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Profiles of movement speed 
and positional variability based 
on extended LQG for various noises
Yoshiaki Taniai

Stochastic optimal control has been studied to explain the characteristics of human upper-arm 
reaching movements. The optimal movement based on an extended linear quadratic Gaussian (LQG) 
demonstrated that control-dependent noise is the essential factor of the speed-accuracy trade-off in 
the point-to-point reaching movement. Furthermore, the extended LQG reproduced the profiles of 
movement speed and positional variability. However, the expected value and variance were computed 
based on the Monte Carlo method in these studies, which is not considered efficient. In this study, 
I obtained update equations to efficiently compute the expected value and variance based on the 
extended LQG. Using the update equations, I computed the profiles of simulated movement speed 
and positional variability for various amplitudes of noises in a point-to-point reaching movement. The 
profiles of movement speed were basically bell-shaped for the noises. The speed peak was changed 
by the control-dependent noise and state-dependent observation noise. The positional variability 
changed for various noises, and the period during which the variability changed differed with the noise 
type. Efficient computation in stochastic optimal control based on the extended LQG would contribute 
to the elucidation of motor control under various noises.

Upper-arm reaching movement is one of the most common movements studied for examining motor control. 
Stochastic optimal control has been studied to explain the characteristics of human upper-arm reaching move-
ment. The studies of stochastic optimal control are based on the assumption that the reaching movement is 
determined to optimize an evaluation function in the presence of conceivable noise that affects the neurophysi-
ological processing of the living body. In the reaching movement, the speed profile of the hand is bell-shaped1, 
and the positional variability has the highest value around the middle of the movement, decreasing  thereafter2–5. 
In addition, the trade-off between speed and accuracy of the movement is well  known6.

Harris and Wolpert proposed the minimum variance  model7. The noise considered in the minimum variance 
model is signal-dependent noise that depends on the magnitude of the signal and is also known as multiplica-
tive noise. The signal-dependent noise increases with the amplitude of the control signal and is called control-
dependent noise. The minimum variance model is the minimization of total positional variance in the post-
movement duration. The trajectory based on the minimum variance model reproduces the trajectory and speed 
profile of human upper-arm reaching movement. Todorov proposed the extended linear quadratic Gaussian 
(LQG) framework to examine stochastic optimal control and sensorimotor estimation. The extended LQG is a 
framework that can efficiently solve optimal feedback control under biologically conceivable noise, which is not 
only signal-dependent noise but also signal-independent noise, state-dependent noise, and state-independent 
 noise8. The signal-independent noise is the noise that does not depend on the magnitude of the signal and is 
also called additive noise. In the framework, the movement dynamic system consists of state noise, which is the 
state-independent noise that does not depend on the magnitude of the state, as well as control-dependent noise. 
The feedback system consists of the state-dependent and state-independent observation noise, and the state 
estimation system consists of the state-independent noise, called internal estimation noise (for more details of 
noises, refer to “Framework of extended LQG” in the section “Methods”). The optimal movement based on the 
extended LQG demonstrated that control-dependent noise is the essential factor of the speed-accuracy trade-
off and that the optimal speed profile is bell-shaped. In addition, the extended LQG can reproduce the profile 
of positional  variability5,9. Furthermore, aspect ratio, surface area, and orientation of variability ellipses in the 
movement end vary with the direction under state-dependent observation  noise9, and these characteristics have 
been reported in human  movements10. On the other hand, a novel motor learning paradigm that varies the state-
dependent observation noise of visual feedback in the limbs was developed to test the optimal hybrid feedforward 

OPEN

Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan. email: taniai@u-fukui.
ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-17485-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13354  | https://doi.org/10.1038/s41598-022-17485-5

www.nature.com/scientificreports/

and feedback controller based on the extended  LQG11. The controller reproduced the human-adapted complex 
reaching trajectory. However, in the studies mentioned above about the extended LQG, the expected value and 
variance were computed based on the Monte Carlo method. The Monte Carlo method computes the expected 
value by repeating many trials and requires much computation time. It is important to efficiently obtain the 
expected value and variance to investigate whether the optimal feedback control can reproduce the characteristics 
of human movement in environments related to the effects of various noises.

In this study, I obtained update equations to efficiently compute the expected value and variance based on 
the extended LQG. Using the update equations, I computed the profiles of simulated movement speed and posi-
tional variability for various amplitudes of noises in a point-to-point reaching movement. In the computations of 
simulated movements, control-dependent noise is always considered, while the other noise is considered from 
the state-dependent observation noise, state noise, state-independent observation noise, and internal estima-
tion noise.

Results
Figure 1 represents the simulated movements based on the extended LQG for the coefficient σc of the control-
dependent noise. Figure 1a shows the speed profiles. The profiles were almost bell-shaped. The speed peak was 
about half the movement duration when the noise was absent (i.e., σc = 0 ). Although the peak appeared earlier 
when the noise was slight ( σc = 0.2, 0.5 ), and when the noise was larger ( σc = 1.0, 1.5, 3.0 ), the peak appeared 
later. When the noise was further larger ( σc = 3.0 ), the velocity at the movement’s end was far from zero. Fig-
ure 1b shows the profiles of positional variability. When the noise was absent ( σc = 0 ), the standard deviation 
of the position was zero (i.e., the line was identical with the X-axis). When the noise was larger, the variability 
peak appeared later and the positional variability was larger over the movement. When the noise was even 
larger ( σc = 3.0 ), the peak disappeared (i.e., the variability increased monotonically). The optimal movement 
when σc was 1.5 was the result for the basic parameter set. In the basic parameters, only the control-dependent 
noise was considered. The profiles of movement speed and positional variability resembled the characteristics 
reported by past  studies2–4.

Figure 2 represents the simulated movements based on the extended LQG for the coefficient σd of the state-
dependent observation noise. Figure 2a shows the speed profiles. All profiles were almost bell-shaped. As the 
noise became larger, the speed peak appeared later. Figure 2b shows the profiles of positional variability. Unlike 
the case of control-dependent noise, no significant change occurred up to about half of the movement, although 
the variability was larger in the latter half of the movement.

Figure 3 represents the simulated movements based on the extended LQG for the coefficient r of the control 
cost. Figure 3a shows the speed profiles. As the control cost was larger, the speed peak appeared later. Figure 3b 
shows the profiles of positional variability. Unlike the case of state-dependent observation noise, there was a large 
change up to about half of the movement but little change after half the movement. In other words, as the ratio 
of state cost increased, the variability around the middle of the movement became larger.

Figure 4 represents the simulated movements based on the extended LQG for the coefficient σξ of the state 
noise. Figure 4a shows the speed profiles. The profiles were mostly bell-shaped and largely remained unchanged 
by the state noise. This characteristic was also confirmed for state-independent observation noise (Fig. 5a) and 
internal estimation noise (Fig. 6a). The scaling factor of the state-dependent observation noise in these results was 
zero ( σd = 0 ). Although the resulting graph is not shown, the velocity peak appears slightly later when the scal-
ing factor is not zero. Figure 4b shows the positional variability. As the state noise became larger, the variability 
increased over the movement. On the other hand, the variability in the state-independent observation noise and 
internal estimation noise did not change almost from the beginning to the middle of the movement (Figs. 5b, 6b).

0 0.1 0.2 0.3 0.4 0.5
Time [s]

0

0.5

1

1.5

S
pe

ed
 [m

/s
]

σc  = 0.0

σc  = 0.2

σc  = 0.5

σc  = 1.0

σc  = 1.5

σc  = 3.0

0 0.1 0.2 0.3 0.4 0.5
Time [s]

0

0.01

0.02

0.03

0.04

0.05

0.06

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 p

os
iti

on
 [m

]

Figure 1.  Simulated movements based on the extended LQG for the coefficient σc of control-dependent noise: 
(a) speed, (b) positional variability. The legend of the subfigure (b) is the same as the subfigure (a).
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Figure 2.  Simulated movements based on the extended LQG for the coefficient σd of state-dependent 
observation noise: (a) speed, (b) positional variability. The legend of the subfigure (b) is the same as the 
subfigure (a).
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Figure 3.  Simulated movements based on the extended LQG for the coefficient r of control cost: (a) speed, (b) 
positional variability. The legend of the subfigure (b) is the same as the subfigure (a).
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Figure 4.  Simulated movements based on the extended LQG for the coefficient σξ of state noise: (a) speed, (b) 
positional variability. The legend of the subfigure (b) is the same as the subfigure (a).
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Discussion
I obtained update equations to efficiently compute the expected value and variance based on the extended LQG. 
Using the update equations, I computed the profiles of simulated movement speed and positional variability for 
various amplitudes of noises in a point-to-point reaching movement. The speed peak was changed by the control-
dependent noise and state-dependent observation noise. The positional variability changes for various noises, and 
the period during which the variability changed differed with the noise type. The results show that multiplicative 
noise is an important factor in characterizing the profiles of positional variability and movement speed and that 
additive noise is an important factor in characterizing the profiles of positional variability. These characteristics 
would be helpful in how motor control based on extended LQG appears in the presence of various disturbances.

Stochastic optimal control has been studied to explain the characteristics of human upper-arm reaching 
movement. In particular, the extended LQG framework has been verified for movement tasks, including vari-
ous  disturbances5,8,9,11. The disturbances can be treated as noise in the extended LQG. However, in the previous 
studies, the expected value and variance of the optimal movement were computed based on the Monte Carlo 
method. The Monte Carlo method computes the expected value by repeating many trials and requires much 
computation time. In this study, the updated equations provided an efficient computation of expected value and 
variance. Efficient computation in stochastic optimal control based on the extended LQG would contribute to 
the elucidation of motor control under various disturbances.

Methods
I computed the movement speed and positional variability based on the extended  LQG8 for various amplitudes 
of noises. Instead of using Monte Carlo method, I obtained update equations to compute the mean and variance 
of state variables.

Framework of extended LQG. The linear movement dynamic system in discrete time t is given as:
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Figure 5.  Simulated movements based on the extended LQG for the coefficient σω of state-independent 
observation noise: (a) speed, (b) positional variability. The legend of the subfigure (b) is the same as the 
subfigure (a).

0 0.1 0.2 0.3 0.4 0.5
Time [s]

0

0.5

1

1.5

S
pe

ed
 [m

/s
]

ση  = 0.0

ση  = 0.0025

ση  = 0.005

ση  = 0.0075

ση  = 0.01

0 0.1 0.2 0.3 0.4 0.5
Time [s]

0

0.01

0.02

0.03

0.04

0.05

0.06

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 p

os
iti

on
 [m

]

Figure 6.  Simulated movements based on the extended LQG for the coefficient ση of internal estimation noise: 
(a) speed, (b) positional variability. The legend of the subfigure (b) is the same as the subfigure (a).
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where A and B are the dynamic system matrices, x is the state variables, and u is the control signal. State noise ξ 
is state-independent noise which is Gaussian with mean 0 and covariance �ξ ≥ 0 . The noise ε related to control-
dependent noise is Gaussian with mean 0 and covariance �ε = I . C is the scaling matrix for control-dependent 
noise. The matrix C is BF, where F is the scaling factor. It is already known that the initial state is mean x̂1 and 
covariance �1.

The feedback system is as given below:

where y is the feedback signal and H is the observation matrix. State-independent observation noise ω is Gaussian 
with mean 0 and covariance �ω ≥ 0 . The noise ǫ related to state-dependent observation noise is Gaussian with 
mean 0 and covariance �ǫ = I . D is the scaling matrix for state-dependent observation noise.

The state estimate x̂ is calculated as given below:

where K is the filter gain matrix and internal estimation noise η is Gaussian noise with mean 0 and covariance 
�η ≥ 0.

Cost per step is calculated as given below:

where Q is the matrix of the state cost and R is the matrix of the control cost.
The optimal control u is recursively computed in the opposite direction over a period of time, as follows:

where L is the control gain matrix. It is initialized as follows: Sxn = Qn , Sen = 0 , and sn = 0 . Total expected cost 
is calculated as follows:

The optimal filter is recursively computed forward in time as follows:

It is initialized as follows: �e
1 = �1, �

x̂
1 = x̂1x̂

T

1 , and�x̂e
1 = 0.

Mean and variance of state variables. The update equations used to compute the mean and variance of 
state variables were obtained from Eq. (1) and the following equations.

(1)xt+1 = Axt + But + ξ t +

c∑

i=1

εitCiut

(2)yt = Hxt + ωt +
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i=1

ǫitDixt
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(4)xTt Qtxt + uTt Rut
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∑
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∑
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where the estimation error et is xt − x̂t . Equations (10) and (11) are derived from Eqs. (2) and (3), and Eqs. (1) 
and (10), respectively.

The mean of state variables can be computed sequentially by applying the following update equations.

The variance of state variables can be computed sequentially by using the following update equations:

Application to the reaching movement. The simulated movement task was a single joint reaching 
movement similar to the  study8. The movement was replaced with a translational point-to-point reaching move-
ment for simplicity. The movement duration tend was set to 0.5 s. The starting position was 0 m, while the target 
position p∗ was 0.2 m.

(11)et+1 = (A− KtH)et + ξ t − Ktωt − ηt −
∑

i

εitCiLt x̂t −
∑

i

ǫitKtDi(et + x̂t)

(12)E [xt+1] = A E [xt ] − BLt E [x̂t ]

(13)E [x̂t+1] = (A− BLt) E [x̂t ] + KtH E [et ]

(14)E [et+1] = (A− KtH) E [et ]

(15)
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The matrices of the dynamic system in the translational point-to-point reaching movement are depicted 
below:

where �t is the time step, m is the point mass, and τ1 and τ2 are the time constants (Table 1). The state x 
of the system is [p(t), ṗ(t), f (t), ḟ (t), p∗]T , where p is the position and f is the force. The initial state was 
x̂1 = [0, 0, 0, 0, p∗]T and �1 = 0.

The matrices of the feedback system are depicted below:

where σd is the scaling factor. Table 2 shows the parameters of the feedback system.
The state noise, state-independent observation noise, and internal estimation noise have covariances 

�ξ = σ 2
ξ I , �

ω =
(
σωdiag[ωp, ωv , ωf ]

)2 , and �η = σ 2
η I , respectively. The cost matrices are R = r , Q1, ..., n−1 = 0 , 

and Qn = ppT + vvT + ffT , where p = [1, 0, 0, 0, − 1]T , v = [0, 0.2, 0, 0, 0]T , and f = [0, 0, 0.02, 0, 0]T.
The simulated movements were obtained by changing each value of σc , σξ , σω , σd , ση , and r in the basic 

parameter set (Table 3). The optimization was completed when the absolute value of the relative change in the 
total expected cost became less than the convergence tolerance ( 1.0× 10−15).

A =





1 �t 0 0 0

0 1 �t/m 0 0

0 0 1−�t/τ2 �t/τ2 0

0 0 0 1−�t/τ1 0

0 0 0 0 1





B =





0

0

0

�t/τ1
0





C1 = Bσc

H =

�
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

�

D1 = σd

�
ωp 0 0 0 0

0 0 0 0 0

0 0 0 0 0

�

D2 = σd

�
0 0 0 0 0

0 ωv 0 0 0

0 0 0 0 0

�

D3 = σd




0 0 0 0 0

0 0 0 0 0

0 0 ωf 0 0





Table 1.  Parameters of the movement dynamic system.

Parameter Value

�t 0.01 (s)

m 1.0 (kg)

τ1 40.0 (ms)

τ2 40.0 (ms)

c 1

Table 2.  Parameters of the feedback system.

Parameter Value

ωp 0.02

ωv 0.2

ωf 1.0

d 3
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Table 3.  The basic parameter set.
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