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Neural network analysis 
of quasistationary magnetic fields 
in microcoils driven by short laser 
pulses
Iu. V. Kochetkov1, N. D. Bukharskii1, M. Ehret2,3, Y. Abe4,5, K. F. F. Law4, 
V. Ospina‑Bohorquez6, J. J. Santos2, S. Fujioka4, G. Schaumann3, B. Zielbauer7, 
A. Kuznetsov1 & Ph. Korneev1,8*

Optical generation of kilo-tesla scale magnetic fields enables prospective technologies and 
fundamental studies with unprecedentedly high magnetic field energy density. A question is the 
optimal configuration of proposed setups, where plenty of physical phenomena accompany the 
generation and complicate both theoretical studies and experimental realizations. Short laser drivers 
seem more suitable in many applications, though the process is tangled by an intrinsic transient 
nature. In this work, an artificial neural network is engaged for unravelling main features of the 
magnetic field excited with a picosecond laser pulse. The trained neural network acquires an ability 
to read the magnetic field values from experimental data, extremely facilitating interpretation of 
the experimental results. The conclusion is that the short sub-picosecond laser pulse may generate a 
quasi-stationary magnetic field structure living on a hundred picosecond time scale, when the induced 
current forms a closed circuit.

Conversion of laser light to magnetic field in laser‑driven coils
Strong magnetic fields affect properties of matter on different scales1. In the Universe, they may reach the 
Schwinger limit ruling extremely energetic astrophysical processes, while being very modest though necessary for 
life on Earth. Magnetic fields of a certain strength for high-end laser-plasma applications are routinely produced 
in laboratories, either with high-voltage discharge drivers, or in an optical way, meaning that the electric currents 
are induced by intense laser pulses. Indeed, invention of the Chirped Pulse Amplification technique2 potentiates 
laser radiation to possess an ultrahigh energy density and to become an excellent driver for strong electrical 
currents suitable for generation of extremely strong pulsed magnetic fields.

Several key approaches are extensively used for optical magnetic field generation (OMFG). The idea 
to use intense laser pulses for strong magnetic fields generation3 followed observations of intense currents 
and spontaneous magnetic fields in experiments of laser interaction with matter. Since the first experiments 
with specifically designed targets4 the optical approach is considered as a promising and convenient method. 
Generally, it is based on inducing electric currents in targets with certain loop-like geometries, when an intense 
laser pulse interacts with another part of the target. These so called capacitor-coil targets with a mm-scale size 
work in a quasi-stationary regime5,6, the strong electron current forms a closed circuit exciting and sustaining a 
strong magnetic field near the target loop. A wide range of possible applications is foreseen for this scheme, e.g. 
controlling high-energy charged particles transport7,8, enhancing fusion output in experiments on laser-driven 
implosion of magnetized inertial confinement fusion targets9–11 or producing magnetized plasma for laboratory 
studies of astrophysical processes12–14. Their compact size, no need of bulky and expensive capacitor banks and 
the ability to create magnetic fields one or two orders of magnitude higher than those reached with other methods 
make laser-driven generators preferable in many cases. Besides, various applications may require magnetic fields 
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of different strength, geometry and temporal dependence, which may be effectively controlled by the parameters 
of laser pulses and the target.

Use of short laser pulses changes qualitatively the physics of magnetic field generation in capacitor-coil targets. 
The discharge may evolve rapidly and the setup needs optimization for efficient work. Intense short laser pulses 
are rather suitable for generation of energetic particles and secondary radiation, and they may also be more 
efficient for creating strong discharge electric currents, but just target size and setup down-scaling looks like an 
undesirable solution which limits many possible applications. Here, we show the way to reach a quasi-stationary 
operating regime in sub-millimeter targets with use of intense picosecond laser pulses.

When a short laser pulse interacts with an extended target, a short discharge pulse induced by the interaction 
propagates along the target15 almost with the speed of light. To reach a quasi-stationary regime with short 
laser pulses, reduction of the target perimeter down to the values less than the laser pulse length was proposed 
earlier16–18. A reduced size of the coil in OMFG makes the effective magnetized volume quite small, so the 
principal question addressed here is whether the target with the coil perimeter longer than the pulse length may 
produce a quasi-stationary magnetic field. In the presented experimental study, a coil-shaped target with the 
diameter d ∼ 100 µ m is irradiated on the free end. For this size the time needed for a discharge pulse to close 
the circuit is ≈ πd/c ∼ 1 ps, which appears to be longer than the 0.5 ps of the driver used. However, as shown 
below, if the circuit is closed before the discharge reaches the end of the coil, the generated magnetic field evolves 
towards stationary distribution. This allows to abstain from reducing the target size and shows the way of using 
powerful short laser pulses with practically interesting sub-millimeter targets.

The considered optically-driven magnetic field generator is a coil-shaped target, cut from 20 µ m copper foil, 
shown in Fig. 1a,b. The laser beam is focused on the free end of the coil, as shown in Figs.  1 and 2. Under the 
irradiation, the hot electrons escape the target19,20 inducing a strong positive potential, which drives a discharge 
current along the target. As the laser pulse length is shorter than the coil perimeter, the discharge forms a 
finite pulse, which would go to the ground for an open circuit. However, as shown below, for a reasonable thin 
slit, plasma from the irradiated coil end fills it before the front of the discharge pulse comes. This closes the 

Figure 1.   The target sketch (a) and the magnified photographic image (b). Scheme of the setup used in 
Shot #18 (c) and #22 (d). Proton radiography image obtained in Shot #18 in the second layer of RCF stack, 
corresponding to Bragg peak position for ≈ 3 MeV protons, passing the studied region ≈ 25 ps after the end of 
the laser pulse; darker colors correspond to higher proton concentrations (e). The same for Shot #22 (f).

Figure 2.   Sketch of the experimental setup for magnetic field generation and proton radiography 
measurements with two laser beams—SP1 and SP2.
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circuit and allows the current to form a self-consistent quasi-stationary structure with the magnetic field. In the 
experiment presented here, the field was measured with proton radiography diagnostics21–23. In our study, the 
auxiliary protons generated with Target-Normal Sheath Acceleration (TNSA) mechanism24 are passing through 
the magnetized region and deflecting there according to the local fields, leaving afterwards an imprint on the 
radiochromic films, see Fig. 1 and Supplementary Material for further insight. To ensure the presence of the 
magnetic fields for a long time after the irradiation, the probing time reached a few tens of picoseconds.

Experiment
Experimental study of optical magnetic field generation with coil-shaped targets was performed at PHELIX laser 
facility in Darmstadt, Germany. Laser-driven proton radiography was used as the main diagnostic for magnetic 
fields in the target region. The PHELIX laser pulse with wavelength of 1056 nm and duration of 0.5 ps was divided 
into two beams—SP1 and SP2, each containing an energy of ≈ 50 J. The beams were tightly focused to a spot of 
≈ 10 µ m FWHM (full width at half maximum) using two parabolic mirrors with focal lengths of 400 mm (SP1) 
and 1500 mm (SP2), yielding relativistic intensities ≈ 1019 W/cm2 on the targets. SP1 was focused on the open 
end of the coil target to excite there strong discharge currents, while SP2 irradiated a thin gold foil, used as a 
source of diagnostic TNSA-accelerated protons24, which then passed through the induced electric and magnetic 
fields near the coil target, see Fig. 2. An imprint of the fields, deviating the protons, was collected by a stack of 
several HD-V2 radiochromic films (RCF). The active layer of each RCF colorizes under exposure to ionizing 
radiation, producing a proton image that contains information about the fields induced around the target. Multi-
layer RCF setup enables to characterize their time evolution, since due to Bragg peak absorption of ions in matter 
each layer registers predominantly protons of one narrow energy range25, passing the studied region at a certain 
moment of time. The coil target was probed at 27◦ to its axis, the distance between TNSA foil and the center of 
the coil target was 2.95 mm, the distance between the coil target center and the RCF plane was 163 mm, which 
corresponds to magnification factor of 56. Diagnostic protons had energies in the range of 1–6 MeV, yielding 
a time-of-flight difference of  130 ps for the specified distance between the target and proton source, and the 
time resolution of < 20 ps, if the signal on the second and subsequent layers of the RCF stack, corresponding to 
> 3 MeV protons, is considered. In order to distinguish diagnostic protons from protons emitted by the studied 
target, a metallic mesh with 1500 bars per inch was placed on the way of the probing proton beam.

Probing the generated fields in the experiment was performed for two opposing target orientations in shots 
#18 and #22, see Fig. 1c,d and the obtained radiography images in Fig. 1e,f. Their structure presents a void with 
distinct caustics on the boundary and a shadow of the target stalk. These images correspond to the latest time 
moment available, that is ≈ 25 ps after the end of the laser pulse, which is much greater than its duration 0.5 ps. 
The considered layer possesses enough quality for the assessment of electromagnetic fields, while the signal on 
radiographs related to other time moments is not suitable for an accurate analysis: for earlier times the signal 
appeared to be rather dim, while for later times it was over-saturated. An interested reader can find these radio-
graphs and additional explanations in the Supplementary Material.

Analysis of the obtained radiographs is a non-trivial inverse problem. A viable and commonly used approach 
is to perform the data assessment by comparison of experimental radiographs with those obtained in synthetic 
ballistic simulations, where probe protons pass through model magnetic and electric fields. Parameters of the 
model fields are adjusted to match the radiographs. With some assumptions, it is possible5,6 to estimate magnetic 
fields using only few geometric parameters of radiograph images, such as the width of the ’bulb’ region with the 
reduced proton signal. However, geometric fitting is not always possible, as the chosen parameters may depend 
similarly on both magnetic and electric fields, simultaneously present around the target. Therefore, analysis of 
the whole image is more robust as it may catch the entire structure formed by electromagnetic fields, rather 
than certain geometric features. In general, deformation of the imprint from a rectangular mesh that is placed 
in the way of probe protons before they pass through the fields may also be considered for analysis5, though, for 
short laser pulses, it may be blurred because of the transient processes of the field formation, as it is in Fig. 1e,f.

Neural Network application to experimental data analysis.  Nowadays, machine learning 
(ML) comprises of a wide range of computing algorithms, methods and approaches, that can successfully be 
employed for data-processing tasks in a broad range of research fields, including elementary particle physics 
and cosmology, quantum many-body physics, quantum computing, chemical and material physics26. One of the 
subsets of ML are artificial neural networks (ANN), which process data with an algorithm, ’trained’ in advance 
on completely characterized data sets. This approach can reduce computational costs and human workload in 
tasks involving large extensive data sets, e.g. the separation of pulsar signals from radio frequency interference27. 
Neural network-based methods can be used to make predictions without solving computationally costly 
equations for certain physical processes, e.g. dissolution kinetics of silicate glasses28 and turbulence in subsonic 
flows29. Image processing is one of the most known field of ANN applications. It is worth to note their use 
in image restoration in regular30 and fluorescent microscopy31, nonmodel-based bioluminescence tomography 
reconstruction32, rapid decoding of the sample image from its hologram over an extended depth of field range33, 
wavefront estimation34 or robust photomask synthesis in inverse lithography technology35. Recently it has been 
demonstrated using synthetic data, that ANN in principle can be used to analyse proton radiography images and 
deduce important magnetic field parameters36. Here we develop this idea to reconstruct electromagnetic fields in 
a real experimental setup using a Convolutional Neural Network (CNN), trained on numerically generated data. 
The chosen CNN architecture is known as one of the most widely used in various computer vision tasks37, and 
its modifications always win in annual ImageNet Large Scale Visual Recognition Challenge38. CNN possesses a 
significant advantage for our problem compared to other methods as it is highly tolerant to shifts of the region of 
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interest inside the image. This benefit comes from the inclusion of one or several convolution layers that are able 
to extract some characteristic features of the image regardless of their position.

In order to produce radiographs in ballistic simulations and to create synthetic data for the ANN training, 
model electromagnetic field distributions are required. For that, 2D Particle-in-Cell (PIC) calculations were 
performed using codes Smilei39 and PICLS40. According to the results, detailed below and in the Supplementary 
Materials, the distribution of magnetic field in the target is mostly defined by surface electric currents. In the 
setup considered here, the electric currents are strongly confined by the target geometry and description of their 
evolution allows 2D consideration, while the laser-target interaction may need more sophisticated approaches. 
Due to the planar target geometry the currents are also assumed to have planar structure, with Jx and Jy being the 
main current components. Thus, in order to obtain magnetic field distributions is space, one can consider planar 
current loop consistent with 2D simulation results, orient it in accordance with the target orientation relative to 
the probe beam (see Fig. 2) and apply the Biot-Savart law to obtain the values of quasistationary magnetic field 
spatial distribution. Therefore, the first key parameter to model magnetic fields is the current value J  along the 
target coil, closed through the expanded plasma near the irradiated coil end. Electric field distribution for bal-
listic simulations is defined by the target potential Φ , which is the second key parameter.

For analysis, a CNN architecture was used, as described in the Methods section, see Fig. 3a. It allows detecting 
similar ’informative’ patterns in different parts of the data array41 and thus enables extracting desired parameters 
for images where the main void structure may be shifted or tilted. It was found, that the main information about 
electromagnetic fields near the target is encrypted in geometry of the ’void’ structure, which allowed to simplify 
the data and to reduce processing errors by using just the contour of the voids extracted from binarized images 
using OpenCV library tools (see Fig. 3, c2, c3, d2). This approach is not very sensitive to the quality of the proton 
beam, and the degree of colorization of a particular area of the RCF does not necessary have to be directly pro-
portional to the number of proton that deposit their energy in this area. Such method is particularly relevant due 
to the fact that in the real experiment other sources of ionization were present—non-diagnostic protons from the 
studied target e.g. those with higher energies, fast electrons, X-ray and gamma radiation. Their interaction with 
the RCF stack could, for example, lead to some colorization of the inner ’void’ region, which is not reproduced 
in ballistic simulations. However, the shape of the ’void’ contours is defined mainly by the electromagnetic fields 
at the studied region and is not affected by the quality of the diagnostic proton beam and other factors. Thus, it 
is more appropriate to retrieve the field parameters from the images of the ’void’ contours.

In practice, there is an intermediate step needed to extract the contour from the whole image. Its shape 
depends on the parameters of the contour retrieval algorithm, which is detailed in the Supplementary Materials. 
In this work, the parameters are chosen so that on the one hand, no important information about the ’void’ shape 
is lost due to e.g. over-blurring and on the other hand, no artefacts of the proton beam or shadows of the metal-
lic grid modify the main structure, defined by the examined fields, which act on diagnostic protons integrally 
along the whole trajectory causing therefore their regular deviations. The obtained parameter ranges appear to 
be wider for images with higher quality. For the experimental image, the exemplary contours extracted using 
parameters within a reasonable range are shown in Fig. 3, panels c2 and c3. For high quality synthetic data the 
contours are almost insensitive to the parameters in a reasonable range. So, the span of parameters, used in the 
intermediate step for the experimental data, defines an additional error of the fields definition. The parameters 
of the magnetic and electric fields presented below correspond to the contour shown in Fig. 3, c2, while other 
possible contours, shown in the Supplementary Material, are used to estimate the errors originated on this step.

‘Void’ contour images are the input to the CNN, while the two key field parameters J  and Φ are the outputs. 
The CNN is trained to recreate these continuous parameters, making it a regression problem in the established 
terminology. To create the pool from which the training and validation data can be drawn, 961 synthetic 
radiographic images with resolution of 300× 300 were generated on a map (J ,Φ) with the total electric current 
J ∈ [2, 50] kA range with a step of 1.6 kA (the magnetic field in the coil center B ∈ [25.3, 632.5] T range with 
a step of ≈ 19.6 T) and the electric potential Φ ∈ [0, 150] kV range with a step of 5 kV. Before each image was 
passed into the ANN, slight random tilts and shifts were additionally introduced to it to make the ANN more 
robust and insensitive to the presence of these factors in the experimental data. A total of 10 training runs were 
performed. In order to split the data between the training and validation subsets, k-fold cross-validation42 with 
k = 10 was employed as the resampling technique. For this purpose the whole data set was randomly divided into 
10 subsets, one of which was selected for estimating the model performance while the rest were used explicitly 
to fit the model. Repeated training runs were performed with a different selection of the training and validation 
subsets, until all possible variants are exploited. The model performance was estimated as the average of the 
performance estimates on each of the training runs. The latter, in turn, was found by calculating root-mean-
square deviations σ s

B and σ s
U of the predicted values for the synthetic data from their real numbers, available 

for the artificially created data. Hyperparameter values of the ANN such as the number of convolutional layers, 
number of filters, number of hidden nodes in the fully-connected layer and etc. were adjusted on the basis of 
grid search algorithm43, i.e. searching for the minimal value of the root-mean-square error for the validation set 
in the hyperparameter space of the learning algorithm. This method is one of the most simple and widely used 
ones along with the random search44. More sophisticated methods, see, e.g.,45, may be implemented in future 
researches to further boost the ANN performance. For example, typical learning curves corresponding to training 
run #1 and displaying the decrease of the mean squared error with the number of epoch are shown in Fig. 3b. The 
training is halted after 500 epochs, although the validation curve still continues to decrease, because prediction 
errors for the synthetic data at this point become sufficiently low and are not expected to change dramatically 
with additional training. The trained models were then applied to the real experimental data and a total of k = 10 
predictions for the magnetic field at the coil centre Bpred. and electric potential of the target Upred. were obtained. 
The results of 10 training runs including the root-mean-square spread σ s

B and σ s
U obtained with the synthetic 
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Table 1.   Summary of the results obtained by the ANN in 10 training runs: root-mean-square errors σ s
B and 

σ s
U obtained using the synthetic data, and predicted values for the magnetic field at the coil center Bpred. and 

the electric potential of the target Upred. , obtained by passing the real experimental image through the trained 
CNN.

Run # σ
s
B , T σ

s
U , kV Bpred. , T Upred. , kV

1 7.8 1.7 235.9 30.2

2 12.4 2.0 209.4 35.8

3 10.4 2.3 205.5 30.3

4 9.1 1.7 215.3 28.9

5 12.2 2.4 187.2 36.5

6 9.0 2.0 198.0 35.0

7 8.2 2.1 229.6 33.8

8 8.3 1.6 234.0 24.4

9 9.6 2.4 223.4 30.3

10 10.9 1.7 183.8 38.7

Average 9.8 2.0 212.2 32.4

�RMS – – 17.8 4.1

Figure 3.   Architecture of the developed CNN (a) and learning curves for training and validation data sets, 
obtained in training run #1 and displaying the decrease of the mean squared error with the number of epoch 
(b). Panels (c1) and (d1) provide a comparison of proton patterns obtained in the experiment and in simulation 
for the field parameters extracted in training run #1. Corresponding ’void’ contours used for assessment of the 
fields are shown in panels (c2, c3, d2); for the experimental image two different possible contours are shown, 
(c2) corresponds to the parameters of the contour retrieval algorithm that intuitively provide a better fit of the 
’void’ region boundary while (c3) corresponds to the parameters which match those that were used to retrieve 
the contours from all synthetic images. For easier comparison experimental contours are shown without inner 
fill and are imposed on the original experimental image.
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data, predictions Bpred. and Upred. made on the real experimental data, as well as their average values and root-
mean-square deviations �RMS of Bpred. and Upred. from their mean are summarized in Table 1.

As can be seen from Table 1, root-mean-square errors σ s
B and σ s

U  are rather small, meaning the model 
performs quite well on the synthetic data. Namely, it can retrieve magnetic fields in range [25.3, 632.5] T with 
a root-mean-square error of about 10 T, which is less than 2% of the range size; and for the electric potential 
in range [0, 150] kV the root-mean-square error is just 2 kV, which is close to 1% of the range size. However, 
the actual error for the real experimental data is different. Each fitted model predicts slightly different values of 
the magnetic field and electric potential, resulting in some variability of the retrieved parameters. Thus, their 
average values are considered as final estimates obtained by the ANN-based approach, while root-mean-square 
deviations from these average values �RMS characterise dispersion, or degree of variability of the ANN-based 
estimates when the ANN is applied to the real data. According to Table 1, the corresponding root-mean-square 
errors resulting from this variability amount to σB

= 8 % in case of the magnetic field at the coil centre and 
σU

= 13 % in case of the electric potential of the target. The resulting error can be estimated by multiplying the 
obtained standard deviations by the Student’s t-coefficients for a given confidence interval. For the confidence 
level of 95% we obtain relative errors δBtr. ≈ 18 % for the magnetic field and δUtr. ≈ 29 %. An additional source of 
error is related to the contour retrieval uncertainty. Complementary analysis performed with different possible 
experimental contour shapes provided in the Supplementary Material shows that the resulting overall spread 
of the values in root-mean-square error sense is about σB

cont. = 6 % for Bpred. and σU
cont. = 16 % for Upred. . The 

resulting errors for the same 95% confidence level are δBcont. ≈ 14 % and δUcont. ≈ 36 %. These errors are of the 
same order as the training uncertainty calculated from the results of multiple training runs, see Table 1, and 
thus both errors should be taken into account to assess the overall accuracy of the method. Estimating the total 
error as δtot. =

√

δ2tr. + δ2cont. , where δtr. denotes the error related to the ANN training and δcont. denotes the error 
resulting from the contour selection uncertainty, gives δBtot. ≈ 23 % and δUtot. ≈ 46 % for the relative errors of the 
magnetic field and the electric potential, respectively. Note that the relatively large values are the consequence 
of the high confidence level.

Two additional tests were conducted to justify the choice of the CNN architecture for this problem. In both 
cases all convolutional layers and the second and third pooling layers were removed. Thus, only the first pooling 
layer was kept in order to reduce the size of the data and the number of parameters for optimization. The rest of 
the hyperparameters were left untouched. In the first of the two tests synthetic data with no additional modifi-
cations, i.e. shifts and tilts, was used. In contrast, in the second test random shifts in range ± 20 % of the image 
size and random tilts in range ± 10◦ were introduced to the images from both synthetic and validation data sets. 
It was found than in the first case the root-mean-square errors for the magnetic field and the electric potential 
are ≈ 15 T and ≈ 3 kV, respectively, which complies with the values obtained by using the CNN architecture 
(see Table 1). However, in the second case the errors increased by more than a factor of 3, up to 46 T for the 
magnetic field and 11 kV for the electric potential. Thus, we can conclude that convolutional layers do indeed 
play a significant role in the analysis of imperfectly positioned patterns, which is the case if real experimental 
data is considered. Therefore, it is appropriate to use the CNN for this problem.

The validity of the ANN-produced results was additionally studied with a correlation analysis. Two-dimen-
sional cross-correlation functions were calculated for the pairs of the experimental image and the synthetic 
images on the map (J ,Φ) as C(x, y) =

∑

u,v f (x, y)g(x + u, y + v) , where f and g are the normalized pixel values 
of the experimental and synthetic images. The peak of the cross-correlation function was attributed to the image 
similarities. In Fig. 4 the distribution of the cross-correlation peak values are shown. The region of high correla-
tion has the black cross in the center with error bars indicating deviation of the cross-correlation peak from its 
maximum for less than 0.02. As can be seen, there seems to be a sufficiently strong anti-correlation between the 
magnetic and the electric field. Increasing the one while the other remains the same may lead to similar results, 
as in the case when they are swapped. However, there are certain features that enable distinguishing between 
the two. One of them is the shadow of the stalk, the shape of which is mostly defined by the electric potential. 
It enables to constrain the value of the latter and determine the magnetic field using the rest of the structure. 
From this consideration, the values of 208± 83 T are obtained for the magnetic field and Φ = 42± 22 kV for the 
electric potential. The CNN-based results are shown in the same plot by blue crosses. They are scattered in the 
area shifted from the best-fit region in the correlation-based estimate. Although the stalk shadow is accounted 
for in the training data, the ANN-results also seem to exhibit some anti-correlation between the magnetic field 
and the electric field, implying that the constrained range for the latter still leaves some adjustment freedom, 
leading to the observed retrieval errors.

The results obtained with the two different methods closely coincide with one another, although some sys-
tematic difference is observed. It is related mostly to the potential Φ . So, it could be explained by the different 
treatment of a certain image feature related to the electric field. One such feature is the shadow of the target 
stalk, since the magnetic field in our consideration is mostly confined inside the target cavity. The size of the stalk 
shadow varies along the perimeter and it has no distinct borderline, see panels c1–c3 on Fig. 3. These irregulari-
ties may lead to a bias in the value of the extracted electric potential of the target observed.

A major advantage of the neural network-based method is its computational effectiveness in case of greater 
amount of experimental data. Initially, both methods used require a synthetic data set. With it, the neural 
network-based method requires a one-time computation of training the artificial neural network, while for 
the two-dimensional cross-correlation function calculation is necessary for each analysed image. The trained 
ANN without much additional efforts allows to obtain the result for the second experimental image in Fig. 1, 
(f), proposing the magnetic field value of 250± 130 T. Obviously, neural network-based method is definitely 
preferable in case of an extensive parametric scan for a certain OMFG scheme.
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Numerical particle‑in‑cell simulations
Phenomenon of the magnetic field generation in the considered setup may be explained with a simple and 
transparent physical model. According to the numerical modelling, a quasi-stationary magnetic field is 
formed only if the current circuit closes through the laser-generated plasma. An insight comes from the 
parametric scan, performed with the reduced simulation setup. Targets in this set of simulations consist of 
electrons ( ≈ 90 times the critical density) and ions with charge Z = 10e and mass A = 544 corresponding to ×8.5 
the atomic mass of copper, to equate mass densities to the real values. The simulation box is 35.7 µm×46.5 µ m 
or 5376× 7008 cells with 10 particles of each kind per cell, the time step is ≈ 7.5 · 10−3 fs. The laser intensity is 
5.55× 1019 W/cm2 . Magnetic field distribution at ≈ 1.1 ps is shown in Fig. 5 (left panel), it is almost uniform with 
an average value of ∼ 1 kT. The temporal behavior of the magnetic field in the coil in this simulation is shown 
with a blue curve in Fig. 5 (right panel). Following the fast growth up to ∼ 7 kT at ≈ 0.25 ps, the magnetic field 
gradually decreases after the laser pulse ends. However, at ∼ 0.8 ps the decrease stops at ∼ 1 kT level. A quasi-
stationary field distribution is formed and stays then for a time, much exceeding the laser pulse duration. This 
happens if the circuit closes through the gap between the end of the coil and its opposite side due to expansion of 
the laser-heated plasma with density high enough to sustain the current in the coil. For magnetic fields of ≈ 1 kT 
the surface current density is about 1 kA/µ m. A simple estimate where the required electron density ne in the gap 
is related to the surface current density j as ne = j/ewc , where w ≈ 2 µ m is the width of the conducting layer in 
the gap, and c is the light velocity, gives ne ∼ 1019 cm−3 . In simulations, the electron density in the gap reaches 
1018–1019 cm−3 , which is in a qualitative agreement with the obtained estimate. In contrast, if the circuit does not 
close before the laser-induced current pulse passes the coil, the magnetic field further decays to zero, as shown in 
Fig. 5 (right panel), with an orange curve. This situation was modeled by increasing artificially the mass of ions 
by 36 times, which sufficiently decreases plasma expansion, so that the electron density in the gap does not not 
exceed 1016 cm−3 when the discharge passes the coil length. In this case the discharge then propagates further to 
the stalk. The numerical analysis is presented in more details in the Supplementary Materials.

In the experiment, the magnetic field deduced from proton measurements corresponds to the total electric 
current of ≈ 20 kA. In order to evaluate electron density in the gap, estimate the number of electrons with the 
energy that obeys ponderomotive scaling Ne = χElas/(mec

2

√

(1+ χa20/2)−mec
2) , where χ ∼ 0.1..0.2 is the 

laser absorption coefficient, Elas = 50 J is the total energy in the laser beam, mec
2
≈ 0.5 MeV is the electron rest 

energy and a0 ≈ 3.8 is the normalized vector potential that corresponds to the laser intensity of 2 · 1019 W/cm2 . 

Figure 4.   The peak value of cross-correlation between the normalised experimental and synthetic images as a 
function of the magnetic field in the target center and the electric potential of the target. The correlation peak 
values are normalized per maximum of the autocorrelation function C0(x, y) =

∑

u,v f (x, y)f (x + u, y + v) . 
Black cross with error bars shows the best-fit for the region of the maximum cross-correlation peak value. 
Positions of the blue crosses show the ANN-retrieved results obtained by each of the 10 models that were fit 
and validated on different subsets of the data, while their size indicates retrieval errors estimated by testing the 
model on the validation subsets created from the artificially created data. Cyan cross shows the resulting CNN-
based estimate obtained by taking the mean of 10 predictions made by the models trained on different training 
runs, see Table 1; its error bars correspond to the uncertainty which results from the spread of the predicted 
values and the contour retrieval error, with the size of the interval corresponding to the 95% confidence level.
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The result Ne ≈ 1015 is distributed in the volume of ≈ 503 µm3 , sufficient to close the internal tip of the spiral 
and its opposite end, the value of ∼ 1020 cm−3 is obtained for the average electron density in the gap. Multiplying 
it by a factor eSv, where S = 10 µm2 is the area of a conducting layer and v ≈ c corresponds to the light velocity 
for relativistic electrons, we deduce the electric current ≈ 100 kA, which is enough to explain the stationary 
behavior of magnetic field observed in the experiment.

Outlook
Many foreseen optical-based applications, like particle acceleration, involve intense short laser pulses. For accel-
erated particle control, same laser pulses may create quasi-stationary electromagnetic structures, with a well 
controlled magnetic component, created by a closed current circuit in a coil. For potentially interesting big 
targets, the circuit closure may be controlled by the same laser driver, which is responsible for the excitation of 
the discharge current, even for very short laser pulses in femtosecond domain46. Important conclusion of the 
presented analysis is that in the short laser pulse regime, the stationary structure formed by electric current with its 
magnetic field needs an electric connection between the two loop ends. This relates to the coil targets considered here 
as well as to the capacitor-coil targets and their variations studied elsewhere. The connection may be formed by 
plasma expanded around the irradiated spot, and with it, the quasi-stationary models describing the current and 
magnetic field evolution may become valid. Otherwise, the relevant physical model is a non-stationary discharge 
pulse propagation along a curved wire, resulting in rapidly decreasing transient magnetic fields.

With use of the Neural Network, we deduce from the experimental data, obtained for a coil irradiated with 
a picosecond driver delivering several tens of Joules, that the magnetic field is of the order of hundreds of Tesla 
long after interaction. Namely, the magnetic field was estimated as ≈ 210± 50 T and ≈ 250± 130 T for the two 
opposite target orientations, about 25 ps after the end of the laser pulse. The field structure remains stationary 
for tens of picoseconds due to the discharge circuit closure, which is evidenced by theoretical modelling. The 
presented neural network-based method of retrieving the field parameters shows a good accuracy, robustness 
and higher computational effectiveness than an alternative correlation-based technique. Unlike the correlation 
analysis, it does not require additional interpolation between data points and in principle can be used to obtain 
electromagnetic field values outside of the ranges used to construct synthetic data sets, though presence of a sys-
tematic error may depend on the validity of the assumed electromagnetic field structure as well as the data quality.

Figure 5.   Results of 2D PIC simulations. Left panel: spatial distribution of magnetic field ≈ 0.75 ps after the end 
of the laser pulse, averaged spatially with a Gaussian kernel of ≈ 0.5 µ m to reduce visual noise. Right panel: time 
evolution of the magnetic field inside the ’snail’ cavity for two different scenarios of magnetic field generation, 
showing that the generated magnetic field evolves towards stationary distribution if the circuit is closed before 
the discharge reaches the end of the coil, which proposes a way of using short laser drivers with practically 
interesting large coils. Magnetic field is averaged over a 5× 5 µm2 square, marked with the white dashed line on 
the spatial distribution plot.
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Methods
Synthetic data generation with ballistic proton simulations.  The training data was created 
in a set of ballistic simulations where Newton’s equations of motion for individual protons under the 
action of the Lorentz force were solved for different model magnetic and electric field distributions 
d �pi/dt = qp�E(�ri ,Φ)+ qp[ �Vi × �B(�ri ,J )] , where �ri , �Vi and �pi describe the coordinates, velocity and momentum 
of a test proton with electric charge qp at a time moment t, while �B(�ri ,J ) and �E(�ri ,Φ) are the quasi-stationary 
magnetic and electric fields at query points �ri , proportional to the electric current in the loop J  and the electric 
potential of the target Φ , respectively. The magnetic field was calculated with 10 µ m resolution using the Bio-
Savart law under the assumption that it is formed by discharge currents flowing along the coil inner and outer 
surface. Electric field was calculated on the same 10 µ m grid under the assumption that the target is charged to a 
certain potential. Based on PIC simulations, it was concluded, that the change rate for the magnetic field during 
its measurement 25 ps after the end of the laser pulse was low in comparison to the time necessary for the particle 
to pass the studied region, i.e. magnetostatic approximation was made. And the electric field at the same time 
moment was mainly expected to arise from the positive charge formed on the target as a result the outer electron 
ionization. As this charge had enough time to redistribute with approximately the velocity of light across the 
whole target, the latter was assumed to be uniformly charged to a fixed potential and electrostatic approximation 
was used. Protons in ballistic simulations were considered to originate from a point source. Charge-separation 
effects in the proton beam were neglected, as they are typically relatively low in TNSA-generated particle 
beams47. Thus, proton deflection was assumed to be caused purely by electromagnetic fields induced around the 
target. The force acting on a proton was linearly interpolated from the values at the grid points. Time resolution 
was chosen in accordance with the grid step � and initial proton velocity V0 : dt = �

2V0
 . To account for a shadow 

produced in the beam by protons that hit the target material all particles with trajectories intersecting the target 
body were terminated from the simulation. Using such test particle approach, we created synthetic data sets for 
training and validating the neural network for magnetic field values at the target centre in the range from 25.3 T 
to 632.5 T and electric potential values in the range from 0 to 150 kV.

Neural network architecture.  For analysis of the obtained data, a CNN architecture was used, as it allows 
detecting similar ’informative’ patterns in different parts of the data array41 and thus enables to extract desired 
parameters for images where the main proton void structure may be shifted. It is especially important when 
working with both synthetic and experimental data jointly, since it allows to skip an alignment of simulated 
to real image data. The first stage of our network consists of three convolutional layers, each followed by a 
pooling layer. The former are used to produce a set of feature maps by convolving the input image with different 
optimizable kernels. Each feature map, obtained with one specific kernel, is then transmitted through a nonlinear 
activation function, for which we used a common Rectified Linear Unit (ReLU): f (x) = max(0, x) . The obtained 
data arrays undergo down-sampling in a pooling layer. This is achieved by dividing feature maps into small 
patches and taking local maxima as the new feature map ’pixel’ values. Pooling effectively reduces the size of the 
data and the number of parameters for optimization, while substituting several neighboring ’pixels’ with a single 
value makes ANN tolerant to small shifts and distortions in the analysed image. Output of the third pooling layer 
is flattened and sent to a fully-connected (dense) layer, connecting each node of the previous layer to every node 
of the subsequent final layer. It is composed of 10 neurons which take an input vector, apply to it optimizable 
weights and biases and pass it through an activation function. For this layer another common nonlinear function 
was used: f (x) = σ(x) = (1+ e−x)−1 . The described architecture is illustrated in Fig. 3a. The output layer has 
two nodes, corresponding to the two aforementioned key variables the ANN is trained to extract. The process 
of training implies iterative optimization of feature extracting kernels along with weights and biases of each 
neuron. On each iteration (epoch) loss function is calculated, which in our case presents mean squared error 
of extracting the two key parameters. Then the kernels and weights in every layer are updated to minimize the 
loss function. It is performed on the basis of an optimization algorithm, in this particular instance first-order 
gradient based optimization employing Adam algorithm48 was used.

Cross‑correlation analysis.  Correlation analysis was employed as an additional method of retrieving 
electromagnetic field parameters. In order to implement it, we took the same data set that was used for the 
training of our neural network. For each image from this data set a two-dimensional cross-correlation function 
was determined by computing the sliding dot product of the experimental image with the given synthetic one. 
This enables finding similar features in both images regardless of their position in the image. Thus, when the 
main patterns corresponding to the ’void’ structure overlap, the value of the cross-correlation function increases. 
The better the images overlap, the higher is their cross-correlation, making it a useful metric for determining the 
degree of similarity between two images. In our case, the maximum value of two dimensional cross-correlation 
was used. All the compared images were preprocessed—first, a mean pixel value was subtracted from each image 
and afterwards the image was divided by its standard deviation. This procedure enables to ensure that the increase 
of the cross-correlation peak is caused solely by the close overlap of the informative ’void’ structures with each 
other and is unaffected by high background noise or different brightness of one of the two images. The resultant 
correlation peak values were divided by the value of the autocorrelation peak, which implies comparison of 
the experimental image with itself, thus making 1.0 the highest degree of similarity in such consideration, and 
interpolated on a grid with resolution ≈ 2 T for the magnetic field at the target centre and ≈ 0.5 kV for the electric 
potential of the target. As a result, two-dimensional correlation maps with the distinct ’best-fit’ region with high 
correlation in a certain range of parameters were obtained, enabling a simple estimation of the parameters of the 
fields and their comparison to the results, obtained with the artificial neural network.
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A two-dimensional plot in Fig. 4 shows the dependence of the value of cross-correlation peak on the magnetic 
field in the target center and the electric potential of the target. The correlation peak values are normalized per 
maximum of the autocorrelation function for which both f and g=f are pixel values of the same experimental 
image. The region of high correlation and, hence, the region in which the field parameters provide the best fit to 
experimental data, has a prolonged oval shape, with the black cross in the center.

In the case of complex field distributions the described ANN approach would be much more computation-
ally effective in a long run. After creating the synthetic data, the neural network-based method would require a 
one-time computational cost of training the artificial neural network, while for the other method computation 
of two-dimensional cross-correlation function would be necessary for each new analysed image. Thus, neural 
network-based method is more preferable when there are multiple images for the same target which need to 
be analysed. If the distribution of electromagnetic fields is the same for these images, and only its parameters 
are different due to, for example, different laser intensity or target material, it would only take a few seconds to 
preprocess the images and pass them through the trained network to obtain the values of these parameters. In 
order to illustrate this idea, we have estimated the total computational time which would be necessary with our 
computational resources to process 6 experimental images, corresponding to the same target, but, for instance, 3 
different laser intensity levels and 2 different target materials, for the case when the electromagnetic field distri-
bution is parametrized by 3 values instead of 2, as it was in this paper. The resultant total time is estimated to be 
about 28 h with the neural network-based method and about 70 h with the cross-correlation analysis. Although, 
despite obvious computational advantage of the former, it should be noted that the correlation analysis allows 
to obtain a multi-dimensional map and estimate the size of the region where the parameters closely reproduce 
experimental ones, and thus properly estimate evaluation errors for these parameters. However, with a more 
complicated electromagnetic field structures, ANN-based approach would allow to explain the data in a multi-
dimensional parameter space, where other methods, like a cross-correlation analysis, would take too much time.
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