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These days, many efforts have been made to increase and develop the solubility and bioavailability of 
novel therapeutic medicines. One of the most believable approaches is the operation of supercritical 
carbon dioxide fluid (SC-CO2). This operation has been used as a unique method in pharmacology due 
to the brilliant positive points such as colorless nature, cost-effectives, and environmentally friendly. 
This research project is aimed to mathematically calculate the solubility of Oxaprozin in SC-CO2 
through artificial intelligence. Oxaprozin is a nonsteroidal anti-inflammatory drug which is useful in 
arthritis disease to improve swelling and pain. Oxaprozin is a type of BCS class II (Biopharmaceutical 
Classification) drug with low solubility and bioavailability. Here in order to optimize and improve the 
solubility of Oxaprozin, three ensemble decision tree-based models including random forest (RF), 
Extremely random trees (ET), and gradient boosting (GB) are considered. 32 data vectors are used for 
this modeling, moreover, temperature and pressure as inputs, and drug solubility as output. Using the 
MSE metric, ET, RF, and GB illustrated error rates of 6.29E−09, 9.71E−09, and 3.78E−11. Then, using 
the R-squared metric, they demonstrated results including 0.999, 0.984, and 0.999, respectively. GB 
is selected as the best fitted model with the optimal values including 33.15 (K) for the temperature, 
380.4 (bar) for the pressure and 0.001242 (mole fraction) as optimized value for the solubility.
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SC-CO2	� Supercritical carbon dioxide fluid
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NSAID	� Nonsteroidal anti-inflammatory
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SCFs	� Supercritical fluids
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COP	� Cross-over pressure
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Remarkable progression in pharmaceutical industry has paved the way towards creating novel therapeutic drugs 
for treating various challenging diseases1,2. Despite noteworthy development, poor solubility of active pharmaceu-
tical ingredients (APIs) can be considered as the most prominent limitations for drug development3,4. Oxaprozin 
(C18H15NO3) can be recognized as one of the commonly-employed non-steroidal anti-inflammatory (NSAID) 
drug5,6. The analgesic and antipyretic characteristics of this propionic acid derivative has made it promising to 
appropriately alleviate the pain of acute/chronic disorders such as inflammation, swelling, osteoarthritis and 
rheumatoid arthritis7,8. Figure 1 presents the ball-stick demonstration of Oxaprozin. This NSAID drug possesses 
great ability to decline the formation of prostaglandin precursors from arachidonic acid via cyclo-oxygenase 
inhibition, which causes significant reduction in pain/inflammatory responses. Oxaprozin has shown superior 
efficacy compared to aspirin or piroxicam in the treatment of osteoarthritis9.

To improve the solubility of drugs, the indisputable role of solvents can’t be ignored. These days, supercritical 
fluids (SCFs) are known as an innovative technique that demonstrates their efficiency for particle formation. This 
novel approach can overcome some disadvantages of conventional technologies such as crushing, crystalliza-
tion and precipitation11,12. Supercritical carbon dioxide (SC-CO2) is being frequently applied to fractionate the 
precious components in pharmaceutical processes due to possessing noteworthy properties such as abundancy, 
colorless nature, cost-effectiveness, and environmentally benign characteristic13. Due to the importance of solu-
bility in SC-CO2 for the design and development of novel drugs, the conduction of experimental investigation 
for evaluating the solubility of these drugs is of great importance14. Despite the great importance for obtaining 
the solubility of drugs, the existence of some economic/operational problems such as difficulty in solute–solvent 
interactions in SC-CO2 system and high cost have limited the conduction of experimental investigation.

Therefore, development of mathematical modeling approaches to predict the solubility amount of disparate 
types of drugs can be an appropriate option to optimize the time and cost of processing. Nowadays, AI has been 
introduced as a promising predictive tool to measure the solubility of drugs, numerically. Apart from phar-
macology, AI has found its indisputable role in disparate knowledge related to chemical engineering such as 
extraction, purification, separation, crystallization and chemical reactor engineering15. In most scientific fields, 
machine learning (ML) techniques are known as common computational procedures, including regression trees, 
neural networks, support vector machines. A variety of relationships between inputs and outputs are extracted 
by these models16–18.

The Decision Tree (DT) is one of the typically used learning models. A weak model is a simple predictor that 
is only likely to be better than a random estimator. The results of many base DT models are aggregated to form 
a stronger model in tree-based ensemble methods19,20.

Bagging and boosting are two of the most effective improvement strategies with Decision Trees. Bagging 
(Bootstrap Aggregating), developed by Breiman21, is one of the most basic and straightforward ensemble tech-
niques, demonstrating outstanding performance while reducing variance and preventing overfitting. The Bagging 
algorithm is more diverse because of the bootstrap approach, which replicates and generates subsets of training 
data. All of the subsets are used to fit different basic estimators, and the final prediction results are compiled 
using a majority-vote method21,22.

One other ensemble method based on the Freund and Schapiro’s study is boosting23. The aim of this research 
was optimization of Oxaprozin solubility within supercritical fluid by applying different machine learning models 
to find the best model for that.

By progressively reweighting the training data, this approach differs from Bagging in that it generates a 
diverse set of basic learners. A higher weight will be given to each sample whose estimation was weaker than 

Figure 1.   Schematic demonstration of Oxaprozin10.
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the previous estimator’s in the subsequent training step. As a result, in subsequent bootstrap samples, it is more 
likely that training samples with weak estimates will appear, allowing bias to be effectively removed. Based on 
their prediction performance, the base estimators are weighted in the final Boosting algorithm model. A random 
forest model, Extra Trees, and Gradient Boosting model were all considered for inclusion in this research24–27.

Experimental
Various predictive models in this research have been investigated and developed based on the experimental 
investigation of Khoshmaram et al. They experimentally measured the solubility of Oxaprozin using the com-
bination of static and gravimetric techniques via a pressure–volume-temperature (PVT) cell14. This system can 
be filled with up to 0.4 L Oxaprozin and supercritical liquid. The adjustment of two momentous parameters for 
evaluating the solubility of drugs (temperature and pressure) in the PVT cell is an important advantage. In the 
PVT cell, increment of pressure causes the manufacturing of SC-CO2 in the liquefaction unit. Then, the con-
densed solvent moves through the inline filter with the aim of purifying the solvent. In the next step, purified 
solvent enters a surge tank before the PVT cell. The controlling process of SC-CO2 and Oxaprozin temperatures 
was implemented applying heating elements insulated by a PTFE layer.

Data set
This study’s dataset is derived from14 that have just 32 data vectors. Each vector has two input parameters (pres-
sure and temperature) and one output (solubility). The dataset is shown in Table 1 and Pearson correlation28 of 
parameters are shown in Fig. 2.

Table 1.   The whole dataset: 32 data vectors, where each vector has two input parameters (pressure and 
temperature) and one output (solubility).

No Temperature (K) Pressure (bar) Solubility (mole fraction)

1 3.08 × 102 1.20 × 102 8.19 × 10–5

2 3.08 × 102 1.60 × 102 1.58 × 10–4

3 3.08 × 102 2.00 × 102 2.24 × 10–4

4 3.08 × 102 2.40 × 102 2.80 × 10–4

5 3.08 × 102 2.80 × 102 3.44 × 10–4

6 3.08 × 102 3.20 × 102 4.06 × 10–4

7 3.08 × 102 3.60 × 102 4.73 × 10–4

8 3.08 × 102 4.00 × 102 5.33 × 10–4

9 3.18 × 102 1.20 × 102 7.55 × 10–5

10 3.18 × 102 1.60 × 102 1.41 × 10–4

11 3.18 × 102 2.00 × 102 2.45 × 10–4

12 3.18 × 102 2.40 × 102 3.56 × 10–4

13 3.18 × 102 2.80 × 102 4.64 × 10–4

14 3.18 × 102 3.20 × 102 5.58 × 10–4

15 3.18 × 102 3.60 × 102 6.60 × 10–4

16 3.18 × 102 4.00 × 102 7.66 × 10–4

17 3.28 × 102 1.20 × 102 5.34 × 10–5

18 3.28 × 102 1.60 × 102 1.28 × 10–4

19 3.28 × 102 2.00 × 102 3.02 × 10–4

20 3.28 × 102 2.40 × 102 4.14 × 10–4

21 3.28 × 102 2.80 × 102 5.82 × 10–4

22 3.28 × 102 3.20 × 102 7.87 × 10–4

23 3.28 × 102 3.60 × 102 8.51 × 10–4

24 3.28 × 102 4.00 × 102 1.03 × 10–3

25 3.38 × 102 1.20 × 102 3.31 × 10–5

26 3.38 × 102 1.60 × 102 9.09 × 10–5

27 3.38 × 102 2.00 × 102 2.98 × 10–4

28 3.38 × 102 2.40 × 102 4.81 × 10–4

29 3.38 × 102 2.80 × 102 6.77 × 10–4

30 3.38 × 102 3.20 × 102 8.89 × 10–4

31 3.38 × 102 3.60 × 102 1.08 × 10–3

32 3.38 × 102 4.00 × 102 1.24 × 10–3
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Methodology
Random forest and extra tree.  The random forest ensemble learning model is a tree-based technique 
that, like other ensemble learning methods, which is used to enhance the effectiveness of multiple base tree 
learners29. There will then be an unpruned regression tree built for every bootstrapped sample. This is what 
will happen next. Instead of using all the current predictors, a specified number of K base models are picked 
randomly to perform the function of split possibilities in this stage. This two-step operation will be iterated unto 
C decision trees with the above-mentioned characteristics are optimized, at which point unobserved data can 
be predicted by gathering the estimations of these C trees. Random forest uses a bagging strategy to boost tree 
diversity via constructing DTs using different training subsets, minimizing the model’s total variance17. An RF 
regression predictor is expressed in the following equation:

According to the previous equation, C refers to the count of decision trees, x identifies the data point, and Ti(x) 
refers to a unique DT built from bootstrap samples and a subset of entry variables. RF can predict out-of-bag 
error for the time being logging natively using samples which have not been selected in connection with the drive 
of this shaft during the bagging process. To compute an unbiased prediction of distribution error, this particular 
sub-association does not make use of any external data19,30. Assign substantial scores to each input variable. RF 
modifies one input variable while holding the others constant, and the model’s average decrease is also assigned19.

Extra Trees (ET) are an overall tree-based approach like random forest. It strongly randomize both the cut 
point decision and the particularities of a tree node during its division Extra Tree becomes possible to categorize 
and regression tasks31,32.

As far as the differences are concerned, the two models are identical in that they develop multiple trees and 
divide nodes applying random subsets of functions, nevertheless, there are two major separations exist: Rather 
than using optimum splits, the ET uses randomized splits instead of bootstrap observations33.

Gradient boosting.  Boosting is also an ensemble learning technique. Boosting comprises a sequence of 
base predictors rather than a single predictor to average them all together to improve prediction accuracy. In a 
stage-wise process, base estimators (decision trees here) are successively fitted to eliminate bias. At each phase, a 

(1)f̂ CRF(x) =
1

C

C∑

i=1

Ti(x)

Figure 2.   Pearson correlation plot.
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new learner is introduced to optimize the loss function. The first learner reduces the loss function to the small-
est possible value using training data24,34,35. The residuals from the previous estimators are used by the following 
estimators. The gradient boosting method steps are depicted in the following Algorithm24,35,36:

Results
The tuning of the hyper-parameters of the mentioned models is based on a search grid. All three final models 
were evaluated by R-square and MSE criteria. Additionally, some visualization results were made, which will be 
discussed later. Figures 3, 4 and 5 show a comparison of expected values and predicted amounts. In the below fig-
ures, the blue line indicates the expected amounts and the points of the predicted values (red for the test data and 
black for the training data). In addition, Table 2 shows quantitative metrics to compare the three implemented 

Figure 3.   Expected and predicated solubility (ET model).
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Figure 4.   Expected and predicated solubility (RF model).

Figure 5.   Expected and predicated solubility (GB model).
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models with the optimal hyper-parameters. Comparison of tabulated results in Table 2 has confirmed the fact 
that the GB is the most accurate and general model (R2 = 0.999 and MSE = 3.78E−11), which has been used as 
the main model for the rest of the analysis.

The simultaneous impacts of temperature and pressure as two prominent input parameters on the solubility 
as the only output is shown in 3D in Fig. 6. Furthermore, by holding each of the inputs fixed, the two-dimen-
sional Figs. 7 and 8 are displayed. These figures correspond to the reality of the optimal values in Table 3. It can 
be perceived from the figures that the pressure of system has positive impact on the solubility of Oxaprozin 
in supercritical system. Indeed, increase in the pressure can improve the solvent density, which consequently 
intensifies the solvating power of the SC-CO2 system. Although pressure has direct connection with the solubility 
of drug, the impact of temperature is entirely indirect. To evaluate the effect of temperature on drug solubility, 
the role of sublimation pressure and density above and below the cross-over pressure (COP) must be analyzed. 
At the pressures above the COP, the encouraging influence of sublimation pressure on solubility dominates the 
deteriorative impact of density reduction. Therefore, at these pressures, temperature increment significantly 
enhances the solubility in SC-CO2 system. At pressures below the COP, the destructive impact of density decre-
ment overcomes the positive effect of sublimation pressure. Therefore, at these amounts of pressures, increasing 
the temperature significantly reduces the solubility in SC-CO2. By concentrating on Table 3, it is recognized that 
the pressure and the temperature of 380.4 bar and 333.15 K are the optimum factors for reaching the greatest 
amount of Oxaprozin solubility.

Conclusion
Now a days, numerous efforts have been made to develop green and efficient solvents to overcome the functional/
operational detriments of organic solvents. Nowadays, SC-CO2 has been introduced as a prevalently employed 
liquid solvent to fractionate the valuable components and increase the solubility of drugs in pharmaceutical 
processes because of its remarkable advantages (i.e., abundancy, cost-effectives, and environmentally benign 
characteristic). In this paper, disparate types of numerical models were proposed via AI technique to anticipate 
the optimum value of Oxaprozin in SC-CO2. In this study, three ensemble decision tree-based models were used 
to model the problem: extremely random tree (ET), random forest (RF), and Gradient Tree Boosting (GB). This 
problem’s available data consists of 32 data vectors with two inputs of temperature and pressure and an output of 
solubility. ET, RF, and GB had MSE error rates of 6.29E−09, 9.71E−09, and 3.78E−11. They also have R-squared 
scores of 0.999, 0.984, and 0.999, respectively. The final model chosen is GB, with the following optimal values: 
T = 33.15, P = 380.4, and solubility = 0.001242, which shows the greatest amount of Oxaprozin solubility.

Table 2.   Final model results.

Models MSE R2

ET 6.29 × 10–9 0.999

RF 9.71 × 10–9 0.984

GB 3.78 × 10–11 0.999

Figure 6.   Input–output projection (GB).
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Figure 7.   Solubility (mole fraction) based on pressure (bar), temperature (°K).

Figure 8.   Solubility (mole fraction) base on temperature (°K), pressure (bar).
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All data are available within the published paper.
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