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Spatial distribution differences 
of 25‑hydroxyvitamin D in healthy 
elderly people under the influence 
of geographical environmental 
factors
Wenjie Yang1, Miao Ge1*, Yabo Wang1, Xinrui Pang1 & Congxia Wang2

The main targets of this were to screen the factors that may influence the distribution of 
25‑hydroxyvitamin D[25(OH)D] reference value in healthy elderly people in China, and further 
explored the geographical distribution differences of 25(OH)D reference value in China. In this 
study, we collected the 25(OH)D of 25,470 healthy elderly from 58 cities in China to analyze the 
correlation between 25(OH)D and 22 geography secondary indexes through spearman regression 
analysis. Six indexes with significant correlation were extracted, and a ridge regression model was 
built, and the country’s urban healthy elderly’25(OH)D reference value was predicted. By using the 
disjunctive Kriging method, we obtained the geographical distribution of 25(OH)D reference values 
for healthy elderly people in China. The reference value of 25(OH)D for healthy elderly in China was 
significantly correlated with the 6 secondary indexes, namely, latitude (°), annual temperature range 
(°C), annual sunshine hours (h), annual mean temperature (°C), annual mean relative humidity (%), 
and annual precipitation (mm). The geographical distribution of 25(OH)D values of healthy elderly in 
China showed a trend of being higher in South China and lower in North China, and higher in coastal 
areas and lower in inland areas. This study lays a foundation for further research on the mechanism 
of different influencing factors on the reference value of 25(OH)D index. A ridge regression model 
composed of significant influencing factors has been established to provide the basis for formulating 
reference criteria for the treatment factors of the vitamin D deficiency and prognostic factors of the 
COVID‑19 using 25(OH)D reference value in different regions.

Vitamin D is a fundamental regulator of host defenses by activating genes related to innate and adaptive immu-
nity. It not only boosts a person’s innate immune system, but also prevents innate immune system from becoming 
overactive. After analyzing data from the global COVID-19 pandemic, a team of researchers led by Northwestern 
University found a strong correlation between severe vitamin D deficiency and COVID-19  deaths1. The report 
showed that a high positive correlation between vitamin D levels and cytokine storms, and vitamin D deficiency 
was also found to be associated with death. Cytokine storms are caused by an overreaction of the immune sys-
tem, and it can severely damage the lungs, causing acute respiratory distress syndrome and patient death, which 
appears to be primarily responsible for the deaths of COVID-19 patients.

Vitamin D, also known as the sunshine vitamin, is mainly derived from the self-synthesis of the skin under 
sunlight, and a small part comes from food intake. This is due to the fact that sunlight is rich in ultraviolet rays. 
Ultraviolet rays are classified as ultraviolet radiation a (UVA),ultraviolet radiation b (UVB), and ultraviolet radia-
tion c (UVC)depending on the wavelength. UVB greatly promotes the body’s synthesis of vitamin D. Therefore, 
vitamin D is also a good index for solar UVB exposure. Vitamin D and UVA from sunlight also increase blood 
nitric oxide levels, which has many beneficial effects including reduced risk of infectious diseases, cardiovascular 
disease, and high blood pressure, in a seasonal  manner2–8.
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The value of serum 25-hydroxy vitamin D[25(OH)D] is the best index to evaluate the level of vitamin D. 
However, throughout the previous studies, it can be found that there were obvious regional differences in the 
reference value of serum 25-hydroxy vitamin  D9. The geographical environment may be the factor affecting the 
distribution of 25(OH)D reference  value10. The relationship between health and living environment is mainly 
evaluated from natural environment and social  environment11. Through regional comparison and case–control 
methods, a large number of studies have been carried out on the relationship between health, disease, natural 
and social environmental factors. Among them, the natural environment has a significant impact on the refer-
ence value of various medical  indicators12.

Therefore, from the point of view of natural environment, this paper constructed an index system to screen 
the factors that may affect serum 25(OH)D reference value in Chinese healthy elderly. The reference value of 
serum 25(OH)D of the elderly in different regions of China was predicted by constructing a model. Geostatistical 
analysis was used to explore the distribution trend of serum 25(OH)D reference value. In the end, the Influence 
of geographic environmental factors on the distribution of vitamin D reference value in healthy elderly people 
was explored.

Methods
Data collection methods. 25(OH)D reference value data source. Useing serum 25(OH)D as the keyword 
for subject searched in China national knowledge infrastructure (CNKI), Wanfang Scientific Journal Full-text 
Database, and PubMed Database, respectively. The total of 25,470 cases of serum 25(OH)D values from elderly 
people over 60 years old were collected (The samples were distributed in 23 provinces, 5 autonomous regions, 4 
municipalities, and 1 special administrative region, lack of Macao and Taiwan). Among them, 12,863 were males 
(50. 5%), and 12,607 were females (49. 5%). People who suffered from cancer, diabetes, osteoporosis, fractures, 
endocrine-related metabolic disorders or those who took drugs that affect 25(OH)D value were excluded. The 
selected subjects were all ethnic groups of Han nationality. The unit was ng/ml. This study of patient specimens 
was approved by the ethical committee of Shaanxi Normal University, in compliance with the guidelines of the 
1975 Declaration of Helsinki. All data were experimental data that obtained from published articles, which dis-
played in the Appendix. In order to protect the legitimate rights and interests of subjects and researchers, and 
to ensure the science and reliability of the research, informed consent was signed by the subject population or 
their families.

Construction of index system. We selected spatial location, terrain indicators, climate, and soil properties as 
geographic indicators, and subdivided them into 22 sub-indices (Table 1). The location indicators came from 
the National Bureau of Surveying and Mapping (http:// www. nasg. gov. cn/). The climate indicators were selected 
from the China Meteorological Science Data Sharing Service Network (http:// cdc. cma. gov. cn/). The soil indi-
cators derived from the Harmonized World Soil Database (HWSD) (http:// www. fao. org/ nr/ land/ soils/ harmo 
nized- world- soil- datab ase/ zh/).

Data analysis methods. Spatial autocorrelation analysis. The spatial autocorrelation of the sample data 
were analyzed by ArcGIS 10.2 software. The correlation between the value and the spatial position was deter-
mined by outputting the value of Mordan’s I, Z  score13,14. The formula for calculating the Moran’s I is as follows 
(1).
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Table 1.  The geographic indicators.

Type The name and unit of the indicator Type The name and unit of the indicator

Location
Longitude (°)

Soil

Reference bulk density of topsoil (kg/dm3)

Latitude (°) Gravel content of topsoil (% vol)

Terrain indicators Altitude (m) Organic matter content of topsoil (% wt)

Climate

Annual sunshine duration (h) pH value of topsoil

Annual mean temperature (°C) Cation exchange capacity of topsoil (cmol/kg)

Annual mean relative humidity (%) Base saturation of topsoil (%)

Annual recipitation (mm) Total exchangeable capacity of topsoil (cmol/kg)

Annual temperature range (°C) Calcium carbonate content of topsoil (%)

Soil

Percentage of sand in topsoil (% wt) Calcium sulfate content of topsoil (%)

Topsoil silt percentage (% wt) The alkalinity of topsoil (cmol/kg)

Percentage of clay in topsoil (% wt) The salinity of topsoil (dS/m)

http://www.nasg.gov.cn/
http://cdc.cma.gov.cn/
http://www.fao.org/nr/land/soils/harmonized-world-soil-database/zh/
http://www.fao.org/nr/land/soils/harmonized-world-soil-database/zh/
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where yi represents the attribute value of the spatial variable in the i region, yjis the spatial variable attribute 
value in the j region, n and wij represent the number of sample points and the spatial weight matrix element, 
respectively.

Z score formula is as follows (2).

Correlation analysis. Correlation analysis was applied to determine whether there were correlations between 
geographical environment factors and serum 25(OH)D reference  value15. SPSS 22.0 software was used to analyze 
the correlations between the reference value and 22 geographical factors. The correlation coefficient of Spearman 
grade was selected, and the expression of the Spearman grade correlation coefficient is as follows (3).

Models. Establish predicted models. Ridge regression analysis Ridge regression analysis is an improved least 
square method, which is more in line with the actual  situation16. The SAS 12.0 software was employed to estab-
lish the model. The relevant geographical factors were taken as independent variables, and the reference value 
of 25(OH)D was used as dependent variable. The geographical factor data of 2322 cities and counties in China 
were inputted into the model, and finally the predicted value of serum 25(OH)D of 2322 cities and counties in 
China was obtained.

Support vector machines Support vector machine (SVM) is a machine learning method with a high propor-
tion of applications, which is widely used in many  fields17. This method uses the appropriate kernel function to 
transform the problem reasonably and can solve the problem of linear classification. Different kernel functions 
are used to obtain prediction data, which can be mapped to high-dimensional space. This method requires four 
different kernel functions to implement by using Clementine 12.0 software.

The formula of linear kernel function is as follows.

The formula of polynomial kernel function is as follows.

The formula of RBF kernel function is as follows.

The formula of Sigmoid kernel function is as follows.

Models select and test. Taylor  diagram18 is often used to evaluate the accuracy of  models19. The scatter in the 
Taylor diagram represents the model, the solid lineis the correlation coefficient, the horizontal and vertical axis 
represents the standard deviation, and the dotted line is the root mean square error. Wilcoxon Rank Sum test is 
often used to judge whether there is the significant difference between the predicted data and the measured data. 
It does not require pairwise data to follow normal  distribution20. When P > 0. 05, it is considered that there is no 
significant difference, which indicates that the predicted value is in good agreement with the measured value.

Model prediction and geostatistical analysis. The spatial trend analysis and the Kriging mapping of the pre-
dicted data were carried out by using ArcGIS 10.2. The predicted value in different locations were modeled by 
variation function and Kriging so as to realize the continuous distribution of predicted  values21. By using the 
model interpolation, the geographical distribution map of serum 25(OH)D reference value of healthy Chinese 
elderly can be constructed, which will be helpful to further analyze the regional differences in space.

Statement. All methods were carried out in accordance with relevant guidelines and regulations. Informed 
consent was obtained from all subjects and legal guardian(s).

Approval for human experiments. This study of patient specimens was approved by the ethical com-
mittee of Shaanxi Normal University, in compliance with the guidelines of the 1975 Declaration of Helsinki. All 
data were experimental data obtained from published articles. Literature for data sources is in the Appendix. 
Informed consent was signed by the patients and their families.
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Results
Spatial autocorrelation analysis. The Moran index (Moran I) was 0.823 (> 0), and the global autocorre-
lation index Z was 4. 095 (> 2. 58). The probability value P was 0. 000, which indicated that there was significant 
spatial heterogeneity in serum 25(OH)D reference value.

Correlation analysis. Through Spearman correlation analysis, the 25(OH)D reference value of healthy 
elderly in various regions of China and the geographical factors were obtained. The value of correlation coef-
ficient (r) and significance coefficient (P) were used to judge the correlation between geographic factors and the 
25(OH)D reference values. If P ≤ 0.01, they are significantly correlated. If 0.01 < P ≤ 0.05, they are correlated, and 
P ≥ 0.05, the correlation between the them is not significant. Through the values, it can be clearly found that there 
were 6 geographical factors that have a correlation with serum 25(OH)D value (Table 2).

Models. Ridge regression analysis. The above 6 geographical factors were used as independent variables, 
and the reference value of serum 25(OH)D were used as dependent variables. The horizontal axis represented 
the ridge trace parameters, and the vertical axis represented the regression coefficient of each factor (Fig. 1). 
When the ridge parameter K = 0. 3, the trend of the ridge trace was relatively stable, and the regression equation 
was obtained as follows.

In this regression equation, Ŷ represented the 25(OH)D value (ng/ml), and 9. 06 was the residual standard 
deviation. The geographic data of 2322 cities and counties across the whole country were inputted into the ridge 
regression equation. The predicted value of 25(OH)D value in the serum 25(OH)D value of the elderly in 2322 
of the cities and counties across the country were exported.

Support vector machines. The relevant geographical factors were used as input variables and serum 25(OH)D 
reference value as output variables for machine learning. Four kinds of expert kernel functions including RBF 
kernel function, polynomial kernel function, Sigmoid kernel function and linear kernel function were trained in 
turn, and four models were obtained respectively (Figs. 2, 3, 4, 5).

Ŷ = 56.51− 0.25X1 − 0.0075X2 − 0.28X3 − 0.10X4 + 0.0019X5 + 0.059X6 ± 9.06.

Table 2.  Results of correlation analysis. *Represents correlation, **represents the significant correlation.

Symbol Geographic factors R value P value

X1 Latitude (°) − 0. 27** 0. 005

X2 Annual sunshine duration (h) 0. 36** 0. 000

X3 Annual mean temperature (°C) 0. 21* 0. 029

X4 Annual mean relative humidity (%) 0. 26** 0. 008

X5 Annual precipitation (mm) 0. 24* 0. 01

X6 Annual temperature range (°C) − 0. 20* 0. 04

Figure 1.  Ridge trace map of serum 25(OH)D reference value.
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Models select and test. Models select. The evaluation principle of the best model was that the greater the cor-
relation coefficient between the predicted value of the model and the measured value, the smaller the ratio of the 
root mean square error to the measured standard deviation, and the closer the ratio of the standard deviation 
to the measured standard  deviation22. The parameters of the Taylor diagram were showed in Table 3. The Taylor 
diagram of the 25(OH)D reference value predicted by the five models was shown in Fig. 6. The resuls showed 
that model B (Ridge Regression) was the best fit.

Model test. The Ridge Regression model was selected to predict serum 25(OH)D reference value. The results 
showed that P = 0.79(> 0. 05), indicating that there was no significant difference between the predicted values 
and the measured values.

Spatial distribution of reference value. Geostatistical analysis. Trend surface analysis was applied to reveal 
the trend of distribution difference in serum 25(OH)D reference value. From the east to west, the reference 
value of serum 25(OH)D increased at first and then decreased. And it decreased gradually from south to north 
(Fig. 7). The change range in the north–south direction (Y axis) was slightly larger than that in the east–west (X 
axis) direction, which showed a second-order change. The data were tested by K-S test, and the results indicated 
that the data didn’t have the characteristics of normal distribution (P < 0. 01). The Kriging spatial interpolation 
method was used to make the spatial distribution map of serum 25(OH)D reference value (Fig. 8). It showed that 

Figure 2.  Linear model of serum 25(OH)D reference value in healthy elderly.

Figure 3.  Ploynomial model of serum 25(OH)D reference value in healthy elderly.
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there was a significant difference in the spatial distribution of serum 25(OH)D in Chinese healthy elderly. The 
geographical distribution of 25(OH)D value of healthy elderly in China showed a distribution difference trend 
of being higher in South China and lower in North China, and higher in coastal areas and lower in inland areas.

Figure 4.  RBF model of serum 25(OH)D reference value in healthy elderly.

Figure 5.  Sigmoid model of serum 25(OH)D reference value in healthy elderly.

Table 3.  Prediction model error to each kernel function of serum 25(OH)D reference value.

Symbol Model name RMSE (E) Standard deviation (SD) Correlation coefficient (CC)

A Sigmoid 10. 8 6. 10 0. 02

B Ridge regression 9. 06 3. 74 0. 30

C Linear 8. 99 2. 25 0. 13

D RBF 8. 98 2. 15 0. 11

E Polynomial 8. 37 3. 48 0. 22
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Discussion
A large number of epidemiological studies have shown that vitamin D deficiency has become a global health 
problem. It is estimated that 22% of the people in the United States, Canada and Europe lack vitamin D or vitamin 
D  deficiency23–27. In China, previous reports of 25(OH)D2 and 25(OH)D3 levels in 23,695 patients requiring a 
25(OH)D test showed a vitamin D deficiency rate of 84.1%28. Therefore, in clinical practice, the early detection 
and management of vitamin D deficiency has become a growing concern.

In this study, we found that the geographical distribution of 25(OH)D value of healthy elderly in China 
showed a distribution difference trend of being higher in South China and lower in North China, and higher in 
coastal areas and lower in inland areas. A study from the vitamin D status of healthy people in Sichuan Province 
showed that 35.5% and 38.6% of the total samples were found to have vitamin D deficiency and deficiency, but 
25.9% of the participants had adequate vitamin D. The adequacy rate of the Sichuan study was higher than a 
previous report of 23,695 patients from Beijing, China, showing only 15. 5%  adequacy29. This is consistent with 
our results, in which the reference value of serum 25(OH)D in the south is higher than that in the north. This 
difference may be caused by a variety of factors.

Vitamin D, also known as "sunshine vitamin", is mainly derived from the self-synthesis of the skin under 
ultraviolet radiation b(UVB), and a small part comes from food  intake30. Sunshine exposure and vitamin D 
intake are the main determinants, but these are modified by other factors. It is worth noting here that UVB 
wavelengths of solar radiation can serve as an etiological factor in melanoma genesis, it must be acknowledged 
that it is also necessary for vitamin D formation that can not only act as a protector against UVR, but also has a 
role in attenuating carcinogenesis and tumor  progression31–36.

In China, the sunlight, climate and soil conditions are different in different regions. All these factors are 
likely to affect or be affected by vitamin D  status37. We, therefore, investigated whether variability of geographi-
cal environment factors in China necessarily confer adequate vitamin D optimization among apparent healthy 
elderly in different geographical sections. We mainly explored the factors associated with serum 25(OH)D, and 
we found the reference value of 25(OH)D of healthy elderly in China was significantly correlated with the 6 

Figure 6.  Taylor Diagram representation of the accuracy of different models.

Figure 7.  Spatial distribution trend of serum 25(OH)D value in Chinese healthy elderly.
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secondary indexes, namely, latitude (°), annual temperature range (°C), annual sunshine hours (h), annual mean 
temperature (°C), annual mean relative humidity (%) and annual precipitation (mm).

Areas with more annual sunshine duration (h) have more sun exposure. The higher the latitude varies, the 
larger the angle of solar altitude varies. The higher the latitude, the longer it takes for UVB to pass through the 
atmosphere and the less the amount of UVB reaching the surface. Many studies supported the effect of latitude 
on the reference value of serum 25(OH)D38–40. Low 25(OH)D concentrations were found to be more common 
in high-risk populations, such as the elderly, and people with colored skin living in high-latitude  countries41.

These factors, such as annual mean temperature (°C), annual mean relative humidity (%), and annual pre-
cipitation (mm), will affect people’s dressing habits. The dressing habits of people in areas with large annual 
temperature are different from those in areas with small. When the temperature is low, people wear thicker 
clothes, and the skin will be less likely to be exposed to UVB, which affects the synthesis of serum vitamin D. 
In areas with higher annual mean temperatures, people wear thinner clothes all year round, and the skin area 
will be more likely to be exposed to UVB, which is conducive to the synthesis of serum vitamin  D42.There are 
low latitudes in the southwest and southeast regions, and the temperature difference between them is relatively 
small. The skin of humans has more opportunities to be exposed to UVB. The northeast and northwest regions 
have high latitudes and large temperature differences. The skin of humans has fewer opportunities be exposed 
to UVB than others. All the above factors have an indirect effect on the synthesis of vitamin D, which leads to 
this spatial distribution difference in serum 25(OH)D of healthy elderly people in China.

Vitamin D can also be obtained from foods such as fatty fish(e.g., salmon and tuna)43. These foods are abun-
dant in southern coastal cities and less abundant in inland cities. Differences in eating habits between the north 
and the south people may also account for the distribution.

The reference value of vitamin D belongs to the category of medical research.But in this research,we used 
geographical analysis to study it. The medical reference values were expressed by Kriging interpolation and 
expressed in different colors on the map according to the values. It will make it more convenient for us to analyze 
the differences in reference values of vitamin D on the map.There were many studies on the effects of geographi-
cal factors such as latitude and light on vitamin D, mainly focusing on the correlation between them. But in our 
research, we not only study the correlation but also use the related geographical factors to construct the model. 
By using this model, we can conveniently calculate the reference value of 25(OH)D of a place when we know 
the geographical environment factors of a place.More importantly, we introduce the Taylor diagram method 
to measure the accuracy of the ecological model into the comparison of the accuracy of the medical reference 
model and optimize the method of model screening.

There are still some shortcomings in this study. First, in the selection of population characteristics and 
environmental factors, we did not consider the influence of physical activities and some special pollutants on 
human serum 25(OH)D, which would introduce irreversible errors to the results. Second, we only used a national 
cross-sectional study and environmental data corresponding to the testing time. The study did not consider the 

Figure 8.  Spatial distribution of serum 25(OH)D reference value in Chinese healthy elderly.
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environmental lag of one season or more, so it could not determine the short-term effect in terms of time, which 
may bring errors. Future studies will need add cohort data to study the time lag, and determine dietary habits 
and exercise status through questionnaires to control confounding factors more comprehensively.

Conclusions
The reference value of 25(OH)D in the Chinese elderly is related to 6 geographical factors. The ridge regression 
model established in this study can predict the reference value of 25(OH)D in different regions. If the latitude 
(°), annual temperature range (°C), annual sunshine duration (h), annual mean temperature (°C), annual mean 
relative humidity (%), and annual precipitation (mm) are known in a certain area. According to the equation:

The 25(OH)D reference value can be predicted.
Vitamin D in China has a spatial distribution differences trend of high in the south and low in the north. The 

elderly in the North should pay more attention to vitamin D supplements.

Data availability
The data that support the findings of this study are openly available in China national knowledge infrastructure 
(CNKI), Wanfang Scientific Journal Full-text Database, and Pub Med Database. They are available from the 
published literature from these Database. The titles of these literature are in the Appendix.
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Ŷ = 56.51− 0.25X1 − 0.0075X2 − 0.28X3 − 0.10X4 + 0.0019X5 + 0.059X6 ± 9.06.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12781  | https://doi.org/10.1038/s41598-022-17198-9

www.nature.com/scientificreports/

 29. Li, L. et al. Ethnic, geographic, and seasonal differences of vitamin D status among adults in South-West China. J. Clin. Lab. Anal. 
34, 1–9 (2020).

 30. Whiting, S. J. & Calvo, M. S. Dietary recommendations for vitamin D: A critical need for functional end points to establish an 
estimated average requirement. J. Nutr. 135, 304–309 (2005).

 31. Slominski, A. T. et al. Vitamin D signaling and melanoma: Role of vitamin D and its receptors in melanoma progression and 
management. Lab. Investig. J. Tech. Methods Pathol. 97, 706–724 (2017).

 32. Slominski, A. T. et al. The role of Cyp11a1 in the production of vitamin D metabolites and their role in the regulation of epidermal 
functions. J. Steroid Biochem. Mol. Biol. 144, 28–39 (2014).

 33. Slominski, A. T. et al. The role of classical and novel forms of vitamin D in the pathogenesis and progression of nonmelanoma skin 
cancers. Adv. Exp. Med. Biol. 1268, 257–283 (2020).

 34. Slominski, A. T. et al. On the role of classical and novel forms of vitamin D in melanoma progression and management. J. Steroid 
Biochem. Mol. Biol. 97, 706–724 (2017).

 35. Slominski, A. T. et al. Novel activities of Cyp11a1 and their potential physiological significance. J. Steroid Biochem. Mol. Biol. 151, 
25–37 (2015).

 36. Slominski, A. T. et al. Novel vitamin D photoproducts and their precursors in the skin. Dermato-Endocrinology 5, 7–19 (2014).
 37. Prentice, A., Schoenmakers, I., Jones, K. S., Jarjou, L. & Goldberg, G. R. Vitamin D deficiency and its health consequences in Africa. 

Clin. Rev. Bone Miner. Metab. 7, 94–106 (2009).
 38. Anastasiou, A. et al. Ultraviolet radiation and effects on humans: The paradigm of maternal vitamin D production during preg-

nancy. Eur. J. Clin. Nutr. 71, 1268–1272 (2016).
 39. Chen, T. C. et al. Factors that influence the cutaneous synthesis and dietary sources of vitamin D. Arch. Biochem. Biophys. 460, 

213–217 (2007).
 40. Hedlund, R., Diamond, T. K. & Uversky, V. N. The latitude hypothesis, vitamin D, and SARS-Co-V2. J. Biomol. Struct. Dyn. 17, 

1–3 (2020).
 41. Boucher, B. J. Vitamin D status as a predictor of Covid-19 risk in black, Asian and other ethnic minority groups in the UK. Diabetes 

Metab. Res. Rev. 36, 3375 (2020).
 42. Çuhacı-Çakır, B. & Demirel, F. Effects of seasonal variation and maternal clothing style on vitamin D levels of mothers and their 

infants. Turk. J. Pediatr. 56, 475–481 (2014).
 43. Holick, M. F. Vitamin D status: Measurement, interpretation, and clinical application. Ann. Epidemiol. 19, 73–78 (2009).

Author contributions
Data analysis and the main manuscript text was done by W.Y. Data collection was completed by X.P. and M.G. 
Models were tested by Y.W. and C.W.

Funding
This material is based upon work supported by Shaanxi Normal University under the Grant No. 2021TS012, 
Fundamental Research Funds for the Central Universities under the Grant No. 2021TS012, National Natural 
Science Foundation of China under the Grant No. 41761100, Natural Science Foundation of Shaanxi Province 
under the Grant No. 2019JM-408.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 17198-9.

Correspondence and requests for materials should be addressed to M.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-17198-9
https://doi.org/10.1038/s41598-022-17198-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Spatial distribution differences of 25-hydroxyvitamin D in healthy elderly people under the influence of geographical environmental factors
	Methods
	Data collection methods. 
	25(OH)D reference value data source. 
	Construction of index system. 

	Data analysis methods. 
	Spatial autocorrelation analysis. 
	Correlation analysis. 
	Models. 
	Establish predicted models. 
	Models select and test. 
	Model prediction and geostatistical analysis. 


	Statement. 
	Approval for human experiments. 

	Results
	Spatial autocorrelation analysis. 
	Correlation analysis. 
	Models. 
	Ridge regression analysis. 
	Support vector machines. 
	Models select and test. 
	Models select. 
	Model test. 

	Spatial distribution of reference value. 
	Geostatistical analysis. 



	Discussion
	Conclusions
	References


