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Quantum channel measurement 
with local quantum Bernoulli noises
Qi Han*, Yanan Han, Yaxin Kou & Ning Bai

As an important stochastic process, quantum Bernoulli noises has a very important physical 
background and is an important research object in the field of quantum information. In this paper, we 
review local quantum Bernoulli noises and local quantum mutual entropy, then introduce quantum 
channel measurement with local quantum Bernoulli noises. On this basis, we give the channel 
structure between two systems, and prove the completely positivity of this quantum channel. We also 
give a channel application on the local quantum mutual entropy.

Quantum information is a hot topic in current research. As an important tool of accurate measurement in the 
field of quantum information, quantum channel has also received broad attentions. The channel is one of the 
important communication theory bases because it has an essential physical meaning, that is, when a person wants 
to send a message, it must through a certain channel, and the mutual entropy discussed earlier also depends 
on the channel. In a closed quantum system, the transmission of information follows U-evolution. But in gen-
eral, for an open quantum system, the transmission of information will be interfered by noise. In this paper, 
we consider the problem of information transmission under the influence of local quantum Bernoulli noise. A 
general quantum system is described by a C∗-algebra or a Von Neumann algebra, here we discuss the channel 
transformation in C∗-algebra contexts.

Privault1 introduced stochastic analysis of Bernoulli processes and its applications. Later, Wang, Chai, and 
 Lu2 introduces quantum Bernoulli noises (QBNs) in discrete time which are the family of local annihilation and 
local creation operator acting on Bernoulli functionals. Wang and  Zhang3 constructed Dirichlet forms from 
annihilation operators on Bernoulli functionals, and introduced a new type of QBNs which called localization 
of QBNs (short as LQBNs). Let’s briefly review Han, Chen and  Lu4 introduced to local quantum entropy S(ρk) 
of quantum Bernoulli noises. In this paper, on the basis of Han, Han, Kou and  Lu5, the mathematical structure 
of the quantum channel is studied when the quantum Bernoulli noise is localized.

Quantum channel refers to the part through which information travels from the input system to the output 
system. There is noise in the channel, even if the input signal is zero, the output signal still has a certain power. 
Quantum channels differ from classical channels in that they use qubit. A qubit is a quantum object in a super-
position state, kind of like a superposition of 1 and 0, that is, before measurement, it can be any mixture of 1 and 
0, so the possible value is infinite, that is the key of the quantum channel. When we use local quantum Bernoulli 
noise, we make a measurement of the information, and the qubit are no longer superimposed after the measure-
ment, so the measurement result is classical.

Let (�,F ,P) be a probability space, L2(�,F ,P) the usual Hilbert space of square integrable complex-valued 
functions on (�,F ,P) . Let A = B(H) be the set of all bounded operators on a separable Hilbert space H . 
G = G(H) is the set of all canonical states (density operators) on A . In order to discuss the communication 
process, we need two dynamical systems: An input system (A1,G1) and an output system (A2,G2) acting on the 
Hilbert spaces H1 and H2 , respectively.

The arrangement of this article is as follows. In Sect. “Preliminary knowledge”, we briefly recall the basic con-
cepts and properties of QBNs and LQBNs. In Sect. “Channel construction with local quantum Bernoullinoises”, 
We give the mathematical structure of the communication channel when the noise is quantum Bernoulli noises, 
and prove that the channel is completely positive. In Sect. “Channel measurement of local quantum mutual 
entropy”, we make a simple measurement of this channel. In Sect. “Summary”, a brief summary.

Preliminary knowledge
In this section, we firstly recall main concepts and properties about QBNs, which play an important role in our 
following discussion. We refer to Wang, Chai and  Lu1 Han, Han and  Kou5 for details.

Symbols description: Let N be the set of all non-negative integers, Ŵ the finite power set of N , namely,
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where ♯(σ ) denotes the cardinality of σ as a set. In this paper, both j and k represent non-negative integers belong-
ing to N . If H be a Hilbert space, then B(H) represents the set of all bounded operators, and G = G(H) is the 
set of all canonical states (density operators) on B(H) . We denote by �·, ·� the usual inner product of the space H 
and by � · � the corresponding norm.

In reference  Wang1, h be the space of square integrable complex-valued Bernoulli functionals, namely 
h = L2(�,F ,P) , thus h has {Zσ | σ ∈ Ŵ} as its orthonormal basis, where Z∅ = 1 and

Therefore, we introduce the following lemma and definitions.

Lemma 2.1 1 For k ∈ N , there is a bounded linear operator ∂k on h , such that

where σ \ k = σ \ {k}, σ ∪ k = σ ∪ {k} , 1σ (k) the indicator of σ as a subset of N and ∂∗k  is the adjoint of operator ∂k.

The operator ∂k and its adjoint ∂∗k  are usually known as the annihilation and creation operators acting on 
Bernoulli functionals, respectively.

Definition 2.2 1 The family {∂k , ∂∗k }k≥0 of annihilation and creation operators is called quantum Bernoulli noises.

Let ρk be the density operator on h = L2(�,F ,P) = L2(�) , and the orthonormal basis of h be {Zσ | σ ∈ Ŵ} , 
then the expression of ρk is

where 
∑

k �k = 1 , and |Zσk ��Zσk | = Ek is the projection operator.

Definition 2.3 6 For ρ is a density operator, its quantum entropy is defined as

and its quantum relative entropy

where the logarithms indicated by log are taken to base two. If �x are the eigenvalues of ρ then Von Neumann’s 
definition can be re-expressed

where we define 0 log 0 ≡ 0 , as for the Shannon entropy.

A channel from the input system to the output system is a mapping �∗ from G(h) → G(h) . An input state 
ρ ∈ G(h) is sent to the output system through a channel �∗ , so that the output state is written as ρ̃ ≡ �∗ρ . So 
we introduce the following definition.

Definition 2.4 5 The compound state �kE (corresponding to a joint state in classical systems) of ρk and �∗ρk 
on the space L2(�) was given by

where E stands for a Schatten decomposition {Ei} of ρk and νi was a eigenvalue of ρk.

Applying the relative entropy S(·�·) and two compound states �kE , �k0 ≡ ρk ⊗�∗ρk (the former includes a 
certain correlation of input and output and the later does not), so we have the following lemma.

Lemma 2.5 5 If max σ ≤ k, σ ∈ Ŵ, k ∈ N , where max σ stand for the greatest element in σ . ρk is a density operator 
on L2(�) . Then the quantum mutual entropy in terms of local quantum Bernoulli noises is

(2.1)Ŵ = {σ | σ ⊂ N and ♯(σ ) < ∞},

(2.2)Zσ =
∏

j∈σ

Zj , σ ∈ Ŵ, σ �= ∅.

(2.3)∂kZσ =1σ (k)Zσ\k , σ ∈ Ŵ,

(2.4)∂∗k Zσ =[1− 1σ (k)]Zσ∪k , σ ∈ Ŵ,

(2.5)ρk =

N∑

k=1

�k|Zσk ��Zσk |,

(2.6)S(ρ) ≡ −Tr(ρ log ρ),

(2.7)S(ρ � σ) ≡ Trρ(log ρ − log σ),

(2.8)S(ρ) = −
∑

x

�x log �x ,

(2.9)�kE =
∑

i

νiEi ⊗�∗Ei ,
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where the supremum is taken over all Schatten decompositions of ρk because this decomposition is not always 
unique unless every eigenvalue of ρk is not degenerated.

Channel construction with local quantum Bernoulli noises
In this section we propose the mathematical structure of channels that describe some of the communication 
processes.

Let A = B(H) be the set of all bounded operators on a separable Hilbert space H = L2(�,F ,P) , that is A 
be a input C∗-algebra and G(A) be the set of all states on A . If � : A2 → A is a map from an algebra A2 to an 
algebra A where A2 output C∗-algebra, then its dual map �∗ : G(A) → G(A2) is called a channel.

In order to discuss the communication process, we need two dynamical systems: An input system (A1,G1) 
and an output system (A2,G2) acting on the Hilbert space H1 and H2 , respectively. Later in paper, we consider 
the input space and the output space to be the same space, that is, H1 = H2 = H . Here, we consider the direct 
effects of local quantum Bernoulli noises and loss to determine the general form of the channel in the commu-
nication process, channels exist during propagation, in addition to the Hilbert space H , we here use two more 
Hilbert spaces h and K in order to describe explicitly some external effects to the input and output states. For 
instance a state in h induces local quantum Bernoulli noises into the channel and a state in K indicates a loss of 
information at the output system.

Let ξ ∈ G(h) be a state describing the LQBNs in the channel. We consider the following maps:

These maps a,π , γ are defined as follows. 

(1) The map a is an amplification from B(H) to B(H⊗K) given by a(A) = A⊗ I for any A ∈ B(H) , I ∈ B(K)

.
(2) The map π is a completely positive map from B(H⊗K) to B(H⊗ h) , π(I) = 1 describes the physical 

mechanism of the channel, I ∈ B(H⊗K).
(3) The map γ is from B(H⊗ h) to B(H) given by γ (Q) = TrhξQ for any Q ∈ B(H⊗ h) , where Trh is a partial 

trace with respect to the Hilbert space h , where ξ be a localization of quantum Bernoulli noises(LQBNs).

Then we define the mapping � from B(H) to B(H) such that

It is easy to show  Ohya7that these maps are completely positive, that is, the mappings γ , π and a are completely 
positive, hence � = γ ◦ π ◦ a is also completely positive.

We next consider the dual maps of a, π and γ . 

(a) The dual map a∗ of a is a map from G(H⊗K) to G(H) such that a∗(θ) = TrKθ for any θ ∈ G(H⊗K).
(b) The dual map π∗ : G(H⊗ h) → G(H⊗K) is given by Trπ∗(σ )W = Trσπ(W) for any σ ∈ G(H⊗ h) and 

any W ∈ B(H⊗K).
(c) The dual map γ ∗ : G(H) → G(H⊗ h) is given by Trγ ∗(ρk)Q = Trρkγ (Q) for any ρk ∈ G(H) and any 

Q ∈ B(H⊗ h) , where ρk is a input state.

It is easily seen that γ ∗ is expressed as γ ∗(ρk) = ρk ⊗ ξ , where ξ be a localization of quantum Bernoulli 
noises(LQBNs).

Therefore, once we know the LQBNs ξ and the mechanism of the transformation π , we can write down a 
channel explicitly such that

or equivalently

for any ρk ∈ G(h).
We now build a more specific channel model for quantum Bernoulli noises processes. A quantum system com-

posed of photons is described by the Hamiltonian H = b∗b+ 1
2 , where b∗ and b are creation and annihilation oper-

ators of a photon, respectively. Here we borrow the Schrodinger equation mentioned by  Ohya8: Hx(q) = Ex(q) , 
the eigenvalue En = n+ 1

2 (n ≥ 0) and the eigenvector xn(q) = (1/(π1/2n!)1/2)Hn × (21/2q)exp(−q2/2) , where 
Hn(q) is the nth Hermite function. Our photon communication process can be considered as follows: when n1 
photons are transmitted from the input system, m1 photons from the noise system add to the signal. Then m2 
photons are lost to the loss system through the channel, and n2 photons are detected in the output system. Simply 
write down the coordinates of the spaces H1 = H2 = H , h , K in this model. {|Z(1)

σ �} and q are the completely 
orthonormal system(CONS) and coordinate of H , respectively; {|Zσ �} and t are the CONS and coordinate of h , 
respectively. Similarly, we have {|Z(2)

σ �} and s.

(2.10)I(ρk;�
∗) = sup{

∑

i

νiS(�
∗Ei��

∗ρk);E = {Ei}},

(3.1)B(H)
a

−→B(H⊗K)
π

−→B(H⊗ h)
γ

−→B(H).

(3.2)� = γ ◦ π ◦ a.

(3.3)�∗ = a∗ ◦ π∗ ◦ γ ∗

(3.4)�∗ρk = TrKπ∗(ρk ⊗ ξ),
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For simplicity, we put m1 = 0 . Let the local quantum Bernoulli noise ξ = |Zσ ��Zσ | ∈ G(h) , where |Zσ � is 
some vector in the local quantum Bernoulli noise system. We define the mapping π∗(•) = Ut(•)U

∗
t  , where 

t ∈ R, Ut = exp(−itH) , H is the Hamiltonian of the system.
Therefore, the channel can be represented as

We want to prove that �∗ is a completely positive mapping, we have only to show the completely positivity of γ ∗ 
and a∗ because π∗ is completely positive.

Before we can prove the positivity of the channel, we need the following lemma.

Lemma 3.1 7 Let (A,G(A)) be an input system and (A,G(A)) be an output system. Take any ϕ,ψ ∈ G(A).

1, �∗ is linear if �∗(�ϕ + (1− �)ψ) = ��∗ϕ + (1− �)�∗ψ holds for any � ∈ [0, 1].

2, �∗ is completely positive (CP) if �∗ is linear and its dual � : A → A satisfies

for any n ∈ N and any {Ai} ⊂ A , {Ai} ⊂ A.

Proposition 3.2 The mapping γ ∗ : ρk → ρk ⊗ ξ have a completely positivity and trace-preserving property.

Proof For any Ai ∈ B(H⊗ h) , Bj ∈ B(H) , where i, j ∈ N , {|Z(1)
σk

�} and {|Zσl �} are the CONS of H and h , respec-
tively. ξ ∈ G(h) , Z(1)

σ ∈ H , any n ∈ N , we have

According to lemma 3.1 and Tr(
∑n

i,j=1 B
∗
i γ (A

∗
i Aj)Bj) = �Z(1)

σ ,
∑n

i,j=1 B
∗
i γ (A

∗
i Aj)BjZ

(1)
σ � , therefore, we have that 

γ ∗ is a completely positivity and trace-preserving property map.   �

Proposition 3.3 The mapping a∗ : θ → TrKθ have a completely positivity and trace-preserving property.

Proof For any Ai ∈ B(H) , Bj ∈ B(H⊗K) , where i, j ∈ N , {|Z(1)
σk

�} and {|Z(2)
σl

�} are the CONS of H and K , respec-
tively. Z(1)

σ ⊗ Z(2)
σ ∈ H⊗K , for any n ∈ N , we have

(3.5)
�∗ρk = a∗ ◦ π∗ ◦ γ ∗ρk

= TrKπ∗(ρk ⊗ ξ)

= TrKUt(ρk ⊗ ξ)U∗
t .

(3.6)
n∑

i,j=1

A∗
i �(A∗

i Aj)Aj ≥ 0

〈
Z(1)
σ ,

n∑

i,j=1

B∗i γ (A
∗
i Aj)BjZ

(1)
σ

〉

=

n∑

i,j=1

〈
BiZ

(1)
σ , trKξA∗

i AjBjZ
(1)
σ

〉

=

n∑

i,j=1

∑

m

〈
BiZ

(1)
σ ⊗ Zσm , (I ⊗ ξ)A∗

i AjBjZ
(1)
σ ⊗ Zσm

〉

=
∑

k,l

n∑

i,j=1

∑

m

〈
BiZ

(1)
σ ⊗ Zσm , (I ⊗ ξ)A∗

i |Z
(1)
σk

⊗ Zσl

〉〈
Z(1)
σk

⊗ Zσl |AjBjZ
(1)
σ ⊗ Zσm

〉

=

n∑

i,j=1

∑

k,l

〈
Z(1)
σk

⊗ Zσl , (BjZ
(1)
σ BiZ

(1)
σ ⊗ I)(I ⊗ ξ)A∗

i Z
(1)
σk

⊗ Zσl

〉

=
∑

k,l

n∑

i,j=1

〈
Z(1)
σk

⊗ Zσl ,Aj(Bj ⊗ I)(|Z(1)
σ

〉〈
Z(1)
σ | ⊗ I)(B∗i ⊗ I)(I ⊗ ξ

1
2 )(I ⊗ ξ

1
2 )× A∗

i Z
(1)
σk

⊗ Zσl

〉

=
∑

k,l

n∑

j=1

〈
Z(1)
σk

⊗ Zσl ,Aj(I ⊗ ξ
1
2 )(Bj ⊗ I)Z(1)

σ ⊗ Zσl

〉
×

n∑

i=1

〈
Z
(1)
σk ⊗ Zσl ,Ai(I ⊗ ξ

1
2 )(Bi ⊗ I)Z

(1)
σ ⊗ Zσl

〉

=
∑

k,l

∣∣∣∣∣∣

n∑

j=1

〈
Z(1)
σk

⊗ Zσl ,Aj(I ⊗ ξ
1
2 )(Bj ⊗ I)Z(1)

σ ⊗ Zσl

〉
∣∣∣∣∣∣

2

≥ 0.
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For the same reason as proposition 3.2, we have that a∗ is a completely positivity and trace-preserving property 
map.   �

Since the composition of completely positive maps is completely positive, from propositions 3.2 and 3.3, we 
have the following corollary similar to Choi-Kraus  theorem9.

Corollary 3.4 The mapping � is completely positivity and trace-preserving, therefore, �∗ is a channel.

Of course, in addition to the complete positivity and trace-preserving in this section, channels also have 
other properties, such as ergodicity, disorder, determinism and so on. These properties, which we will discuss 
in a later article, are not explained here.

Channel measurement of local quantum mutual entropy
In this section, we have made a simple channel measurement, that is, the amount of correct information transmit-
ted through the channel when the noise is quantum Bernoulli noise, which we here call local quantum mutual 
entropy.

Because of conservation of energy (photon number), then a relation n1 + n2 = m1 +m2 should hold. Accord-
ing to  Ohya7, we also apply following linear transformation among the coordinates q, t, s of the input; noise; 
output and loss systems, respectively:

where α2 + β2 = 1
For simplicity, we put m1 = 0 . By using this linear transformation and we define the mapping π∗• = Ut(•)U

∗
t  , 

hence the local quantum noise source is described by a state ξ = |Zσ ��Zσ | ∈ G(h) , where |Zσ � is some vector in 
the local quantum Bernoulli noise system for an input state En = |Z(1)

σn
��Z(1)

σn
| such that

where cnj =
√

n!/j!(n− j)!(−β)n−jαj , we have

〈
Z(1)
σ ⊗ Z(2)

σ ,

n∑

i,j=1

B∗i a(A
∗
i Aj)BjZ

(1)
σ ⊗ Z(2)

σ

〉

=

n∑

i,j=1

〈
BiZ

(1)
σ ⊗ Z(2)

σ , (A∗
i Aj ⊗ I)BjZ

(1)
σ ⊗ Z(2)

σ

〉

=

n∑

i,j=1

〈
BiZ

(1)
σ ⊗ Z(2)

σ , (A∗
i ⊗ I)(Aj ⊗ I)BjZ

(1)
σ ⊗ Z(2)

σ

〉

=

〈
n∑

i=1

(Ai ⊗ I)BiZ
(1)
σ ⊗ Z(2)

σ ,

n∑

j=1

(Aj ⊗ I)BjZ
(1)
σ ⊗ Z(2)

σ

〉

=
∑

k,l

〈
n∑

i=1

(Ai ⊗ I)BiZ
(1)
σ ⊗ Z(2)

σ ,

n∑

j=1

(Aj ⊗ I)BjZ
(1)
σ ⊗ Z(2)

σ

〉∣∣∣Z(1)
σk

⊗ Z(2)
σl

�Z(1)
σk

⊗ Z(2)
σl

∣∣∣

=
∑

k,l

〈
n∑

i=1

(Ai ⊗ I)BiZ
(1)
σ ⊗ Z(2)

σ ,Z(1)
σk

⊗ Z(2)
σl

〉
×

〈
Z(1)
σk

⊗ Z(2)
σl

,

n∑

j=1

(Aj ⊗ I)BjZ
(1)
σ ⊗ Z(2)

σ

〉

=
∑

k,l

〈
n∑

i=1

(Ai ⊗ I)BiZ
(1)
σ ⊗ Z(2)

σ ,Z(1)
σk

⊗ Z(2)
σl

〉
×

〈
n∑

j=1

(Aj ⊗ I)BjZ
(1)
σ ⊗ Z

(2)
σ ,Z

(1)
σk ⊗ Z

(2)
σl

〉

=
∑

k,l

∣∣∣∣∣

〈
n∑

i=1

(Ai ⊗ I)BiZ
(1)
σ ⊗ Z(2)

σ ,Z(1)
σk

⊗ Z(2)
σl

�

〉∣∣∣∣∣

2

≥ 0.

(4.1)q =
βt

1− α
, s = −βq+ αt, α �= 1

(4.2)

Ut(Z
(1)
σ ⊗ Z(1)

σ )(q, s) = Z(1)
σ ⊗ Z(1)

σ (αq− βs,βq+ αs) (= �n(Zσ1 ,Zσ2))

=

n∑

j=0

cnj Z
(1)
σj

⊗ Z(2)
σn−j

(q, s),

(4.3)�∗En = trKUt(En⊗ξ )U
∗
t = trK|�n���n| =

n∑

j=0

|cnj |
2|Z(2)

σj
��Z(2)

σj
|.
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Therefore for an input state ρk =
∑N

m=0 �mEm(0 ≤ N ≤ ∞) with 
∑

m �m = 1 and �p  = �j(p  = j) , where 
Em = |Z(1)

σm
��Z(1)

σm
| . The compound state and the trivial compound state introduced in preliminary knowledge 

are given by

where θj = |Z(2)
σj

��Z(2)
σj

| ∈ G(H) , E stands for a Schatten decomposition {Ei} of ρk and �i be a eigenvalue of ρk.
According to definition 2.4 and lemma 2.5, we can calculate the local quantum mutual entropy as follows:

In the same way

Finally, applying the relation S(�kE��k0) = Tr(�kE log�kE)− Tr(�kElog�k0) = �iνiS(�
∗Ei��

∗ρk) and 
lemma 2.5, we obtain the local quantum mutual entropy

Summary
In this paper, we give the mathematical structure of the communication channel when the noise is local quantum 
Bernoulli noises, and prove that the channel is completely positivity and trace-preserving property map. Local 
quantum mutual entropy represents the maximum amount of correct information from the input system to the 
output system. However, the mutual entropy is a measure for not only information transmission but also descrip-
tion of state change, since this mutual entropy can be applied to several aspects of quantum dynamics, it can also 
be applied to quantum computers or some topics in computers to look at the ability to transmit information.

Applying the Schrodinger equation, we calculate that the local quantum mutual entropy is ∑
j,n �n|c

n
j |

2log(
∑

n �n|c
n
j |

2/|cnj |
2) , that is, the maximum amount of correct information transmitted when the 

noise is local quantum Bernoulli noise. Applications of the mutual entropy can be found in various  fields8,10–16. 
The mathematical discussion of a channel was given  in8,17,18, and details of the noisy channel were given  in16.

Data availability
Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

(4.4)�kE =
∑

m

�mEm ⊗�∗Em =
∑

m

�mEm ⊗�∗Em =

N∑

m=0

m∑

j=0

�m|c
m
j |

2Em ⊗ θj ,

(4.5)�k0 =ρk ⊗�∗ρk =
∑

m

�mEm ⊗
∑

n

�n�
∗En =

∑

n,m

n∑

j=1

�n�m|c
m
j |

2Em ⊗ θj ,

Tr
(
�kE log�kE

)

=
∑

n,m

∑

n′ ,m′

〈
Zσn ⊗ Zσm ,�kE log�kEZσn′ ⊗ Zσm′

〉
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∑
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p∑
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�p|c
p
j |
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j |
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〉

=
∑
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∑
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∑
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�p|c
p
j |
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〈
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i=0
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j=0

�i|c
i
j |
2|Ei ⊗ θjZσn′ ⊗ Zσm′

〉

=
∑

n,m

∑

n′ ,m′

∑
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�p|c
p
j |
2
〈
Zσn ,EpZσn′ ��Zσm , θjZσm′

〉
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N∑
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i
j |
2 ×

〈
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〉
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n
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∑
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�n|c
n
j |
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(
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n
j |
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〈
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|
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j |
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n
j |

2log(
∑

n

�n|c
n
j |
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