene in the blood circulation, as reported in healthy  humans7–11. However, 
in clinical cases, false negative would be happened if CTCs were negative for CK19. Few studies reported that 
CK19 mRNA-positive CTCs may be found in human patients with hepatocellular  carcinoma35 and benign 
colon  diseases36 and these cells might be a source of false-positive findings. Although, to our knowledge, there 
are no reports showing CK19 mRNA-positive CTCs in dogs suffering from hepatocellular carcinoma and/or 
colon diseases, any potential factors resulting in false-positive findings must be ruled out and further studies 
with this regard should be investigated. Our result was considered trustworthy due to detection of HPRT gene 
expression in the blood samples. In addition, this developed method was verified using spiked canine mammary 
tumor tissues in the blood of healthy female dog as positive control. In our study, RNA samples were treated 
with DNase I, and no-RT controls were performed to assess the amount of DNA contamination, and the results 
showed that no CK19 and HPRT were detected. In addition, NTC was conducted and served as a general control 
for extraneous nucleic acid contamination. Consequently, all steps were proven and stable for detection of CK19 
mRNA in clinical samples.

Conclusions
In conclusion, this work presented newly designed primers and probes for CK19 and HPRT in canine peripheral 
blood and mammary tissue. The assay was tested with RNA from peripheral blood, non-neoplastic mammary 
tissues and spiked samples. The outcomes supported that all materials and methods used in this study were 
valid, and can be applied for CTCs via CK19 mRNA detection in canine blood of CMT patients, and for gene 
expression in canine mammary neoplastic tissues using ddPCR. In veterinary oncology, further investigation of 
CK19 mRNA detection in clinical cases could be beneficial for CMT prognostication.

Figure 5.  2D plots of duplex ddPCR results. The assays were tested with the templates; (a) no reverse 
transcriptase (no-RT) of non-neoplastic mammary tissue sample, (b) the cDNA derived from the non-
neoplastic mammary tissue sample, (c) no-RT of blood sample, (d) the cDNA derived from blood sample, (e) no 
template control (NTC) and (f) synthetic plasmid DNA. Blue dots represent CK19, green dots are HPRT, orange 
dots contain both genes and black dots show when neither gene was detected.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13623  | https://doi.org/10.1038/s41598-022-17493-5

www.nature.com/scientificreports/

Received: 29 December 2021; Accepted: 26 July 2022

References
 1. Gama, A., Alves, A. & Schmitt, F. Identification of molecular phenotypes in canine mammary carcinomas with clinical implica-

tions: Application of the human classification. Virchows Arch. 453, 123–132 (2008).
 2. Kristiansen, V. et al. Effect of ovariohysterectomy at the time of tumor removal in dogs with benign mammary tumors and hyper-

plastic lesions: A randomized controlled clinical trial. J. Vet. Intern. Med. 27, 935–942 (2013).
 3. Nerurkar, V., Chitale, A., Jalnapurkar, B., Naik, S. & Lalitha, V. Comparative pathology of canine mammary tumours. J. Compara-

tive Pathol. 101, 389–397 (1989).
 4. Nieto, A. et al. Immunohistologic detection of estrogen receptor alpha in canine mammary tumors: Clinical and pathologic 

associations and prognostic significance. Vet. Pathol. 37, 239–247 (2000).
 5. Abd El-Rehim, D. M. et al. Expression of luminal and basal cytokeratins in human breast carcinoma. J. Pathol. 203, 661–671 (2004).
 6. Gama, A., Alves, A. & Schmitt, F. Expression and prognostic significance of CK19 in canine malignant mammary tumours. Vet. 

J. 184, 45–51 (2010).
 7. Stathopoulos, E. et al. Detection of CK-19 mRNA-positive cells in the peripheral blood of breast cancer patients with histologically 

and immunohistochemically negative axillary lymph nodes. Ann. Oncol. 16, 240–246 (2005).
 8. Stathopoulou, A. et al. Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast 

cancer: Evaluation of their prognostic significance. J. Clin. Oncol. 20, 3404–3412 (2002).
 9. Skondra, M. et al. Detection of circulating tumor cells in breast cancer patients using multiplex reverse transcription-polymerase 

chain reaction and specific primers for MGB, PTHRP and KRT19 correlation with clinicopathological features. Anticancer Res. 
34, 6691–6699 (2014).

 10. Keyvani, S., Karimi, N., Orafa, Z., Bouzari, S. & Oloomi, M. Assessment of cytokeratin-19 gene expression in peripheral blood of 
breast cancer patients and breast cancer cell lines. Biomark. Cancer. 8, BIC. S38229 (2016).

 11. Park, H. S. et al. Detection of circulating tumor cells in breast cancer patients using cytokeratin-19 real-time RT-PCR. Yonsei Med. 
J. 58, 19–26 (2017).

 12. Hindson, B. J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 
8604–8610 (2011).

 13. Sanders, R. et al. Evaluation of digital PCR for absolute DNA quantification. Anal. Chem. 83, 6474–6484 (2011).
 14. Whale, A. S. et al. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number vari-

ation. Nucleic Acids Res. 40, e82 (2012).
 15. Hayden, R. et al. Comparison of droplet digital PCR to real-time PCR for quantitative detection of cytomegalovirus. J. Clin. 

Microbiol. 51, 540–546 (2013).
 16. Belgrader, P. et al. Droplet digital PCR measurement of HER2 copy number alteration in formalin-fixed paraffin-embedded breast 

carcinoma tissue. Clin. Chem. 59, 991–994 (2013).
 17. Zhang, Y., Tang, E.-T. & Du, Z. Detection of MET gene copy number in cancer samples using the droplet digital PCR method. 

PLoS ONE 11, e0146784 (2016).
 18. Faraz, M. et al. LRIG1 gene copy number analysis by ddPCR and correlations to clinical factors in breast cancer. BMC Cancer 20, 

1–11 (2020).

Figure 6.  Correlations between copy numbers of CK19 (a), HPRT (b), copy number ratio (CK19/HPRT) (c) 
from duplex ddPCR assay and weight of spiked canine mammary tumor tissues (a twofold weight reduction 
from 50 to 1.56 mg) in the blood of healthy female dog. The copy numbers of CK19 and HPRT are shown in  log2 
scale. The error bar represents SD.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13623  | https://doi.org/10.1038/s41598-022-17493-5

www.nature.com/scientificreports/

 19. Kim, B. et al. Comparative analysis of HER2 copy number between plasma and tissue samples in gastric cancer using droplet digital 
PCR. Sci. Rep. 10, 1–8 (2020).

 20. Kap, M., Oomen, M., Arshad, S., de Jong, B. & Riegman, P. Fit for purpose frozen tissue collections by RNA integrity number-based 
quality control assurance at the Erasmus MC tissue bank. Biopreserv. Biobanking 12, 81–90 (2014).

 21. Rodríguez, A., Rodríguez, M., Córdoba, J. J. & Andrade, M. J. PCR Primer Design 31–56 (Springer, 2015).
 22. National Center for Biotechnology Information. Primer-BLAST [cited 2021 January]. Accessed 15 Jan 2021. https:// www. ncbi. 

nlm. nih. gov/ tools/ primer- blast/.
 23. National Center for Biotechnology Information. BLAST [cited 2021 January]. Accessed 15 Jan 2021. https:// blast. ncbi. nlm. nih. 

gov/ Blast. cgi.
 24. Huggett, J. F. The digital MIQE guidelines update: Minimum information for publication of quantitative digital PCR experiments 

for 2020. Clin. Chem. 66, 1012–1029 (2020).
 25. Deprez, L. et al. Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified 

reference material. Biomol. Detect. Quantification 9, 29–39 (2016).
 26. Biorad. Digital PCR and real time PCR (qPCR) choices for different applications. [cited 2021 October]. Accessed 15 Jan 2021. 

https:// www. bio- rad. com/ en- au/ appli catio ns- techn ologi es/ digit al- pcr- real- time- pcr- qpcr- choic es- for- diffe rent- appli catio ns? ID= 
OENHB B15.

 27. Falzone, L. et al. Sensitivity assessment of droplet digital PCR for SARS-CoV-2 detection. Int. J. Mol. Med. 46, 957–964 (2020).
 28. Millier, M. J., Stamp, L. K. & Hessian, P. A. Digital-PCR for gene expression: Impact from inherent tissue RNA degradation. Sci. 

Rep. 7, 1–7 (2017).
 29. Brinkhof, B., Spee, B., Rothuizen, J. & Penning, L. C. Development and evaluation of canine reference genes for accurate quanti-

fication of gene expression. Anal. Biochem. 356, 36–43 (2006).
 30. Silver, N., Best, S., Jiang, J. & Thein, S. L. Selection of housekeeping genes for gene expression studies in human reticulocytes using 

real-time PCR. BMC Mol. Biol. 7, 1–9 (2006).
 31. Peters, I. R., Peeters, D., Helps, C. R. & Day, M. J. Development and application of multiple internal reference (housekeeper) gene 

assays for accurate normalisation of canine gene expression studies. Vet. Immunol. Immunopathol. 117, 55–66 (2007).
 32. Piek, C. J., Brinkhof, B., Rothuizen, J., Dekker, A. & Penning, L. C. Leukocyte count affects expression of reference genes in canine 

whole blood samples. BMC. Res. Notes 4, 1–8 (2011).
 33. Selvarajah, G. T., Bonestroo, F. A., Sprang, E. P. T., Kirpensteijn, J. & Mol, J. A. Reference gene validation for gene expression 

normalization in canine osteosarcoma: A geNorm algorithm approach. BMC Vet. Res. 13, 1–8 (2017).
 34. Rowlands, V. et al. Optimisation of robust singleplex and multiplex droplet digital PCR assays for high confidence mutation detec-

tion in circulating tumour DNA. Sci. Rep. 9, 1–13 (2019).
 35. Zhang, Q. et al. Circulating tumor cells undergoing the epithelial-mesenchymal transition: influence on prognosis in cytokeratin 

19-positive hepatocellular carcinoma. Onco. Targets. Ther. 14, 1543 (2021).
 36. Pantel, K. et al. Circulating epithelial cells in patients with benign colon diseases. Clin. Chem. 58, 936–940 (2012).

Acknowledgements
This research project is supported by Second Century Fund (C2F), Chulalongkorn University and Faculty of 
Veterinary Science, Chulalongkorn University, Bangkok, Thailand. National Institute of Metrology (NIMT), 
Pathumthani, Thailand is also appreciated.

Author contributions
P.T., T.Y., S.T.: conceptualization, methodology, validation, analysis, writing. J.B.: validation. S.P.: conceptualiza-
tion, methodology, validation, analysis, writing, project administration.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 17493-5.

Correspondence and requests for materials should be addressed to S.T. or S.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.bio-rad.com/en-au/applications-technologies/digital-pcr-real-time-pcr-qpcr-choices-for-different-applications?ID=OENHBB15
https://www.bio-rad.com/en-au/applications-technologies/digital-pcr-real-time-pcr-qpcr-choices-for-different-applications?ID=OENHBB15
https://doi.org/10.1038/s41598-022-17493-5
https://doi.org/10.1038/s41598-022-17493-5
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Validation of droplet digital PCR for cytokeratin 19 mRNA detection in canine peripheral blood and mammary gland
	Methods
	Sample collections. 
	RNA extraction. 
	cDNA synthesis. 
	Primer and probe design. 
	Quantitative real-time PCR reaction. 
	Droplet digital PCR reaction and the optimization of annealing temperature (Ta). 
	Limit of detection (LOD). 
	CK19 detection in peripheral blood and mammary tissue by ddPCR. 
	Statistical analysis. 
	Ethical approval. 

	Results
	LOD. 
	CK19 and HPRT detection in canine peripheral blood and mammary tissue by ddPCR. 

	Discussion
	Conclusions
	References
	Acknowledgements


