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An investigation of the influence 
of microstructure surface 
topography on the imaging 
mechanism to explore 
super‑resolution microstructure
Wenpeng Fu, Chenyang Zhao*, Wen Xue & Changlin Li

Vision‑based precision measurement is limited by the optical resolution. Although various super‑
resolution algorithms have been developed, measurement precision and accuracy are difficult to 
guarantee. To achieve nanoscale resolution measurement, a super‑resolution microstructure concept 
is proposed which is based on the idea of a strong mathematical mapping relationship that may exist 
between microstructure surface topography features and the corresponding image pixel intensities. 
In this work, a series of microgrooves are ultra‑precision machined and their surface topographies 
and images are measured. A mapping relationship model is established to analyze the effect of the 
microgroove surface topography on the imaging mechanism. The results show that the surface 
roughness and surface defects of the microgroove have significant effects on predicting the imaging 
mechanism. The optimized machining parameters are determined afterward. This paper demonstrates 
a feasible and valuable work to support the design and manufacture super‑resolution microstructure 
which has essential applications in precision positioning measurement.

Super-resolution (SR), which refers to the process of improving the resolution of original images by means 
of reconstructing high-resolution (HR) images from low-resolution (LR)  images1, is widely used in micro-
scopic  imaging2–4, video  surveillance5, medical  imaging6, satellite remote sensing  imaging7 and astronomical 
 observation8, etc. Besides, SR methods also have essential applications in precision positioning measurement, and 
plays an important role in the improvement of positioning  accuracy9,10. Normally, micro-vision-based precision 
positioning measurement  methods11–15 improve the resolution mainly by using image processing  methods11,15. 
When the similarity of certain image areas is high, algorithms easily cause matching errors, thus seriously 
decreasing the measurement accuracy and uncertainty.

Currently, SR reconstruction of images is mainly achieved from the perspective of software algorithms, such 
as the Deep Plug-and-Play Super-Resolution (DPSR)  algorithm16, unpaired image confrontation  network17 for 
generalization ability, feature map attention mechanism to enhance the feature expression ability of reconstructed 
 images18 and so on. But due to Abbe’s limit, the resolution limit of ordinary optical microscopes is approximate 
to 200 nm. Hence, micro-topography information below the scale of 200 nm cannot be obtained by optical 
microscopes. Image SR reconstruction is not able to solve the loss of sampling high-frequency information of the 
observed object surface image at microscopic scale only from the viewpoint of algorithms. It is very challenging 
to break through the optical limit and realize the super-resolution imaging of microstructure surface topography.

Super‑resolution microstructure
Here, an innovative idea is generated: whether there is a micro-topography with SR characteristics, which is 
named "super-resolution microstructure" (SRM). Specifically, within the range of an individual pixel size as 
shown in Fig. 1a, although this area is extracted by the pixel data structure of only one pixel through a micro-
scope, the original pixel can be decomposed into valuable sub-pixels that truly reflect the micro-topography 
characteristics through its neighboring pixel information as shown in Fig. 1b and the decoding characteristics 
of SRM, so as to realize SR.
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As the SRM surface is observed, the image used for registration can have higher resolution and more reliable 
image details through feature function interpolation, so that the differences of details in each region are more 
obvious and easier to be identified stably by the algorithm, which can provide more accurate position feedback 
to measure the object and improve the positioning accuracy.

Therefore, the advantages of the SRM imaging method can be summarized as follows: (1) It can break through 
the optical limit from other perspectives and achieve reliable image super-resolution. (2) Compared with the 
traditional interpolation algorithms to achieve image super-resolution, it has a more dependable mathematical 
relationship. (3) Using SRM as the observation object of micro-vision-based precision positioning measurement, 
the imaging resolution is able to achieve the nanoscale  level13–15,19.

However, it is quite challenging to realize SRM, which mainly comes down to: (1) Imaging principles and 
hardware conditions which limit image resolution and image effect; (2) In terms of processing mechanism, how 
to ensure the repeatability and expandability of microstructure surface topography; (3) Currently, there is little 
research on the correlation interpolation function proposed by exploring the influence of the microstructure 
surface topography distribution characteristics of the imaging mechanism. It is necessary and valuable to focus 
on mapping the relationship between the microstructure surface topography and image pixel intensity so as to 
explore the influence of microstructure surface topography on the imaging mechanism before designing and 
manufacturing SRM.

In this paper, in order to reveal the influence of surface topography on the imaging mechanism, experiments 
of microgroove surface topography imaging under different processing parameters are conducted. First, an ultra-
precision machining experiment is carried out to generate microgrooves. A white light interferometer (WLI) is 
used to analyze the surface topography of the microgrooves. Then, the height data of microgroove topography 
and image pixel data with one-to-one correspondence are obtained. The correlation between the topography 
height data and the image pixel data, and the mapping relationship between the surface topography of the lon-
gitudinal section of the microgrooves and the corresponding image are analyzed at the nanoscale level. Finally, 
the relevant law of the influence of microgroove surface topography on the imaging mechanism is summarized, 
which is the basis for studying the sub-pixel interpolation algorithm for SRM.

Experiment details
An experiment involving the machining of microstructure surface was carried out on a three-axis (X-, Z- and 
C-axis) CNC ultra-precision single-point diamond lathe (Moore Nanotech 450 UPL, USA); the experiment setup 
is as shown in Fig. 2a. The lathe spindle motion accuracy is higher than 12.5 nm, the axes motion accuracy is 
0.3 μm, and the programming resolution is 0.01 nm (linear)/0.000001 degree (rotary). Because the cupronickel 
is beneficial for maintaining the characteristics of the workpiece surface, and can improve the imaging stability 
of the microstructure surface, the substrate material of workpiece is chosen to be B15 cupronickel. The micro-
structure topography involved in this experiment is realized by diamond-cutting of the microgrooves. In order 
to control the variables, the whole workpiece surface was firstly pre-machined with a 0.5-mm tool nose radius 
to a level of surface roughness of 10 nm, and the spindle speed, feed rate and depth of cut amount were 1500 r/
min, 5 mm/min and 8 μm respectively. Synthetic isoparaffins (Isopar fluids, ExxonMobil Chemical) were used 
as the coolant to improve the surface cutting quality. The tool nose radius used for microgroove cutting on the 
surface of the unit microstructure experiment workpiece was 0.5 mm and 0.1 mm respectively.

To study the influence of microstructure surface topography on the imaging mechanism, a series of micro-
groove cutting experiments was conducted with different cutting parameters. As shown in Table 1, five sets of 
cutting speeds (800, 400, 200, 100 and 50 mm/min) were set in the machining experiment, and the depth of cut 
was 5 μm. Repeat experiments were also conducted for each set of the same cutting speed. And microgrooves 
with three different lengths were cut at each cutting speed according to the microgroove length set in Table 1, in 
order to better distinguish each microgroove on the end face of the workpiece. The workpiece was clamped in 
the grooving process, the microgrooves under various parameters were cut at 23-degree intervals in the order of 

Figure 1.  Super-resolution reconstruction based on SRM. (a) Low-resolution image; (b) Super-resolution 
reconstruction image combined with SRM "U".
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group number, and the offset angle of microgrooves was 5.5 degrees for the same group number. The microgroove 
spacing layout is shown in Fig. 2b.

After the cutting experiment, a WLI (Bruker Contour GT-X) was used to measure the three-dimensional 
surface topography of the microstructure topography, and the point cloud coordinate dataset of the microstruc-
ture topography and the corresponding image pixel intensity dataset were acquired by the analysis software of 
the WLI.

Results and discussion
Qualitative analysis of the relationship between surface topography and image intensity dis‑
tribution. To understand the influence of the microstructure surface topography on the imaging mechanism, 
it was necessary to analyze the response mechanism of the image pixel intensity distribution in relation to the 
microstructure topography. The repeat experiments set three different lengths of microgrooves for each cutting 
parameter. From the microgroove topography results collected by the WLI, under the same cutting parameters, 
the cutting length had little effect on the microgroove topography distribution, so the data of one micro-groove 
was selected under each cutting parameter for comparative analysis. The effects of the surface topography under 
different cutting parameters on the imaging mechanisms of microgrooves are shown in Fig. 3. The experiment 
results show that the pixel intensity of the microgroove topography image underwent a sudden change at the 
boundary of the microgrooves, and the pixel intensity distribution in the area within the boundary was found 
to be negatively correlated with the topography height distribution, which was consistent with the visible light 
imaging mechanism. Due to the tool setting error and material removal characteristics during the machining 
process, the height difference of the topography under each parameter fluctuated within a certain range. In addi-
tion, the illumination conditions when operating the WLI to collect sample data affected the overall distribution 
interval of the pixel intensity of the micro-groove image. Therefore, the trend change of data distribution was 
used to characterize the response mechanism of the image pixel intensity distribution in relation to the micro-
structure topography. In general, with a decrease of cutting speed, the surface topography of microgrooves and 
the intensity distribution of image pixels do not change significantly. When the tool nose radius was 0.5 mm, the 
two boundaries and bottom of the microgroove produced obvious extrusion plastic deformation topography, 
and their image pixel intensity distribution produced the corresponding responses, as shown in Fig.  3aii,iii. 
When the tool nose radius was 0.1 mm, the surface processing quality of the microgrooves was better, and the 
change of the image pixel intensity distribution was relatively smooth, as shown in Fig. 3bii,iii. It is valuable to 
notice that under specific cutting parameters, the chip particles retained near the cutting edge of the tool were 
likely to rub against the machined surface during the grooving process, or the tool tip cut through the cracked 
part of the workpiece material, resulting in straight line scratches and defects such as cracks at the bottom of the 

Figure 2.  (a) Experiment setup, and (b) Machined workpiece.

Table 1.  Experiment groups and machining parameters.

Group no

Cutting parameters

Cutting speed (mm/min)

Microgroove length (mm)

(Nose radius 0.5 mm) (Nose radius 0.1 mm)

1–3 800 52, 51.1, 49.8 53.2, 51.8, 50.9

4–6 400 48.6, 47.3, 46.1 50, 48.9, 48

7–9 200 44.7, 43.5, 42.3 47.1, 46.1, 45.2

10–12 100 40.9, 39.7, 38.4 44.3, 43.3, 42.5

13–15 50 37.1, 35.9, 34.6 41.5, 40.5, 39.7
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Figure 3.  (a) Pixel intensity distribution of the microgroove image response to topography at different cutting 
speeds, with a nose radius of 0.5 mm; (i) grayscale image of microgrooves at a cutting speed of 800 mm/min, (ii) 
topography height distribution of the longitudinal section of the microgrooves, (iii) image pixel distribution of 
the longitudinal section of the microgrooves; (b) Pixel intensity distribution of the microgroove image response 
to topography at different cutting speeds, with a nose radius of 0.1 mm; (i) grayscale image of microgrooves 
at a cutting speed of 800 mm/min, (ii) topography height distribution of the longitudinal section of the 
microgrooves, (iii) image pixel distribution of the longitudinal section of the microgrooves.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13651  | https://doi.org/10.1038/s41598-022-17209-9

www.nature.com/scientificreports/

microgroove. And the image pixel intensity distribution responds significantly to the surface topography of the 
cross-section when passing through these defects, as shown in Fig. 3a,b. To sum up the above, the pixel intensity 
distribution of the microgroove image has strong correlation with a change of topography, and the premise of 
obtaining a valuable image pixel intensity distribution law is that the surface quality of the fabricated micro-
groove is as good as possible.

Correlation analysis. The geometries of the longitudinal sections of the microgrooves are similar, and 
the imaging mechanism of the microgrooves also exhibits similar laws. In order to better analyze the influ-
ence of microgroove topography on the imaging mechanism under different cutting parameters, the correlation 
between the topography height of the microgroove along the longitudinal section and the corresponding image 
pixel intensity was further studied quantitatively. Both the topography height coordinates and image pixel data 
sampled by the 3D topography instrument can be represented as a matrix with a horizontal resolution of 128 nm 
(objective magnification: × 50) and a dimension of 1376 × 1032. Therefore, there are 1,376 pairs of longitudinal 
section data samples under a set of cutting parameters, and the correlation coefficient “r” (absolute value) of each 
pair of data was calculated by Eq. (1):

where Cov(X,Y) is the covariance of X and Y, Var[X] is the variance of X, and Var[Y] is the variance of Y.
Figure 4 shows the correlation coefficient between the height distribution of the microgroove longitudinal 

section and the image pixel intensity distribution under different ultra-precision cutting parameters. As shown 
in Fig. 4a, when the nose radius is 0.5 mm, the cutting speed has a greater influence on the correlation, and the 
difference in the distribution of the correlation coefficient in the same group also reflects the instability of the 
imaging mechanism. Among them, the correlation coefficient of the cutting speed 100 mm/min group is gener-
ally higher than that of the other groups, and the correlation between the topography height of the microgroove 
and the image pixel intensity distribution is relatively significant. However, when the nose radius is 0.1 mm, 
except for the outlier correlation coefficient values corresponding to a small number of longitudinal sections, 
the height of the longitudinal section at several cutting speeds is significantly related to the pixel distribution of 
the image, with little difference in correlation degree, and the imaging mechanism is more regular. Especially 
when the cutting speed is 100 mm/min and the nose radius is 0.1 mm, the distribution of correlation coefficient 
is the most concentrated, and the imaging mechanism is highly consistent. In addition, the influence of defects 
on the imaging mechanism of microgroove topography is also reflected in the correlation coefficient. Combined 
with Fig. 3, the pixel intensity distribution of the image has a response to the local defects of the microgroove 
topography under different ultra-precision cutting parameters, and the correlation coefficient between the lon-
gitudinal section topography and the image data distribution passing through the local defects is smaller than 
that of other parts. For example, when the cutting conditions with the tool nose radius was 0.1 mm, the cutting 
speed was 50 mm/min, and the absolute value of the correlation coefficient “r” was between 0.7721 and 0.9742, 
the microgroove topography height had a significant correlation with the image pixel intensity distribution. At 
the longitudinal section positions where the correlation coefficients “r” were 0.9742 and 0.7721, respectively, 
the topography height and image pixel intensity distribution are shown in Fig. 4b,c. It can be seen from Fig. 4c 
that the defects have a significant impact on the imaging of the microgroove, manifesting in the fact that the 
machining or surface roughness has a great influence on the correlation. Therefore, the microgroove topography 

(1)r(X,Y) =
Cov(X,Y)

√
Var[X]Var[Y ]

Figure 4.  (a) Correlation coefficient of microgroove longitudinal section topography height and image pixel 
intensity distribution under different ultra-precision cutting parameters. (b) Distribution of longitudinal section 
data corresponding to the maximum correlation coefficients (the tool nose radius: 0.1 mm, and the cutting 
speed: 50 mm/min). (c) Distribution of longitudinal section data corresponding to the minimum correlation 
coefficients (the tool nose radius: 0.1 mm, and the cutting speed: 50 mm/min).
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with fewer defects is beneficial to ensure the linear correlation between the surface topography height and the 
image pixel intensity.

Mapping relationship model between surface topography and image intensity. Mapping rela-
tionship Model establishment. Quarrying a decoupling mathematical mapping relationship between the micro-
structure topography and the image pixel intensity is the key to realizing SRM but is difficult. In reality, precision 
measuring instruments such as the WLI can be used to obtain the nanometer-level resolution microstructure 
topography height point cloud coordinates and images, while the resolution of images obtained with general mi-
croscopic imaging is usually far below the nanometer level. Through the mapping relationship, if the nanoscale 
resolution topographic height data “Z” are obtained, the corresponding resolution image can also be obtained. 
Therefore, a mapping relationship model between the microgroove topography and its image is established here.

As shown in Fig. 5, the microgroove longitudinal section topography height dataset “Z1” and image pixel 
intensity dataset “P1” are used as input value and label value respectively, and the mapping relationship model 
of them is iteratively calculated by a fully connected neural network. The reference image (Ref. image) pixel 
intensity dataset “P” is corresponding to the dataset “Z”. The Ref. image is compared with the output map image 
(“Image’”) using the dataset “Z” test the mapping relationship model to visualize and quantitatively evaluate the 
quality of the mapped image.

Mapping relationship model analysis under different cutting parameters. In order to analyze the mapping rela-
tionship between the microgroove topography and its image, a mapping relationship model under different 
cutting parameters was built. The model was trained using an artificial neural network (ANN, hidden layer size: 
8; ratios of training, validation, and test sample data were 0.7, 0.2, and 0.1, respectively) based on the BP algo-
rithm (Levenberg–Marquardt backpropagation). The computer used had an Intel(R) Core(TM) i9-7960X CPU 
@ 2.80 GHz 2.81 GHz with 64.0 GB of RAM.

The dataset of microgroove topography height in the test data under different cutting parameters was used 
as the input, and the mapped image was the output. The mapped image was compared with the Ref. image to 
analyze the effect of topography characteristics under different cutting parameters on the mapping relationship 
between the microgroove topography and the corresponding image. As shown in Fig. 6, the topographic features 
of microgrooves machined with different cutting parameters have different mapping imaging performances. 
From Fig. 6a, it is found that the texture distribution in the cutting direction of the microgroove topography 
mapped image corresponding to a tool nose radius of 0.1 mm at a cutting speed of 50 mm/min is closer to the 
Ref. image. In the mapped images with different cutting speeds, the surface defect features may cause disordered 
pixel intensity distribution in the mapped image as shown in Fig. 6ai, or be reproduced in the mapped image as 
shown in Fig. 6bi, or exhibit weaker pixel intensity in the mapped image as shown in Fig. 6aii,cii, or be lost in the 
mapped image as shown in Fig. 6cii, eii. On the whole, the regularity of the topography and texture features in 
the cutting direction is conducive to establishing a stable topography and image mapping relationship. However, 
the topography height distribution trend corresponding to the defect changes drastically, which has an unstable 
influence on the topography texture mapping. It is not only related to the topography distribution, but also has 
a relationship with the structure of the training model. Therefore, in the future, the processing of the mapping 
relationship of special topography features such as defects needs to be focused on.

Image quality metrics, such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure 
(SSIM), and Natural Image Quality Evaluation (NIQE), were used to evaluate the quality of mapped images 
under different cutting parameters. As shown in Fig. 7a, with an increase of cutting speed, the PSNR values 
of the mapped images with a nose radius of 0.1 mm and 0.5 mm have similar trends. Especially at the cutting 
speed of 100 mm/min, the PSRN value reaches the maximum, which indicates that the overall pixel intensity 
values of the mapped image and the Ref. image are relatively close. However, at a cutting speed of 200 mm/min, 
the topography features and image pixel intensity are not well mapped, that is, the predictability of the image 
texture is poor. According to Fig. 6, under the same tool nose radius, compared with other cutting speeds, the 
texture and defect features in the Ref. image corresponding to 100 mm/min are relatively well reproduced in the 
mapped image, while the defect features in the Ref. image corresponding to 200 mm/min are not reproduced 
well, and these are reflected in the PSNR values.

Figure 5.  The architecture of the mapping model between microgroove topography and image.
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From Fig. 7b, it can be seen that when the cutting speed is 50 mm/min and the nose radius is 0.1 mm, the 
SSIM value is the closest to 1. The distribution trend of the corresponding topography height of the longitudinal 
section of the microgroove is relatively stable, the mapped image has a high structural similarity with the Ref. 
image, and the topographical structure features of the microgroove and the image pixel intensity distribution 
characteristics are well mapped. But when the cutting speed is 50 mm/min and the tool nose radius is 0.5 mm, 
the SSIM value is the smallest. The corresponding microgroove topography roughness is relatively large, the 
structural similarity between the mapped image and the Ref. image is poor, and the correlation between the 
microgroove topographic structure feature and the image pixel intensity distribution feature is not strong. The 
perceptual quality of the mapped image with the Ref. image under different cutting parameters was compared, 
which is shown in Fig. 7c. From the mapped image, the NIQE value of the tool nose radius of 0.1 mm is smaller 
than that for 0.5 mm, which indicates better image perception quality. In addition, the perceptual quality of the 

Figure 6.  Comparison of microgroove topography mapped images and Ref. images under different cutting 
parameters. (a) Comparison of intensity images of microgrooves at a cutting speed of 50 mm/min; (i) tool nose 
radius (NR) of 0.5 mm, (ii) tool nose radius of 0.1 mm, and the mapped image is arranged next to the Ref. image 
(the same below). (b) Cutting speed of 100 mm/min. (c) Cutting speed of 200 mm/min. (d) Cutting speed of 
400 mm/min. (e) Cutting speed of 800 mm/min.

Figure 7.  (a) PSNR comparison of mapped image under different cutting parameters; (b) SSIM comparison of 
mapped image under different cutting parameters; (c) NIQE comparison between the mapped image and the 
Ref. image under different cutting parameters.
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mapped image is generally worse than that of the Ref. image, but when the cutting speed is 50 mm/min and 
the tool nose radius is 0.1 mm, the NIQE value of the mapped image is slightly smaller than that of the Ref. 
image, and the perceptual quality of the two is close. When the tool nose radius is 0.1 mm, the NIQE value of 
the mapped image tends to decrease narrowly with the decreasing cutting speed, and when the cutting speed is 
50 mm/min, the NIQE value is the smallest, which indicates that the image perception quality is better. Therefore, 
comprehensively referring to the image quality indicators, it is concluded that the microstructure topography 
machined with a nose radius of 0.1 mm is more suitable for the study of the mapping relationship between the 
microgroove topography distribution and the image pixel intensity distribution, and a larger cutting speed can 
be selected to improve the cutting efficiency of the microstructure workpiece on the premise of ensuring the 
surface topography roughness.

Through the above analysis, under different ultra-precision cutting parameters, the distribution character-
istics of microgroove surface topography largely affects the stability and the quality of the relationship between 
the microgroove topography and its mapped image. Therefore, selecting appropriate topography is the basis for 
ensuring the stable and decoupled mathematical mapping relationship between the microgroove topography 
distribution and the corresponding image pixel intensity distribution. For example, the topography correspond-
ing to the cutting speed of 50 and 100 mm/min with a nose radius of 0.1 mm has fewer defects, a large correlation 
between the topography and the image, and a relatively stable mapping relationship, which is suitable for studying 
the sub-pixel interpolation algorithm for SRM.

Conclusions
This paper experimentally provides an understanding of the influence of the microgroove surface topography 
on the imaging mechanism under different nose radius and cutting speed. The results show that the surface 
roughness and surface defects of micro-grooves have significant effects on the prediction of imaging mechanism, 
which is valuable to support the design and manufacture of SRM for micro-vision-based precision positioning 
measurement methods in the nano-scale. Considering the influence of illumination of the pixel intensity of 
microstructure imaging, nanoscale imaging experiments with controlled illumination will be performed to reveal 
the influence of the mapping relationship between the microstructure surface topography height distribution 
and the corresponding image intensity in future work.

Data availability
All data generated or analyzed during this study are included in this published article.
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