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Modelling monthly pan 
evaporation utilising Random 
Forest and deep learning 
algorithms
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Evaporation is the primary aspect causing water loss in the hydrological cycle; therefore, water loss 
must be precisely measured. Evaporation is an intricate nonlinear process occurring as a result of 
several climatic aspects. The purpose of this research is to assess the feasibility of using Random 
Forest (RF) and two deep learning techniques, namely convolutional neural network (CNN), and 
deep neural network (DNN) to accurately estimate monthly pan evaporation rates. Month-based 
weather data gathered from four Malaysian weather stations during the 2000–2019 timeframe was 
used to train and evaluate the models. Several input attributes (predictor variables) were investigated 
to select the most suitable variables for machine learning models. Every approach was tested with 
several models, each with a different set of model aspects and input parameter combinations. The 
formulated ML approaches were benchmarked against two commonly used empirical methods: 
Stephens & Stewart and Thornthwaite. Model outcomes were assessed using standard statistical 
measures to determine their effectiveness in predicting evaporation. The results indicated that 
the three ML models developed in the study performed better than empirical models and could 
significantly improve the precision of monthly Ep estimates even with the identical input sets. The 
performance assessment metrics also show that the formulated CNN approach was acceptable for 
modelling monthly water loss due to evaporation with a higher degree of accuracy than other ML 
frameworks explored in this study. In addition, the CNN framework outperformed other AI techniques 
evaluated for the same areas using identical data inputs. The investigation’s findings in relation to the 
various performance criteria show that the proposed CNN model is capable of capturing the highly 
non-linearity of evaporation and could be regarded as an effective tool to predict evaporation.

Abbreviations
AI  Artificial intelligence
ANN  Artificial neural networks
CNN  Convolutional neural network
CV  Cross-validation
DL  Deep learning
DNN  Deep neural network
Ep  Pan evaporation
MAE  Mean absolute error
ML  Machine learning
MSE  Mean square error
NSE  Nash–Sutcliffe efficiency
PCC  Pearson correlation coefficient
R2  Coefficient of determination
RAE  Relative absolute error
RF  Random Forest
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RH  Relative humidity
RMSE  Root mean square error
Rs  Solar radiation
SD  Standard deviation
SDA  Standard deviation actual
SDP  Standard deviation predicted
Sw  Wind speed
Ta  Mean air temperature
Tmax  Maximum air temperature
Tmin  Minimum air temperature

Evaporation is among the vital aspects that have a pivotal role in regulating the hydrological cycle; forecasting 
evaporation loss is critically important for water management, irrigation planning, and agricultural  models1–4. 
Increased evaporation rate is a significant global warming  indicator5. Therefore, recording evaporation patterns 
is critical for monitoring and handling water  resources6. Evaporation causes significant water loss, impacting 
water levels in lakes and reservoirs, affecting the water budget. Therefore, before designing irrigation systems and 
implementing water resource strategies, evaporation losses must be  estimated7. Reliable evaporation forecasting 
is critical for hydrological and water resources, enhancement of water use, and water balance. Vapour pressure 
difference and heat availability affect evaporation rates; these determining factors are affected by meteorological 
aspects, such as solar radiation, humidity levels, wind speed, air temperature, and air  pressure8–10. Such factors 
are also deeply associated with other characteristics like geographical location, seasonal influence, climate type, 
and time of day. Hence, evaporation is a complex phenomenon with extremely non-linear characteristics.

Evaporation estimation is conducted using indirect and direct techniques, including energy balance, water 
balance, mass transfer, Penman method, and evaporation  pan11. The evaporation pan is an extensively used 
apparatus because it is inexpensive and easy to  use12. Nevertheless, this is an energy-intensive process affected 
by numerous meteorological aspects like wind speed and vapour pressure. Moreover, pan evaporimeters cannot 
be deployed at every required location, specifically those where instruments cannot be installed or  managed13. 
Indirect techniques comprise evaporation determination using meteorological information and physical concepts 
like volume and energy conservation that require precise adjustment based on climate. Accurately determining 
such meteorological variables is challenging and requires advanced instruments and skilled  labour14. However, it 
is known that such techniques cannot offer reliable evaporation data because of intrinsic complications and the 
non-linear nature of the evaporation process. Considering the inadequate performance levels, such techniques 
have prompted scientists to develop alternative methods for determining evaporation  levels15.

Literature review. Recently, AI techniques like ANN, M5 model tree (MT), support vector machines 
(SVM), adaptive neuro-fuzzy inference system (ANFIS), extreme learning machine (ELM), and gene expres-
sion programming (GEP) have been used to handle different water engineering and environmental  issues16–21. 
Such AI techniques are simpler, more robust and can model complex non-linear processes without signifi-
cant  problems13,22,23. Extensive research has been conducted about using AI to forecast different hydrological 
 parameters24. Researchers assert that ANN frameworks provide better forecasts than conventional methods. For 
example, Castellano-Méndez et al.25 contrasted the Box & Jenkins approach with ANN; the latter provides better 
runoff simulation performance in terms of precision.

Concerning evaporation forecasting and considering the challenges of practical and conceptual measurement 
techniques discussed above, several works have been performed using ML approaches with several optimisation 
works for forecasting pan  evaporation26,27. They offered specific distinct machine learning approaches for the 
problem using different input sets concerning existing climatic attributes like wind speed, temperature, humidity, 
vapour pressure, solar radiation, and  sunshine28,29. Keskin and  Terzi30 used ANN and Penman models to develop 
evaporation models. They employed several meteorological aspects as ANN inputs. These researchers indicated 
that ANNs were superior to the Penman approach for evaporation forecasting. Kişi 31 formulated evolutionary 
neural networks to estimate pan evaporation for monthly timescales. The results indicated that the formulated 
models provided better accuracy than empirical methods. Deo et al.32 researched monthly water loss due to 
evaporation; they used three machine learning techniques: Relevance Vector Machine (RVM), Extreme Learning 
Machine (ELM), and Multivariate Adaptive Regression Spline (MARS). Meteorological aspects were employed 
as independent variables, and RVM was found to be the most effective approach among these. Sudheer et al. 22 
formulated an ANN approach for modelling daily evaporation and mentioned that ANN frameworks could be 
effectively employed to forecast evaporation using climate data. Falamarzi et al. 33 evaluated ANN and wavelet 
ANN use to forecast daily evaporation. They employed temperature and wind speed data as model inputs. The 
results indicated that the two frameworks estimated evaporation precisely. Wang et al. 34 estimated daily evapo-
ration using multivariate adaptive regression spline (MARS), least-square support vector regression (LSSVR), 
fuzzy genetic (FG), multiple linear regression (MLR), and M5 model tree (M5Tree) for eight locations near the 
Dongting Lake basin in China. The outcomes indicated that FG and LSSVR offer better performance and estimate 
evaporation with high accuracy. Malik et al. 35 estimated monthly Ep in the central Himalayan region in India 
using radial basis neural network (RBNN), multilayers perceptron neural network (MLPNN), self-organising 
map neural network (SOMNN), and co-active neuro-fuzzy inference system (CANFIS). The appropriate input set 
was selected using the Gamma test. The researchers found that the AI-powered technique could be employed for 
precise evaporation prediction. Tezel and Buyukyildiz 36 studied the applicability of MLP, RBFN, and e-support 
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vector regression (SVR) using numerous training methods. When scaled conjugate gradient (SCG) learning was 
used for ANN and SVR approaches, performance was higher than empirical approaches.

Tree-based Machine learning approaches like RF have been used extensively for water and other environ-
mental modelling during the past decade to estimate aspects like groundwater levels, streamflow, solar radiation, 
soil moisture, evaporation (e.g., pan and potential evapotranspiration), and suspended sediment. Such methods 
are relatively straightforward but potent approaches for pattern or trend detection 37,38; moreover, they offer 
more computationally efficient for relatively large datasets than other machine learning  techniques39. Francke 
et al. 40 employed quantile regression forests (QRF) to estimate suspended sediment concentration for four sub-
catchment areas in Spain. QRF results were contrasted against RF, generalised linear model, and the traditional 
sediment rating curve. The researchers found that QRF and RF are extremely flexible techniques that successfully 
modelled sediment dynamics. Feng et al. 41 employed the RF framework to predict daily evaporation in southwest 
China and contrasted it against the GRNN approach. The outcomes indicated that GRNN and RF approach 
provided acceptable results concerning daily evaporation; RF was marginally superior to GRNN. Recently, DL 
methods have been used in the machine learning domain and demonstrated success for data evaluation for natu-
ral processes, attracting attention concerning time series forecasts 42. Deep learning is a recent development in 
the ML paradigm that evolved from near-human to super-human performance for several engineering scenarios. 
In this class, forecasts are impacted by prior system characteristics; therefore, they may be used for regression 
and classification problems. Evaporation is intrinsically complex, dynamic, and non-linear; thus, the adaptive 
evaporation estimation framework must process nonlinear properties. Of the many ANN models specified in the 
literature, DL can process higher-order non-linear characteristics with better performance concerning time series 
data and its intrinsic properties for extended durations to enhance forecasting  performance43. Convolutional 
Neural Network (CNN) has garnered extensive attention in the deep learning technique domain due to its use 
in several domains like object  recognition44, time series  categorisation45, audio signal  classification46, and robotic 
visual and haptic data  classification47, and weather  forecasting48. In addition, in the noisy time series context, 
convolutional networks also reduce data noise and identify useful patterns by building hierarchical  structures49. 
It must be noted that several academicians have used CNN for numerous time series prediction fields like solar 
energy forecast, electrical load estimation, and other scenarios.

The literature review confirmed that using ANN with appropriate learning methods can suitably model 
evaporation for numerous locations with superior results than relatively complex conventional  approaches50. 
However, identifying and devising efficacious, reliable, and generalised evaporation estimation techniques is still 
challenging for researchers because of the intricate and non-linear nature of the evaporation process. Among 
the diverse ANN methods used in the recent past, the cutting-edge DL approach offers immense potential for 
prediction problems and has outperformed more complex methods. Because prediction is a nonlinear task, the 
adaptive framework for prediction ought to be nonlinear as well. With the success of DL, the CNN has become 
extremely advantageous for extracting characteristics from time-series data signals and thus for classification 
and prediction. The most important aspect of this approach is that it identifies implied recurrent sequences from 
the series. Moreover, such networks automatically use data to identify features without additional training or 
prior information. The CNN is powerful in capturing high nonlinear features among the various DL structures 
reported in the literature. Hence, in the current study, CNN was selected for the monthly pan evaporation 
forecast.

Objectives. This study is intended to assess the predictability and applicability of the CNN model in accu-
rately estimating monthly Ep rates in four Malaysian regions using weather data for the period 2000–2019. The 
performance of the CNN model is compared with that of the RF as a powerful tree-based technique and with 
the DNN model. The models’ prediction accuracy is explored under various input combination scenarios. The 
proposed ML frameworks are contrasted against two widely used empirical methods, namely Thornthwaite and 
Stephens & Stewart, under identical input combinations. The model’s efficiency values are assessed and analysed 
using standard statistical performance metrics to determine their use in predicting evaporation levels. Further-
more, sufficient analysis would be performed in this study to demonstrate the reliability of the CNN model, with 
the goal of developing a dependable model for predicting evaporation, which is essential, specifically in water 
resource management and agricultural planning.

Study area and data
Study area. Malaysia is in the tropical region and receives ample rainfall. Nevertheless, development has 
spiked water requirements. Additionally, climate change has extended the dry season and increased the evapo-
ration rate from reservoirs. Many consider drought a very intricate but poorly understood natural calamity, 
impacting people more than other  hazards51; hence, predicting evaporation is vital. Therefore, this research, 
which aims to develop accurate models for predicting Ep, is extremely important, particularly in water resource 
management and agriculture. The climate monthly data from four meteorological stations situated in Bayan 
Lepas (longitude 100° 16′ E, latitude 5° 18′ N, elevation 2.5 m), Ipoh (longitude 101° 06′ E, latitude 4° 34′ N, 
elevation 40.1 m), KLIA Sepang (longitude 101° 42′ E, latitude 2° 44′ N, elevation 16.1 m), and Kuantan (longi-
tude 103° 13′ E, latitude 3° 46′ N, elevation 15.2 m), managed by the MMD (Malaysian Meteorological Depart-
ment), are utilised to calibrate and corroborate the recommended predictive models. Figure 1 depicts Malaysia’s 
map where the four stations are situated; Google Maps were used to create this map depicting the studied region.

Data description. The propositioned predictive models were built using seven meteorological indicators 
that include  Tmax,  Tmin,  Ta, RH,  Sw,  Rs, and  Ep. The data set consisted 19 years of day-to-day reports from 2000 to 
2019. The statistical parameters recorded every month pertaining to the quantified meteorological data for the 
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four above-mentioned stations are listed in Table 1. Moreover, Fig. 2 illustrates the monthly variation of every 
weather parameter for the duration 2000 to 2019.

In the table, the Xmin, Xmax, Xmean, Sx, Cx, and Cv represent the minimum, maximum, mean, standard deviation, 
skewness, and coefficient of variation of the weather parameters, respectively. It is apparent from this table data 
that the Ep minimum value was measured at Kuantan station, whereas the maximum value was recorded in the 
Bayan Lepas station. This might be due to the rate of relative humidity, which is inversely associated to evapora-
tion; Kuantan station has the highest relative humidity rate, and Bayan Lepas station represents the lowest rate. 
Conversely, the coefficient of variation and maximum skewness of Ep were also measured in the Bayan Lepas 
station, while the minimum value was recorded in Ipoh. A positive value of skewness implies that the informa-
tion is not symmetric and does not adhere to the normal distribution.

Partitioning of data and input selection. Selecting the suitable predictors is one of the most crucial 
steps in developing a robust predictive  model52; different input combinations of meteorological parameters were 
examined in this study to successfully plot input–output model and improve the predictive ability of ML models. 
This will enable a better practical comprehension of how every input parameter affects the evaporation estimate 
in that  region53. There are certain conscious choices for choosing these combinations. First, for the purpose of 
comparison, input variables to the models of machine learning (RF, DNN, and CNN) were chosen according 
to the required meteorological aspects in the two proposed empirical models (Thornthwaite and Stephens & 
Stewart). Second, the input variables (predictors) were chosen with reference to the PCC 54. The Pearson correla-
tion method is the test statistics that quantifies the statistical correlation, or association, among two continuous 
parameters. It is identified as the best technique of measuring the correlation between parameters of interest 
since it is based on the covariance method 55. It gives data about the association or correlation magnitude and the 

Figure 1.  Location of case study [Imagery ©2021 TerraMetrics, Map data ©2021 Google].



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13132  | https://doi.org/10.1038/s41598-022-17263-3

www.nature.com/scientificreports/

direction of the correlation. The two parameters can be negatively or positively associated and there is no rela-
tionship among the two parameters if the PCC is 0. To show the applicable features of the environmental param-
eters to estimate monthly evaporation, the PCC interpretations and ranges are used as displayed in Table 2. 
The PCC were employed to find the meteorological parameters showing the greatest effect on the estimates of 
evaporation, and the results are shown in Table 3.

The outcomes are listed in Table 3, indicating that the  Tmax,  Tmin, RH,  Sw,  Rs were all related to a certain extent 
with Ep and therefore can play a crucial role in predicting the evaporation parameter for the data gathered at 
all stations. Particularly, at all stations, the  Tmax and RH parameters have the strongest relationship with Ep. 
Thus, the  Tmax and RH will be employed in all input combinations in order to increase the Ep estimation accu-
racy. Earlier studies also suggested that  Tmax,  Tmin, RH,  Sw, and  Rs are some of the most significant predictors of 
evaporation 56,57.

The current research has also evaluated the effects of the input parameter Ep in improving the prediction 
accuracy for evaporation. In this regard, the records of input data were chosen with reference to how the pre-
vious records were associated with the estimated output value. As illustrated in Fig. 3, at each of the stations, 
the autocorrelation examination for the recorded time series on monthly basis for the Ep rate showed that the 
correlation declined significantly once it went beyond the previous second lag-time record. This shows that the 
previous record of second evaporation rate affected the evaporation rate at any time. Therefore, based on the past 
pan evaporation rate records with the advantage of the correlation analysis, the highest lag times of two previous 
records were employed as the model input when building the proposed models on monthly basis.

Accordingly, in the current study, nine different input scenarios were considered for the models (Table 4). 
Each climatic data set was divided into two sets, in which 80% was employed for model calibration (training) 
while 20% was used for validation (testing). Thus, the dataset was partitioned by taking the initial years for 
training and the remaining years for testing. However, the evaluation of ML approaches is extremely sensi-
tive to the adopted data partitioning scheme. Therefore, the k-fold CV technique would be used. Despite the 
high computational cost associated in the CV method, it is regarded as one of the reliable prevention methods 
against  overfitting58. The current study intends to perform a comprehensive assessment for testing AI ability 
and using practical models for predicting Ep levels on a monthly basis in the Bayan Lepas, Ipoh, KLIA Sepang, 
and Kuantan regions.

Table 1.  Various meteorological variables and their descriptive statistics.

Station Dataset Unit Xmean Sx Cv Cx Xmin Xmax

Bayan Lepas

Tmax °C 31.89 0.75 2.36 0.52 30.15 34.78

Tmin °C 24.94 0.51 2.07 0.47 23.73 26.90

RH % 78.74 4.16 5.29  − 1.05 64.66 85.92

Sw m/s 1.93 0.34 17.99 0.86 1.20 3.25

Rs MJ  m−2 18.32 2.14 11.69 1.06 12.72 28.49

Ep mm 3.89 0.66 17.11 1.17 2.70 6.27

Ipoh

Tmax °C 32.99 0.84 2.55 0.35 30.59 35.80

Tmin °C 23.93 0.53 2.24  − 0.03 22.40 25.40

RH % 80.54 3.92 4.87  − 0.53 68.33 88.71

Sw m/s 1.52 0.32 21.18  − 1.28 0.62 2.15

Rs MJ  m−2 17.79 1.49 8.40  − 0.19 13.31 21.72

Ep mm 4.29 0.49 11.47 0.007 3.21 5.69

KLIA Sepang

Tmax °C 32.20 0.81 2.54 0.63 30.29 34.77

Tmin °C 24.42 0.49 2.02 0.10 23.24 25.69

RH % 79.62 4.13 5.19  − 0.82 63.51 87.51

Sw m/s 1.87 0.27 14.62 0.45 1.15 2.81

Rs MJ  m−2 17.55 2.38 13.59 0.59 11.12 24.76

Ep mm 4.17 0.48 11.66 1.13 3.20 6.12

Kuantan

Tmax °C 32.17 1.24 3.88  − 0.63 28.52 34.89

Tmin °C 23.71 0.64 2.70  − 0.64 21.14 25.53

RH % 84.29 3.01 3.58 0.33 77.33 92.39

Sw m/s 1.64 0.30 18.49 0.64 0.91 2.65

Rs MJ  m−2 17.26 2.16 12.56  − 0.47 11.73 22.39

Ep mm 3.79 0.53 13.64  − 0.26 2.69 5.13



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13132  | https://doi.org/10.1038/s41598-022-17263-3

www.nature.com/scientificreports/

Figure 2.  Monthly variations of Ep and related meteorological parameters used in this study.

Table 2.  Ranges and analysis of the Pearson correlation coefficient (PCC).

PCC ranges Analysis

0.00 < 0.09 Insignificant

0.10 < 0.19 Weak

0.20 < 0.39 Moderate

0.40 < 0.59 Moderately strong

0.60 < 0.79 Strong

0.80 < 1.00 Extremely strong
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Methodology
Empirical models used for monthly Ep prediction. In this research, Stephens & Stewart and Thornth-
waite were selected for comparison as the two empirical techniques, as they are regarded to be widely employed 
 methods59, taking into account the number of meteorological inputs required as well as the availability of the 
data.

Stephens & Stewart. This technique is also commonly referred as the ‘Fractional Evaporation-Equivalent of 
Solar Energy’ approach by Stephens &  Stewart60. As presented in Eq.  (1), Stephens & Stewart suggested that 
by employing measured radiation Qs, better results were achieved when there is availability of data and it also 
allows correlating with temperature:

where Ta , Ep , and Qs represent mean air temperature (Fahrenheit), evaporation (mm), and solar radiation (cal 
 cm−2  day−1). Stephens & Stewart also recommended carrying out additional research in other regions to set such 
relationships under different weather conditions.

Thornthwaite. Thornthwaite61 employed practical data to identify the relationship that exists between mean 
monthly temperature (Ta) and probable evaporation (Ep), and then set standardisation to a 30-day month with 
12 h of sunlight each day. The potential evaporation (Ep) is calculated by employing Thornthwaite technique; the 
following expression is employed to calculate the Monthly Thornthwaite Heat Index ( I):

where Ta represent mean monthly temperature (°C).
The Annual heat index (I) is calculated as the sum of the Monthly Heat Indices (i):

(1)Ep = (0.0082Ta− 0.19)

(
Qs

1500

)
× 25.4,

(2)i =

(
Ta

5

)1.514

,

Table 3.  Pearson correlation coefficient values between the meteorological variables measured at Bayan Lepas, 
Ipoh, KLIA Sepang, and Kuantan stations.

Tmax Tmin RH Sw Rs Ep 
Tmax 1 
Tmin 0.713293 1 
RH -0.67121 -0.2172 1 
Sw 0.383116 0.103138 -0.75333 1 
Rs 0.563469 0.196108 -0.54899 0.358648 1 
Ep 0.714932 0.413693 -0.78168 0.682437 0.704246 1 

Tmax Tmin RH Sw Rs Ep 
Tmax 1 
Tmin 0.598635 1 
RH -0.64359 -0.29279 1    
Sw 0.027185 -0.15832 -0.40896 1 
Rs 0.74009 0.291002 -0.60416 0.31927 1 
Ep 0.762407 0.499372 -0.88127 -0.51225 0.643995 1 

Tmax Tmin RH Sw Rs Ep 
Tmax 1 
Tmin 0.655777 1 
RH -0.62452 -0.36929 1 
Sw 0.278195 0.15671 -0.44816 1 
Rs 0.500622 0.402229 -0.4582 0.391104 1 
Ep 0.688703 0.410466 -0.70967 0.502534 0.665399 1 

Tmax Tmin RH Sw Rs Ep 
Tmax 1 
Tmin 0.707286 1     
RH -0.56873 -0.1759 1 
Sw -0.43197 -0.49138 -0.14552 1 
Rs 0.701106 0.320207 -0.6274 0.041572 1 
Ep 0.702119 0.415635 -0.79619 -0.68268 0.67207 1 
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The potential evaporation Ep for each month is calculated using the following equation:

(3)I =

12∑

i=1

i.

(4)Ep = 16 ·

(
10 · Ta

I

)a

,

Figure 3.  Partial autocorrelation for Bayan Lepas, Ipoh, KLIA Sepang and Kuantan stations (Monthly).

Table 4.  Input combinations of meteorological variables used for ML models.

No.

Model

Input combinationsRF DNN CNN

1 RF-1 DNN-1 CNN-1 Ta

2 RF-2 DNN-2 CNN-2 Ta,  RS

3 RF-3 DNN-3 CNN-3 RH

4 RF-4 DNN-4 CNN-4 RH,  Tmax

5 RF-5 DNN-5 CNN-5 RH,  Tmax,  Tmin

6 RF-6 DNN-6 CNN-6 RH,  Tmax,  Tmin,  Sw

7 RF-7 DNN-7 CNN-7 RH,  Tmax,  Tmin,  Rs

8 RF-8 DNN-8 CNN-8 RH,  Tmax,  Tmin,  Rs,  Sw

9 RF-9 DNN-9 CNN-9 RH,  Tmax,  Tmin,  Rs,  Sw, Ep
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where a is:

Ep for a given month is given by the expression:

N and d denote the number of theoretical monthly sunshine hours and days in the month, respectively.

ML models used for monthly Ep prediction. Three ML frameworks were included in the current study 
to estimate evaporation, i.e., RF, DNN, and CNN. The TensorFlow framework geared with an NVIDIA GeForce 
GTX 1080 Ti GPU was employed to conduct training and testing of the machine learning models.

Random Forest (RF). The Random Forest algorithm is an effective tree-based ensemble learning algorithm, 
which is known for its excellent performance. It has a broad range of applications, including regression, classifi-
cation as well as unsupervised  learning62. The RFs model was put forward by  Breiman63, which employed Brei-
man’s ‘bagging’ idea to ensemble a set of decision trees that possess controlled variation. The data set excluded 
in the development of the model signified as out-of-bag (OOB) samples is used to assess the general problems 
(Fig.  4). This also offers a quantitative measurement pertaining to contribution of each input auxiliary data 
towards the prediction step, referred as RF variable  importance64. The functioning of Random Forest algorithm 
in general follows these steps: (i) collect and then re-sample the original training data several times; (ii) select 
a random set of features for every re-sampling step; (iii) estimate a decision tree based on a re-sample and a 
random set of features; (iv) to obtain a single decision tree, a set of estimated decision trees is gathered. It can be 
noted that RF is rather insensitive towards noise as well as overtraining, It has been broadly employed to solve 
complicated as well as non-linear hydrological engineering issues 65,66. Additional details about the random for-
est model theories can be noted in 63.

In this study, different hyperparameters were employed in RF in order to determine the best ones that can 
achieve the highest accuracy with regards to prediction, such as:

(5)a =
(
675× 10

−9
× I3

)
−

(
771× 10

−7
× I3

)
−

(
1792× 10

−5
× I

)
+ 0.49239.

(6)Ep = EpObtained ·
N

12
·
d

30
(mm).

Figure 4.  General architecture of the RFs model.
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1. The total number of trees needed to generate the forest (Ntree) This parameter is regarded to be a determinant 
factor when it comes to conducting predictions with RF.

2. The tree’s maximum depth With regards to Random Forest, the maximum depth of a tree refers to the longest 
path between the leaf node and the root node.

3. To identify the best split, the following features need to be kept in mind:

• max_features {“auto”, “sqrt”, “log2”}.
• If “auto”, then max_features = n_features.
• If “sqrt”, then max_features = sqrt (n_features).
• If “log2”, then max_features = log2 (n_features).

Deep neural network (DNN). In the deep learning field, DNN are regarded to be a key  technique42. The fun-
damental framework has been built by considering the brain’s functioning and biological structure to enable 
machines to achieve intelligence that is more human-like. The basic version pertaining to DNN represents a 
hierarchical collection of neurons that transmit messages to other neurons as per the input, thus resulting in 
the development of a complex network learning based on the feedback mechanism. Figure 5 shows the typical 
structure pertaining to DNN, which includes one input layer, one output layer and numerous hidden layers. As 
shown in Fig. 5, the balls denote the neurons, wherein each link that exists between neurons is represented by 
a cause-effect chain that can be trained and learned. The layers remain fully connected, in which any particular 
neuron in one-layer stays connected to each of the neuron in the next layer. The entire DNN model is made up 
of a linear function outlined in Eq. (7) as well as an activation function as shown below:

where xi represents the input value pertaining to each neuron; wi denotes the coefficient pertaining to linear 
relationship and bi defines the bias. Presuming there are L hidden layers with regards to the DNN, the output 
value calculation can be represented as follows:

where L denotes the Lth layer; x signifies the matrix of input variables; b and W indicate high dimensional matrix 
and f (x) indicates the introduced activation function to boost the nonlinearity pertaining to the neural network 
in order to approximate any nonlinear function with regards to numerous nonlinear models. Amongst all of 
these activation functions, the rectified linear unit (ReLU) activation function, i.e. ReLU(x) = max(x , 0), has now 
become the most popular activation functions employed in the deep learning literature as well as applications 67.

Determination of the values of W and b is determined automatically by taking into account the minimum 
value pertaining to the loss function in the training process. The difference that exists between the actual and 
predicted values is determined by employing the loss function. The model’s robustness gets better when there is 
a smaller value of loss function. Finally, the output layer is regarded to be the final layer of the network. In this 
research work, testing of different hyperparameters is done to choose the best architecture that can offer the 
highest evaluation metrics that will help determine the DNN’s optimal structure. The hyperparameters include: 
(1) The total number of fully connected layers, (2) kinds of activation functions that exist amongst layers, (3) 
percentage of dropout as well as number of dropout layers, (4) loss function, (5) batch size, (6) optimiser, (7) 
number of epochs and (8) Learning rate. The put forward DNN model’s best architecture with regards to predic-
tion of evaporation includes the following layers:

(1) Fully connected layers with 64 nodes and ReLU activation function.
(2) Dropout with 0.1%.
(3) Fully connected layers with 128 nodes and ReLU activation function.
(4) Dropout with 0.1%.
(5) Fully connected layers with 1 node and Linear activation function.

The final hyperparameters are:

1. The learning rate: 0.001.

(7)a =

∑
wixi + bi ,
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. . .

(
h2
(
a2
(
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))))))]
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+ b,

Figure 5.  The basic structure of DNN.
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2. Loss Function: Mean Square Error (MSE).
3. Optimizer: ADAM.
4. Epochs: 500.
5. Batch size: 8.

Convolutional neural network (CNN). CNN is a renowned and extensively utilised deep learning structure. 
First recommended by LeCun et al. 68, CNNs are still a broadly deployed model for image processing and exami-
nation due to their capability to mine and decompose features and secure spatial correlations between data in 
one or two  dimensions69. Convolutional neural network usually pertains to a 2-dimensional CNN, which is 
typically utilised for image classification. There are other kinds of CNNs like 1-dimensional (1D-CNN) and 
3-dimensional (3D-CNN) which are also utilised in real-life engineering applications. Notably, all CNNs possess 
the same attributes and follow the same methodology. However, the key dissimilarity is the input data dimen-
sionality and the way the filter (feature detector) moves over the data. In this work, we utilised 1D-CNN for 
pan evaporation estimation because of its advanced performance and minimal computational intricacy. CNNs 
comprises two key  parts70: the first comprises convolutional filtering for mining attributes hierarchically and the 
second is a fully-connected layer for computing the output value from manifold input values comprising fully-
connected neuron layers. The fully connected layers are quite similar to the multilayer perceptron (MLP) layers. 
The MLP is a feed forward neural network which utilises stochastic gradient descent backpropagation algorith-
mic for network optimisation. In fact, ordinary artificial neural networks (ANNs) solely comprise the second 
part; thus, the feature extraction stage is the key difference between CNNs and normal ANNs.

The CNN design generally encompasses an input layer, an output layer and few random numbers of hid-
den layers among them. A typical CNN setup is depicted in Fig. 6. The input layer is responsible for receiving 
the signal (input data) as well as transmitting it to the hidden layer(s). Hidden layers can be defined as the 
computational engine pertaining to the model. These could include one or more dropout layer, convolutional 
1D layer, max-pooling layer as well as a flatten layer based on the problem. The CNN’s chief building block is 
the convolutional layer that includes one-dimensional filters/kernels that enable extracting the features via the 
input signal, an activation function for establishing neurons’ threshold limit and kernel size to denote the filter 
length. There are many commonly utilised activations functions like the ReLU, tanH, Softmax, and Sigmoid. 
Each of these have a particular use. The hidden information in the input data can be identified and excerpted 
via convolutional filters. Towards the end of the convolution layers, the learning features are generally flattened 
to a single long vector array and tend to pass via fully connected layers prior to employing the output layer for 
prediction. The flatten layer transforms the convolutional/pooling/dropout layers’ output to one dimension 
and then transmits the data to the output layer. To the neurons in the network, the dropout layer (should it be 
employed) randomly assigns zero weights, making it less sensitive to minor variation, thereby enhancing the 
model’s accuracy regarding unseen data. The 1D-CNN’s last layer would be the output layer that contains one 
neuron for yielding the desired output. To summarise, there exist three kinds of layers which constitute the 
CNN: the convolutional layers, fully connected (FC) layers, and pooling layers. Once these layers are arranged, 
a CNN architecture would be created.

In this work, many meteorological variables, such as  Tmax,  Tmin, RH,  Sw, and  Rs were applied to CNN to esti-
mate the pan evaporation rate. Iterative parameter tuning helped CNN fit the dataset. To determine the precise 
CNN structure, several hyperparameters were evaluated to determine the optimal structure to offer the most 
precise assessment metrics. These hyperparameters comprise convolutional layer count, layer-specific feature 
map count, filter size, pooling layer category, activation function categories between layers, dropout percentage 
and numbers, fully-connected layer count, loss function, learning rate, epoch count, batch size, and optimiser. 
Typically, CNN is built using dense and convolutional layers. Pooling layers might be included in such networks; 

Figure 6.  General architecture of the CNN model.
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the layers are inserted between convolutional layers to decrease problem dimensions and identify critical features. 
Nevertheless, this study does not consider pooling layers because excess parameter count is tolerable for time 
series forecasts, and recent studies are critical about the need for pooling  layers71. Moreover, researchers assert 
that adequately sized convolutional layers suffice for networking function without adding additional  layers71. 
The sequential model is typically used for Python programming, and it was used for this step too. It provides a 
straightforward technique to create a CNN structure using Keras since it facilitates building the structure based 
on layers. During CNN training, the objective is to optimise the loss function representing the objective in the 
neural network structure. The function is based on MSE. This study also employed the dropout technique to 
reduce overfitting. Dropout is a widely-used regularisation technique (creative a more representative CNN weight 
range by creating a new scale), and the values were 0.1 and 0.2. A batch size of 16 and 500 epochs were chosen 
for training the model based on the above architectural configuration and several trials. Adam  algorithm72 was 
employed to adjust network weights to reduce loss function and determine network performance with a learning 
rate of 0.001 and momentum rate of 0.7.

The one-dimensional CNN structure proposed in this study comprises the following layers for optimal per-
formance concerning evaporation prediction:

(1) CNN with one convolutional layer and 32 filter with kernel_size = 2 and activation = ‘relu’.
(2) Dropout with 0.2%.
(3) Flatten layer (used as a connection between Convolution and the Dense layers).
(4) Fully connected layers with 128 nodes and ReLU activation function.
(5) Dropout with 0.1%.
(6) Fully connected layers with 256 nodes and ReLU activation function.
(7) Dropout with 0.1%.
(8) Fully connected layers with 1 node and Linear activation function.

The final hyperparameters are:

1. Learning rate: 0.001.
2. Loss function: MSE.
3. Optimizer: ADAM.
4. Epochs: 500.
5. Batch size: 16.

Performance evaluation. Choosing the appropriate performance indicators is crucial since every indica-
tor has its own properties. In addition, knowing the strengths of each statistical measure can provide a better 
understanding of how the model perform. Therefore, in this study, model predictive performance was evaluated 
by utilising numerous well-known statistical indicators. These indicators are defined below:

(1) R2 the coefficient of determination informs the correlation between the real and estimated outputs; it has a 
value range of 0–1 (both limits included). Zero indicates a random framework, while one represents optimal 
fit.  R2 is very popular and makes comparing models easier and more consistent. It attempts to measure how 
well a regression model is fit a dataset, providing evaluators with an instant understanding of the model’s 
performance.

(2) MAE the absolute difference between the actual and predicted output. High errors caused by outliers are 
not penalised by MAE. Furthermore, it provides a consistent indicator of how precise the model performs.

(3) MSE the average squared difference between predicted and actual output. By squaring the errors, the MSE 
penalises the model for having large errors. Furthermore, for minor errors, it efficiently converges to the 
minima.

(4) RMSE it is the square root of the average value of error squares concerning the real and estimated values. 
In assessing the performance of a regression model, RMSE is more commonly used than MSE. In addition, 
RMSE is straightforward and easily distinguishable. RMSE has the added benefit of penalising large errors, 
making it more acceptable.
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(5) RAE the difference between real and forecasted values are gathered and normalised. RAE is reliable in some 
cases because it protects against outliers.

(6) NSE it represents a normalised metric determining the relative intensively of residual variance (noise) 
when determined against the calculated variance (information). The NSE is still widely used in hydrologic 
modelling, in part since it normalises performance of the model into an understandable scale.

  where n is sample count, y denotes the true output, ŷ  denotes the predicted values, and y is the true 
output average.

(7) Taylor diagram (TD) Besides the above-mentioned statistical factors, Taylor  diagram73 was also used to 
calculate the accuracy of the modelling methods taken into consideration and their extent of similarity. 
The diagram is normally used in climate-based  studies74. These diagrams can underline the accuracy of 
models’ estimates by comparing the predicted and measured values by visualising a series of elements on 
a polar plot. The diagram’s azimuth angle illustrates the correlation coefficient between the predicted and 
measured values, whereas the standard deviation value of the modelled data from observations is shown 
by the radial distance from the origin.

As a conclusion to the performance and training evaluation procedures for the ML models that are proposed, 
a flow chart is devised which is displayed in Fig. 7. The detailed procedure employed in this approach has been 
illustrated in the flow chart.

Results and discussion
Estimation of monthly Ep using empirical models. As previously mentioned, monthly Ep was esti-
mated using two empirical models, which include radiation-based and temperature-based models. The values 
relating to  R2, MSE, MAE, NSE, RAE and RMSE are recorded in Table 5, with respect to the two models used to 
estimate Ep in Bayan Lepas, Ipoh, KLIA Sepang and Kuantan stations. As indicated by the statistical values shown 
in Table 5, greater prediction accuracy was noticed with the model based on radiation (Stephens & Stewart) in 
comparison with the temperature-based model. Above all, the highest  R2 values (0.620, 0.649, 0.580, and 0.696) 
and the minimum RMSE values (0.409, 0.292, 0.314, and 0.292) were observed in Stephens & Stewart model for 
all stations. However, in the Thornthwaite model, values of RMSE increased by approximately average 16%, and 
the corresponding  R2 reduced by approximately average 33%. The performance values listed in Table 5 clearly 
suggest that the Stephens & Stewart model surpassed the Thornthwaite model. It could be due to the inclusion 
of solar radiation, which generally includes an improvement over only the temperature-based  estimation53. In 
Figs. 8, 9, 10 and 11, projected values related to monthly Ep with respect to both the empirical models are plotted 
against the values measured at stations Bayan Lepas, Ipoh, KLIA Sepang and Kuantan, respectively.

Estimation of monthly Ep using ML models. Table 6 displays the statistical outcomes related to three 
ML models with the aim to estimate monthly Ep using nine input combinations with respect to meteorologi-
cal parameters for Bayan Lepas, Ipoh, KLIA Sepang and Kuantan stations. For every ML model, the optimum 
statistical parameters have been shown in bold. As can be seen in Table  6, there is a noteworthy difference 
between the estimation accuracy of monthly Ep based on model type and input combination. According to 
the statistical values, for different input combinations, with respect to the three machine learning models, the 
CNN-9 model  (R2 = 0.970, MAE = 0.071, MSE = 0.008, RMSE = 0.092, RAE = 0.138, NSE = 0.980) at the Bayan 
Lepas station,  (R2 = 0.980, MAE = 0.053, MSE = 0.004, RMSE = 0.069, RAE = 0.132, NSE = 0.981) at the Ipoh sta-
tion,  (R2 = 0.965, MAE = 0.079, MSE = 0.008, RMSE = 0.091, RAE = 0.214, NSE = 0.966) at the KLIA Sepang sta-
tion, and  (R2 = 0.962, MAE = 0.084, MSE = 0.010, RMSE = 0.103, RAE = 0.198, NSE = 0.962) at the Kuantan sta-
tion offered better performance than the DNN and RF models. In addition, as previously stated, the k-fold CV 
technique has been used. Cross-validation is a reliable method for preventing overfitting. The primary configu-
ration variable for k-fold CV is k, which defines how many folds the dataset will be split into. Hence, as shown 
in Table 7, different folds (3, 5, and 10) were used in this study. When these k-fold testing values are compared, 
it is possible to conclude that the CNN model provides the most accurate results with k = 5 for all stations. With 
the three ML models, estimated values relating to monthly Ep have been plotted against the measured values for 
each station as shown in Figs. 12, 13, 14 and 15. The lower-level pertaining to scatter plot and an improved fit 
with respect to the estimated data with that of the values observed in the 1:1 line are the clear indicators suggest-
ing the superiority with respect to the CNN model compared to other models. Even though Figs. 12, 13, 14 and 
15 as well as Table 6 display the observed and estimated values for all the models, and also the evaluation criteria, 
the Taylor diagram (TD) was employed to compare the methods presented in this research. The primary concept 
of the TD is to represent the closest prediction model with actual corresponding observation in the 2-D scaling 
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(correlation coefficient on polar axis and standard deviation on radial axis). Standard deviation is with respect to 
how much, on average, measurements vary from each other. Thus, the relative value of SDP from SDA indicates 
the level of accuracy. The value of SDP from S.D.A. pertains to lower accuracy. Greater difference refers to lower 
precision. Therefore, in Fig. 16, it can be noticed that the CNN-9 was better compared to other methodologies, 
which had SD of 0.65 closer to the actual SD of 0.66 in Bayan Lepas, SD of 0.47 to the actual SD of 0.49 in Ipoh, 
SD of 0.47 to the actual SD of 0.48 in KLIA Sepang, and SD of 0.52 to the actual SD of 0.53 in Kuantan. The com-
parison of predicted and actual Ep monthly values generated by the most exact models is displayed in Fig. 16, 
which demonstrated that the ML models are superior to other models generally, while the CNN-9 is superior to 
the ML models in particular.

Figure 7.  The process of developing a prediction model.

Table 5.  Statistical results of Stephens & Stewart and Thornthwaite empirical models for prediction Ep at 
Bayan Lepas, Ipoh, KLIA Sepang and Kuantan stations.

Station Model R2 MAE MSE RMSE RAE NSE

Bayan Lepas
Stephens & Stewart 0.620 0.328 0.167 0.409 0.631 0.621

Thornthwaite 0.317 0.431 0.306 0.553 0.820 0.317

Ipoh
Stephens & Stewart 0.649 0.231 0.085 0.292 0.585 0.650

Thornthwaite 0.635 0.243 0.088 0.296 0.615 0.636

KLIA Sepang
Stephens & Stewart 0.580 0.244 0.098 0.314 0.670 0.581

Thornthwaite 0.256 0.325 0.175 0.418 0.891 0.257

Kuantan
Stephens & Stewart 0.696 0.245 0.085 0.292 0.572 0.697

Thornthwaite 0.497 0.284 0.144 0.380 0.657 0.498
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As per Table 6, realisation of the best prediction accuracy was possible through the models employing the 
complete meteorological dataset  (Tmax,  Tmin,  Rs,  Sw, RH and Ep) with regards to all stations, when compared 
with combinations pertaining to other incomplete data input. This showed that the model prediction’s accu-
racy improved in general with additional input parameters, which was similar to the results seen in the earlier 
 studies3,34. Four input parameters that have not included  Rs or  Sw were adequate to achieve acceptable accuracy 
with regards to estimation of monthly Ep. When only mean temperature data were available, ML models, includ-
ing the CNN model, were found to be insufficient for all stations. This implied that employing the powerful 
capabilities, such as AI may not improve the ML model prediction accuracy, particularly when meteorological 
inputs are restricted. Besides, with regards to all ML models, the prediction accuracy improved slightly by using 
Ep as an input. However, the statistical values with regards to machine learning models were close to complete 
meteorological inputs (i.e., using Ep as an input) by employing the input combination pertaining to  Tmin,  Tmax, 
 Sw,  Rs and RH. This suggested that the estimated monthly Ep values through machine learning models were in 
general in line with those of the measured monthly Ep values.

Apart from the robustness and convenience associated with DL’s automated feature extraction, it was seen that 
the proposed deep learning models consistently outdid the RF model when it comes to prediction of Ep. Thus, 
these research results were in line with the previous  studies53,75, which mentioned deep learning to be a power-
ful modelling technique that allows learning the complex and non-linear behaviours pertaining to evaporation. 
Particularly, it was seen that the CNN model was better than other DLs models, such as DNN, which indicates 
the CNN model’s high potential when it comes to modelling and mapping evaporation when it is difficult for 
most of the ML models. The effectiveness pertaining to CNN in capturing and analysing the non-linearity and 
complexity behaviours of evaporation with greater efficacy could be due to the convolutional characteristic of 
1D-CNN, i.e., a large number of convolutional kernels are applied by CNN to the inputs for extracting informa-
tion extensively, which is helpful for time series forecast. However, DLs versus RFs need to be compared carefully, 
since there is a chance of underestimating the capacity of RFs when special consideration is not given. Thus, the 
time needed to run and tune the models also needs to be considered when objectively comparing between DL 
and RF models. Although training time can be influenced by several factors (e.g., model complexity, number of 

Figure 8.  Scatter plot of measured Ep versus predicted Ep for the proposed empirical modles for Bayan Lepas 
station.
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inputs employed), in general, RF has been found to be faster in tuning and training versus DL. The application of 
DL includes training time as one of the challenges. In addition to this, it is challenging to optimise DL since no 
formula has been identified that can guarantee converging of DL to a good solution. Moreover, when compared 
with the RF, larger data sets are required for DL to learn the evaporation properties. Due to this, even though deep 
learning is regarded to be very powerful when it comes to capturing complex and non-linear behaviours, there 
exist certain challenges that need to be taken into account when constructing deep learning prediction models.

With regards to the above statement, the CNN model was seen to be able to model pan evaporation with 
high prediction accuracy. However, for validating the developed predictive model’s predictability, a comparison 
was performed for the results pertaining to the current study versus other AI models exposed to same climatic 
conditions. Mustafa et al.76 reported an  R2 value of 0.97 with regards to their best-performing SVM model dur-
ing validation period by employing the Support Vector Machine (SVM) method in the Ipoh region based on the 
same data as used in the current research, versus an  R2 value of 0.98 that was identified in the current study. It 
was also seen that the CNN model was better compared to other AI methods, including K-Nearest Neighbours 
(KNN), which was recently used in the Ipoh region based on the same data as employed in the present study 
(M.A, M.A.I, A.N.A, and Y.F.H). Satisfactory performance was reported by applying the KNN, which gave an 
 R2 value of 0.94. Based on this, the study concluded that DL in general, and CNN in particular, can be used 
as optimistic predictive models in hydrological applications such as evaporation due to the excellent features 
described earlier. Moreover, investigation will be carried out with regards to the application of the proposed 
methodology for different regions throughout Malaysia by employing different data sets in order to construct a 
reliable generalised model for evaporation prediction.

Comparison of empirical and ML models. Table 8 demonstrates the performances for two empirical 
models to perform prediction of monthly Ep, which are then compared to their respective ML models using 
same input combinations for Bayan Lepas, Ipoh, KLIA Sepang and Kuantan weather stations. As an initial obser-
vation, with regards to input combination of  Rs and  Ta for all stations, the radiation-based model (Stewart and 
Stephens) offered the lowest prediction accuracy  (R2 values: 0.620, 0.649, 0.580, and 0.696) in comparison with 
all ML models. On the other hand, the machine learning models (i.e., RF-1, CNN-1 and DNN-1) were seen to 

Figure 9.  Scatter plot of measured Ep versus predicted Ep for the proposed empirical modles for Ipoh station.
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perform excellently to achieve high prediction accuracy versus the temperature-based model (Thornthwaite) 
based on the input combination of just Ta. Based on the statistical results presented in Table 7, the higher perfor-
mance of ML models was evident versus empirical models, and could also considerably enhance the prediction 
accuracy of monthly Ep even when employing the same input parameters, depending on their superior capabili-
ties to carry out non-linear and complex tasks. Furthermore, it has been seen that higher accuracy was achieved 
with the deep learning models (i.e., DNN and CNN) in terms of forecasting evaporation versus the tree-based 
model (i.e., RF). This can be attributed to the deep learning feature catching concealed properties, which signi-
fies that deep learning can be regarded as more powerful approach for predicting evaporation. In this regard, 
although the RF was seen to marginally outperform the DL models for few cases, it is evident that this is a single 
case since the DL models are regarded to be more consistent and could also offer higher accuracy versus empiri-
cal and tree-based methods based on all the different input sets at all stations.

Conclusion
This study is conducted to determine the monthly Ep losses by employing RF, DNN, and CNN techniques. 
Monthly data from four weather stations in Malaysia were employed to assess the capabilities of the three AI 
approaches in predicting the Ep rates. Time series data pertaining to monthly Ep, such as  Tmax,  Tmin,  Ta, RH,  Sw, 
 Rs, and  Ep, between the years 2000–2019 were used to set up the evaluated models. The data was divided into 
two parts: 20% for testing (validation) and 80% for training (calibration). The PCC values were used to select 
the input parameters (predictors) in order to identify the most effective input combinations for ML models. The 
developed ML models were compared to two empirical models, one is temperature-based model (Thornthwaite) 

Figure 10.  Scatter plot of measured Ep versus predicted Ep for the proposed empirical modles for KLIA Sepang 
station.
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while the other is radiation-based model (Stephens & Stewart). Standard statistical measures were employed 
to assess the performance of each model as well as their effectiveness pertaining to evaporation forecasting. 
Furthermore, the accuracy of the studied models was evaluated using the Taylor diagram. The investigation 
yielded the following results:

• The three developed ML models were found to outperform the empirical methods and to significantly 
improve the precision of monthly Ep estimates even when using the same combinations of inputs.

• Both RF and DL methods can accurately predict the monthly Ep. In particular, when it comes to predicting 
Ep, the DL approach (i.e., CNN and DNN) was found to slightly outperform the RF model.

• The best ML prediction accuracy could be achieved with models that employed complete meteorological 
datasets  (Tmax,  Tmin,  Rs,  Sw, RH and Ep) with regards to all stations, when compared with other combinations 
of incomplete data input.

• As seen in the results, the monthly evaporation losses can be successfully modelled based on the CNN 
structure along with enhanced accuracy versus other models that were accounted in this study. Moreover, 
estimation results based on the CNN model were seen to outdo versus other AI approaches that were studied 
in the same regions by employing the same data.

• In the future, the applicability of the proposed methodology to different regions in Malaysia can be assessed 
using different data sets with the aim of building a dependable generalised model for predicting evaporation.

Figure 11.  Scatter plot of measured Ep versus predicted Ep for the proposed empirical modles for Kuantan 
station.
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Station/model R2 MAE MSE RMSE RAE NSE

Bayan Lepas

RF-1 0.562 0.324 0.195 0.441 0.619 0.563

RF-2 0.727 0.248 0.121 0.348 0.474 0.727

RF-3 0.797 0.219 0.090 0.300 0.418 0.798

RF-4 0.848 0.197 0.066 0.258 0.377 0.849

RF-5 0.857 0.186 0.062 0.250 0.357 0.858

RF-6 0.909 0.149 0.039 0.198 0.288 0.910

RF-7 0.868 0.174 0.057 0.238 0.335 0.869

RF-8 0.953 0.115 0.020 0.142 0.222 0.953

RF-9 0.961 0.088 0.016 0.128 0.169 0.962

DNN-1 0.492 0.351 0.226 0.475 0.671 0.493

DNN-2 0.800 0.224 0.088 0.298 0.429 0.801

DNN-3 0.807 0.223 0.085 0.292 0.427 0.808

DNN-4 0.857 0.188 0.063 0.251 0.359 0.858

DNN-5 0.838 0.197 0.070 0.266 0.378 0.839

DNN-6 0.908 0.147 0.039 0.199 0.283 0.909

DNN-7 0.878 0.158 0.052 0.229 0.304 0.879

DNN-8 0.929 0.135 0.030 0.174 0.260 0.930

DNN-9 0.969 0.087 0.012 0.113 0.169 0.970

CNN-1 0.623 0.290 0.167 0.409 0.554 0.624

CNN-2 0.767 0.231 0.103 0.321 0.442 0.768

CNN-3 0.810 0.222 0.084 0.290 0.425 0.811

CNN-4 0.868 0.178 0.058 0.240 0.341 0.869

CNN-5 0.882 0.167 0.051 0.227 0.321 0.883

CNN-6 0.911 0.148 0.038 0.195 0.286 0.912

CNN-7 0.890 0.174 0.047 0.217 0.335 0.891

CNN-8 0.965 0.084 0.015 0.122 0.163 0.966

CNN-9 0.979 0.071 0.008 0.092 0.138 0.980

Ipoh

RF-1 0.652 0.227 0.084 0.290 0.573 0.653

RF-2 0.737 0.194 0.064 0.253 0.489 0.738

RF-3 0.478 0.291 0.126 0.356 0.735 0.479

RF-4 0.720 0.203 0.068 0.261 0.511 0.721

RF-5 0.734 0.197 0.065 0.256 0.494 0.735

RF-6 0.865 0.140 0.033 0.182 0.348 0.866

RF-7 0.832 0.146 0.041 0.204 0.365 0.833

RF-8 0.901 0.111 0.024 0.157 0.276 0.902

RF-9 0.959 0.066 0.010 0.101 0.163 0.960

DNN-1 0.719 0.205 0.068 0.261 0.519 0.719

DNN-2 0.793 0.162 0.050 0.224 0.408 0.794

DNN-3 0.511 0.277 0.119 0.344 0.701 0.521

DNN-4 0.800 0.173 0.048 0.221 0.436 0.801

DNN-5 0.804 0.170 0.048 0.219 0.424 0.805

DNN-6 0.903 0.123 0.024 0.155 0.307 0.904

DNN-7 0.882 0.122 0.029 0.171 0.305 0.883

DNN-8 0.922 0.106 0.019 0.139 0.264 0.923

DNN-9 0.945 0.094 0.013 0.116 0.232 0.946

CNN-1 0.749 0.192 0.061 0.247 0.486 0.750

CNN-2 0.831 0.152 0.041 0.203 0.382 0.831

CNN-3 0.550 0.270 0.109 0.331 0.683 0.550

CNN-4 0.811 0.171 0.046 0.214 0.430 0.812

CNN-5 0.837 0.157 0.040 0.200 0.393 0.838

CNN-6 0.935 0.096 0.016 0.126 0.239 0.936

CNN-7 0.904 0.113 0.023 0.154 0.281 0.905

CNN-8 0.959 0.071 0.010 0.100 0.176 0.960

CNN-9 0.980 0.053 0.004 0.069 0.132 0.981

KLIA Sepang

RF-1 0.293 0.299 0.167 0.409 0.817 0.294

Continued
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Station/model R2 MAE MSE RMSE RAE NSE

RF-2 0.730 0.171 0.064 0.253 0.467 0.731

RF-3 0.819 0.077 0.042 0.207 0.212 0.819

RF-4 0.878 0.066 0.028 0.169 0.180 0.879

RF-5 0.880 0.120 0.028 0.168 0.328 0.881

RF-6 0.910 0.108 0.021 0.146 0.293 0.911

RF-7 0.909 0.109 0.021 0.147 0.296 0.910

RF-8 0.931 0.093 0.016 0.128 0.255 0.932

RF-9 0.943 0.070 0.013 0.117 0.190 0.944

DNN-1 0.358 0.287 0.152 0.390 0.783 0.359

DNN-2 0.700 0.183 0.071 0.267 0.499 0.701

DNN-3 0.820 0.141 0.042 0.206 0.385 0.821

DNN-4 0.859 0.129 0.033 0.182 0.355 0.860

DNN-5 0.893 0.059 0.025 0.159 0.161 0.894

DNN-6 0.924 0.101 0.018 0.134 0.275 0.925

DNN-7 0.891 0.119 0.026 0.161 0.324 0.892

DNN-8 0.939 0.100 0.014 0.121 0.269 0.940

DNN-9 0.959 0.071 0.009 0.099 0.191 0.960

CNN-1 0.375 0.284 0.148 0.384 0.774 0.376

CNN-2 0.717 0.178 0.067 0.259 0.485 0.718

CNN-3 0.827 0.079 0.040 0.202 0.216 0.827

CNN-4 0.830 0.137 0.040 0.200 0.375 0.831

CNN-5 0.899 0.114 0.024 0.155 0.313 0.900

CNN-6 0.921 0.101 0.019 0.137 0.274 0.922

CNN-7 0.919 0.101 0.019 0.139 0.274 0.920

CNN-8 0.949 0.081 0.012 0.110 0.219 0.950

CNN-9 0.965 0.079 0.008 0.091 0.214 0.966

Kuantan

RF-1 0.647 0.241 0.098 0.314 0.567 0.648

RF-2 0.811 0.197 0.054 0.232 0.458 0.811

RF-3 0.688 0.237 0.087 0.295 0.556 0.689

RF-4 0.852 0.157 0.041 0.203 0.370 0.853

RF-5 0.888 0.059 0.005 0.074 0.330 0.889

RF-6 0.904 0.122 0.027 0.165 0.283 0.905

RF-7 0.889 0.138 0.031 0.178 0.321 0.890

RF-8 0.930 0.108 0.019 0.140 0.253 0.931

RF-9 0.956 0.088 0.012 0.110 0.207 0.957

DNN-1 0.649 0.248 0.098 0.314 0.581 0.650

DNN-2 0.814 0.180 0.052 0.229 0.422 0.815

DNN-3 0.709 0.228 0.081 0.285 0.573 0.710

DNN-4 0.843 0.166 0.044 0.210 0.389 0.844

DNN-5 0.876 0.146 0.035 0.187 0.339 0.877

DNN-6 0.917 0.121 0.023 0.154 0.282 0.917

DNN-7 0.898 0.132 0.028 0.168 0.309 0.898

DNN-8 0.944 0.103 0.015 0.126 0.238 0.945

DNN-9 0.958 0.084 0.011 0.108 0.198 0.959

CNN-1 0.654 0.239 0.096 0.310 0.562 0.655

CNN-2 0.816 0.187 0.051 0.227 0.437 0.817

CNN-3 0.747 0.210 0.071 0.266 0.491 0.748

CNN-4 0.871 0.149 0.036 0.190 0.350 0.872

CNN-5 0.877 0.143 0.034 0.185 0.335 0.878

CNN-6 0.906 0.124 0.026 0.163 0.287 0.907

CNN-7 0.897 0.130 0.028 0.169 0.304 0.898

CNN-8 0.956 0.086 0.012 0.112 0.198 0.956

CNN-9 0.962 0.084 0.010 0.103 0.198 0.962

Table 6.  Statistical results (testing period) of the three machine learning models for predicting monthly Ep 
under nine input combinations of meteorological variables for Bayan Lepas, Ipoh, KLIA Sepang and Kuantan 
stations. Bold indicates the optimum statistical parameters.



21

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13132  | https://doi.org/10.1038/s41598-022-17263-3

www.nature.com/scientificreports/

Table 7.  Time series cross-validation.

k-fold CV

R-Squared values

Bayan Lepas Ipoh KLIA Sepang Kuantan

K = 3 0.94 0.96 0.95 0.94

K = 5 0.97 0.98 0.96 0.96

K = 10 0.96 0.97 0.95 0.95

Figure 12.  Scatter plot of measured Ep versus predicted Ep for the proposed machine learning models for 
Bayan Lepas station.
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Figure 13.  Scatter plot of measured Ep versus predicted Ep for the proposed machine learning models for Ipoh 
station.
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Figure 14.  Scatter plot of measured Ep versus predicted Ep for the proposed machine learning models for 
KLIA Sepang station.
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Figure 15.  Scatter plot of measured Ep versus predicted Ep for the proposed machine learning models for 
Kuantan station.
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Figure 16.  Taylor diagram of predicted monthly pan evaporation during the validation stage.
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