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Solid‑state bonding behavior 
between surface‑nanostructured 
Cu and Au: a molecular dynamics 
simulation
Hiroaki Tatsumi1*, C. R. Kao2 & Hiroshi Nishikawa1

In recent years, solid-state bonding has attracted attention for various electronic packaging 
applications as an alternative to conventional solders. Surface-nanostructured materials enable solid-
state bonding without complex surface modifications and operate at a low bonding temperature and 
pressure. Therefore, in this study, molecular dynamics simulations were conducted to investigate 
the solid-state bonding behavior between surface-nanostructured Cu and Au, with a focus on 
diffusion phenomena. A periodic ligament-cavity nanostructured Cu (NS-Cu) model was prepared 
at the bonding interface between Cu and Au slabs. The simulation results indicated that the larger 
the specific surface area of NS-Cu, the faster the densification at the bonding interface. Atomic 
displacement analysis showed that rapid densification occurred via the displacement of Cu and Au 
atoms in the vicinity of NS-Cu. The preferential diffusion of atoms along NS-Cu cavities contributed to 
this phenomenon. At this stage of densification, the diffusion coefficients were higher than the surface 
diffusion coefficients estimated based on literature, which indicates that this behavior is specific 
to surface-nanostructured materials. The highly disordered atomic arrangement at the bonding 
interface enabled significant atomic diffusion. Therefore, this study confirmed that the use of surface-
nanostructured materials would contribute to a promising bonding technology for application in 
electronics.

In recent years, an increasing demand for electronic devices with a high degree of integration and current density 
has emerged. Sn-based solder joints, which are widely used to bond electronic devices, are approaching their 
theoretical limits. For example, in the latest three-dimensional integrated circuits (3D-ICs), the input/output 
(I/O) pitch is expected to decrease to 1 µm1. Conventional Sn-based solder bumps, whose minimum pitch is 
typically 20 µm2, possess drawbacks, such as potential failure caused by electrical-short circuits owing to con-
tact between neighboring microbumps during bonding. As the volume of solder bumps decreases, the brittle 
intermetallic compounds (IMCs) and Kirkendahl voids formed at the joint interface demonstrate an increasing 
effect on joint characteristics. IMCs and Kirkendall voids restrict the reliability of solder joints3. Moreover, solder 
joints limit the applicable current density owing to electromigration4. Therefore, solid-state bonding technologies 
have been developed for application in high-end 3D-ICs5–8. Among these, solid-state Cu bonding has attracted 
particular attention. Cu solid-state bonding is achieved via room-temperature bonding9 or room-temperature 
bonding combined with post-annealing5,6. This bonding technology requires activated surfaces that are morpho-
logically flat for improved bonding contact, which is provided through chemical mechanical polishing (CMP) 
and complex surface activation processes. However, this bonding approach is expensive and time-consuming. 
The thermal compression process is another route to realizing Cu solid-state bonding7,8,10. However, the high 
bonding pressure used in this type of processing limits possible applications.

Power devices are another significant facet in solid-state bonding. The die-attach process is a major challenge 
in high-temperature power devices11. For a typical Sn-based solder, the maximum durable temperature is gener-
ally limited to temperatures below 448 K because of its poor thermal-fatigue tolerance at high temperatures12. 
However, the operating temperature of power devices tends to increase with increasing current density, with 
an expected elevation in the operating temperature up to 473 K or higher. Unlike high-end 3D-ICs, power 
devices require materials with large-area bonding capability (several square millimeters) and thermal-strain 
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tolerance, which is induced by a coefficient of thermal expansion (CTE) mismatch and temperature variations 
during operation. Therefore, instead of soldering, we envision another solid-state bonding approach for power 
die-attach applications: a bonding process using metal particles. This bonding process utilizes the phenomenon 
of the sintering of nano- or micro-sized metal particles13–15. Nano- or micro-sized particles of Ag or Cu with a 
highly reactive surface are typically used, which enables bonding at relatively low temperatures of approximately 
573 K16,17. This method affords excellent joint properties, such as a good thermal-fatigue performance and low 
thermal resistance in power devices18. However, particle-based bonding materials, which are often used in the 
form of a paste mixed with organic matter, possess drawbacks, such as high costs, complex bonding processes, 
and void formation caused by the organic components in the paste.

To overcome these issues, a novel solid-state bonding method that utilizes nanoporous materials, such as Au 
nanoporous bumps19, Ag nanoporous sheets20, Cu nanoporous sheets21, and patterned Cu nanoporous caps22, 
has recently been investigated. These nanoporous materials are fabricated via the electrochemical dealloying of 
a precursor composed of noble and base metals; for example, Au–Ag19, Ag–Al20, Cu–Mg21, and Cu–Zn22. Nano-
porous materials have network-like structures connected by nanometer-sized ligaments and nodes. Typically, 
nanoporous materials are extremely surface-active owing to their large specific surface areas23. Furthermore, 
these structures may be considered as periodic surface-nanostructured materials with a periodic arrangement 
of small ligaments and cavities. Such surface-nanostructured materials enable metallurgical bonding without the 
requirement of complex surface modifications using CMP or special cleaning processes. Furthermore, these char-
acteristics allow for a low bonding temperature and pressure without using organic solvents or flux. Therefore, 
this approach using surface-nanostructured materials is expected to be a promising void-free and large-area-
compatible solid-state bonding technology. Consequently, the elucidation of the solid-state bonding behavior 
of surface-nanostructured materials is expected to receive significant attention in the field of electronic device 
bonding.

The mechanisms of traditional solid-state bonding, commonly known as diffusion bonding, have been theo-
retically demonstrated24,25. The importance of interfacial plastic deformation, creep deformation, and surface/
grain boundary diffusion for growing neck surfaces has been highlighted. Recently, molecular dynamics (MD) 
simulations have also demonstrated the diffusion bonding behavior on an atomistic scale. Chen et al.26 investi-
gated the atomistic diffusion bonding mechanism of an Al-Cu joint at various temperatures, and surface defor-
mation resulted in increased contact areas and the disappearance of initial gaps as the temperature increased, 
which was followed by the diffusion of atoms at a constant temperature. Moreover, they reported the influence 
of surface roughness on the bonding behavior. Li et al.27 also demonstrated the diffusion bonding mechanism 
in the Al-Cu joint and discussed the interdiffusion behavior across the ideally contacted Al-Cu interface. The 
main diffusion mechanism between Al and Cu was discussed from the perspective of activation energy. Xydou 
et al.28 investigated the interfacial void-closing behavior of Cu diffusion bonding and highlighted the importance 
of grain boundary diffusion for densification at the bonding interface. The MD simulation method can provide 
significant insights at the atomistic scale to elucidate the bonding behavior utilizing surface-nanostructured 
materials, whereas experimental approaches have limitations at this scale.

In this study, MD simulations are applied to elucidate the solid-state bonding behavior of surface-nanostruc-
tured materials, with a focus on the interfacial densification and diffusion behavior. A surface-nanostructured 
material was constructed as a simplified periodic ligament-cavity structure. Surface-nanostructured Cu and Au 
were chosen as bonding couples for the simulation because Cu-Au dissimilar bonding is commonly selected as 
a die-attached combination in power device applications. To focus on diffusion, which is one of the most impor-
tant parameters affecting bonding behavior, simulations were conducted in the absence of the bonding pressure. 
Therefore, it is noteworthy that plastic deformation and creep deformation caused by the bonding pressure are 
beyond the scope of this study. First, the effect of the surface nanostructure, especially the specific surface area, 
on the bonding behavior was investigated. Subsequently, based on atomic displacement analysis, the effect of 
the specific surface area on the interfacial densification and diffusion behavior was evaluated. Lastly, the unique 
bonding behavior of surface-nanostructured materials is discussed in terms of the variations in atomic arrange-
ments and diffusion coefficients.

Methods
In this study, MD simulations were performed using the Large-scale Atomic/Molecular Massively Parallel Simu-
lator (LAMMPS) software29. The well-established embedded atomic method (EAM) potential for Cu and Au 
reported by Zhou et al.30 was applied to describe atom interactions. The simulation procedure and model are 
illustrated in Fig. 1. The simulation steps applied were as follows: first, the Au and Cu parts were equilibrated 
separately; second, the Au and Cu parts were merged; third, bonding during the heating process was simulated.

Simulation models of the Au and Cu parts were prepared separately, as shown in Fig. 1a. The Au part was 
modelled as a monocrystalline Au slab. The Cu part consisted of a monocrystalline Cu slab and periodic nano-
structured Cu (NS-Cu). NS-Cu was simplified as multiple monocrystalline cuboids with a uniform morphology 
arranged at regular intervals, to simulate a ligament-cavity geometry. The width (w) and number of cuboids (n2) 
were parametrically varied for the simulations. The height along the z-axis (h) was constant at 2.9 nm, which 
is equivalent to eight iterations of the Cu lattice. All the contact surfaces between the Cu slab, NS-Cu, Au slab, 
and boundary surfaces were (100) planes. The sizes of the Cu and Au slabs were determined by repeating the Cu 
lattice spacing (aCu = 0.36147 nm) in 32 × 32 × 16 and that of Au (aAu = 0.40785 nm) in 28 × 28 × 18. The initial 
simulation box size along the x- and y-axes (Lx,0 = Ly,0) was 11.49 nm, which was assumed to reduce the size 
mismatch between the Cu and Au slabs along the x- and y-axes to approximately 0.64%.
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The two initial shape parameters of NS-Cu–the specific surface area to volume ratio of NS-Cu (Sv) and volume 
fraction (Vf)–were defined. Specifically, Vf is the volume fraction of NS-Cu in the region of the simulation box 
occupied by the NS-Cu layer. The shape parameters were expressed as follows:

The values of Sv and Vf used in this study are listed in Table 1. Sv was parametrically varied to 2.8, 2.2, and 
1.6 nm−1 for simulations by changing w and n2, to elucidate the effect of nanostructure on bonding behavior. In 
this study, Vf was set as a constant of approximately 32 vol%. The number of atoms in these models was 133,008, 
133,000, and 134,260.

The initial velocities of the atoms were randomly assigned a Gaussian distribution for the set temperature. 
Newton’s equation of motion was integrated with the Verlet algorithm, with a fixed time step of 1 fs. During the 
first step, the Au and Cu parts were equilibrated separately at 300 K for 20 ps, as shown in Fig. 1a. A periodic 
boundary condition was set for all boundary surfaces for Au equilibration. For the equilibration of the Cu part, 
periodic boundary conditions were implemented along the x- and y-axes; non-periodic and fixed boundary 
conditions were set along the z-axis. The boundary surface along the z-axis was set sufficiently far from the 
NS-Cu interface to model it as a surface. Equilibration was performed using the canonical (NVT) ensemble. In 
this study, the potential energy in the atomic slabs was confirmed to be well relaxed after equilibration. Dur-
ing the second step, the equilibrated Au and Cu parts were merged using the atomic-scale modeling software 
ATOMSK31, as shown in Fig. 1b.
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Figure 1.   MD simulation setup of Cu and Au models; (a) step 1: equilibration of Au and Cu parts at 300 K 
for 20 ps; (b) step 2: merging of Au and Cu parts; (c) step 3: heating from 300 to 573 K at the heating rate of 
5 × 1013 K/s, maintained for 1000 ps.

Table 1.   Shape parameters of NS-Cu in the simulations.

h [nm] w [nm] n2 [–] Sv [nm−1] Vf [vol%]

2.9

1.6 4 × 4 2.8 32

2.2 3 × 3 2.2 32

3.3 2 × 2 1.6 32
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During the third step, the temperature was rapidly increased from 300 to 573 K at a heating rate of 5 × 1013 K/
s26. Subsequently, the temperature was kept constant at 573 K for 1000 ps, as shown in Fig. 1c. This simulation 
step was performed using the isobaric-isothermal (NPT) ensemble. Periodic boundary conditions were imple-
mented in all the directions. The boundary surfaces at both edges along the z-axis were set sufficiently far from 
the NS-Cu/Au interface so that the interaction from these edge surfaces were negligible. During the simulations, 
an external pressure, equivalent to atmospheric pressure, was applied along the x-, y-, and z-axes. Many previous 
studies have demonstrated the necessity of applying a bonding pressure to achieve good interfacial bonding by 
enhancing plastic deformation at the contact surface. However, no bonding pressure other than atmospheric 
pressure was considered in this study, with the aim of focusing on diffusion-dominant behavior at the interface. 
The positions and velocities of the atoms were recorded every 1 ps. The atomic configurations were visualized 
using the Open Visualization Tool (OVITO)32.

Results
Morphology evolution of surface nanostructure.  First, the evolution of the morphology of the surface 
nanostructure at the bonding interface was evaluated for various Sv values, as shown in Fig. 2. Figure 2a–c shows 
the cross-sectional configuration of the model with Sv = 2.8, 2.2, and 1.6 nm−1 at time steps of 0, 200, and 1005 ps, 
respectively. During these MD simulations, the densification behavior at the bonding interface was considered as 
an indicator of the bonding progress. Before heating, the NS-Cu cuboids were slightly deformed during the equi-
libration process, particularly at Sv = 2.8 and 2.2 nm−1. After heating, the model with Sv = 2.8 nm−1 exhibited rapid 
densification at the interface after 200 ps. Subsequently, no visible structural change was observed at 1005 ps, 
as shown in Fig. 2a. The Cu and Au slabs migrated closer to each other, with a significant displacement of Cu 
atoms in NS-Cu. Consequently, the initial cavities arranged within NS-Cu immediately disappeared. In contrast, 
in the models with Sv = 2.2 and 1.6 nm−1, as shown in Fig. 2b,c, respectively, the NS-Cu and Au slab contacted at 
the interface after 200 ps, accompanied by the minor diffusion of Au and Cu atoms along the surface. However, 
no significant densification was observed. The initial cavities arranged within the NS-Cu remained unchanged, 
even after the last simulation time step of 1005 ps. Although the significant displacement of atoms did not occur, 
atoms slightly migrated to the Cu and Au slab surfaces. All simulation results showed no apparent transfer of 
atoms across the interface through the interior of the slabs, which indicated that surface diffusion dominated the 
densification behavior. These results show the significant effect of Sv on densification at the interface.

Subsequently, the evolution of the relative density at the bonding interface was quantitatively investigated. 
The relative density (dt) at the simulation time step (t) of the simulation box was defined as follows:

where dapparent,t is the apparent density of the simulation box at a time step of t, and dideal is the density of the 
ideal Cu/Au model with an ideal flat interface, no voids, and an equal number of atoms in each simulation. The 
values of dapparent,t and dideal are expressed as the mass (m) divided by the simulation box volume at a time step of 
t (Vsimbox,t) and m divided by the simulation box volume of the ideal-Cu/Au model (Videal), respectively. When 
m is constant, dt is expressed as

Here, Videal was simulated at a temperature of 573 K for 1000 ps in advance. Figure 2d shows the relative 
density as a function of the simulation time for Sv = 2.8, 2.2, and 1.6 nm−1. The relative density evolution at 
Sv = 2.8 nm−1 was divided into early (< 300 ps) and later (> 300 ps) stages. During the early stages, the relative 
density rapidly increased with time, whereas during the later stages, the relative density slightly increased with 
time. The relative density at Sv = 2.2 and 1.6 nm−1 slightly increased without rapid densification compared with 
that observed at Sv = 2.8 nm−1. The rapid increase in the relative density at Sv = 2.8 nm−1 and slight variation at 
Sv = 2.2 and 1.6 nm−1 corresponded to the results shown in Fig. 2a–c. Moreover, the relative density was observed 
to increase with time, even at the later stage with Sv = 2.8 nm−1 as well as for Sv = 2.2 and 1.6 nm−1. A linear regres-
sion fit was used to calculate the slopes of the relative density curves, which were 1.18 × 10–4, 4.89 × 10–5, and 
3.31 × 10–5%/ps for Sv = 2.8, 2.2, and 1.6 nm−1, respectively.

The slopes shown in Fig. 2d can be interpreted as the rate of densification. The result shows that densification 
gradually progressed in all the three cases (for Sv = 2.8, 2.2, and 1.6 nm−1). This behavior was observed even after 
rapid densification during the early stage at Sv = 2.8 nm−1. Furthermore, the slopes increased as the Sv values 
increase. Table 2 lists the predicted time to achieve a completely dense structure, dt = 100%, which was calculated 
using the fitted regression line in Fig. 2d. The predicted times were 6.9, 210.2, and 341.1 ns for Sv = 2.8, 2.2, and 
1.6 nm−1, respectively. This indicates that a larger surface area to volume ratio results in faster densification at a 
later stage. Therefore, the interfacial morphological evolution showed the importance of the surface nanostruc-
ture at the interface. This phenomenon is discussed in “Discussion” section.

Diffusion between surface‑nanostructured Cu and Au.  To determine the diffusion thickness across 
the surface nanostructure, the concentration of Cu and Au atoms along the z-axis was obtained at a time step of 
1005 ps for Sv = 2.8, 2.2, and 1.6 nm−1, as shown in Fig. 3 (only data near the interface are presented). The atomic 
concentrations along the z-axis were calculated as a ratio of the number of atoms filling each simulation region 
divided by 400 evenly-spaced planes parallel to the x–y plane. In this study, the concentrations were considered 

(3)dt =
dapparent,t

dideal
× 100[%],

(4)dt =

m
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m
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× 100 =
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× 100[%].
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Figure 2.   Evolution of the morphology of the surface nanostructure at the bonding interface. Cross-sectional 
configuration of the model with (a) Sv = 2.8, (b) 2.2, and (c) 1.6 nm−1 at time steps of 0, 200, and 1005 ps (only 
atoms near the interface are shown). Cu atoms in the Cu slab, NS-Cu, and Au atoms in the Au slab are depicted 
in red, blue, and yellow, respectively. (d) Relative density as a function of the simulation time for Sv = 2.8, 2.2, and 
1.6 nm−1. Relative density evolution at Sv = 2.8 nm−1 was divided into an early stage (< 300 ps) and a later stage 
(> 300 ps). Linearly-fitted lines with slopes were inserted after 400 ps.

Table 2.   Predicted time to achieve a completely dense structure calculated using the fitted line from the 
relative density evolution.

Sv [nm−1] Predicted time [ns]

2.8 6.9

2.2 210.2

1.6 341.1



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12755  | https://doi.org/10.1038/s41598-022-17119-w

www.nature.com/scientificreports/

by neglecting the remaining cavities within the NS-Cu region. Figure 3a shows that both the Cu-slab (red) and 
NS-Cu (blue) curves intersect at Sv = 2.8 nm−1. This indicates that diffusion of the Cu slab into the NS-Cu cavities 
occurred. Similarly, the NS-Cu and Au-slab (yellow) curves intersected each other, which indicated that the dif-
fusion of the Au slab into the NS-Cu cavities also occurred. In contrast, Fig. 3b,c show that there was no apparent 
diffusion layer between the Cu slab and NS-Cu or between the NS-Cu and Au slab at Sv = 2.2 and 1.6 nm−1. The 
diffusion thickness of the Au atoms was only a few atomic layers, even after the last time step in the simulation. 
These results suggest that diffusion was enhanced between NS-Cu and the Cu slab and NS-Cu and the Au slab 
only at Sv = 2.8 nm−1.

As described above, a clear interdiffusion layer was observed at Sv = 2.8 nm−1. Therefore, the evolution of the 
Au diffusion thickness at Sv = 2.8 nm−1 was investigated, as shown in Fig. 4. The concentration of Au along the 
z-axis (CAu) was used to determine the diffusion thickness of Au into the Cu region, as shown in Fig. 4a. First, 
a straight-line approximation of CAu was obtained between CAu = 5 and 95%. Subsequently, the distance along 
the z-axis between the two intersections of the fitted lines with CAu = 0 and 100% was defined as the diffusion 
thickness of Au. Figure 4b shows the relationship between the Au diffusion thickness and time. The Au diffu-
sion thickness significantly increased with time up to 300 ps, followed by a gradual increase. The Au diffusion 
thickness at 300 and 1005 ps were 0.80 and 0.86 nm, respectively. The evolution of the diffusion thickness can 
be divided into an early rapid diffusion stage and a later gradual diffusion stage, similar to the morphological 
evolution, as shown in Fig. 2d. This implies that both the morphological evolution and interdiffusion between 
NS-Cu and the Au slabs occurred via the significant displacement of NS-Cu atoms at the interface.

Discussion
Simulations with various Sv values demonstrated the effect of surface nanostructures with a high surface area to 
volume ratio on rapid densification, accompanied by interdiffusion between Cu and Au atoms. Furthermore, it 
was suggested that this phenomenon involves significant displacement of atoms around the surfaces of NS-Cu. In 
contrast, in conventional solid-state bonding, interfacial densification is the dominant driving force for the inter-
facial diffusion of atoms, which is limited by temperature- and material-dependent characteristics24,25. However, 
surface-nanostructured materials may include shape-dependent characteristics as an additional driving force 
for rapid interfacial densification. Therefore, the novel bonding behavior of surface-nanostructured materials 
may be beneficial. Herein, we discuss the unique bonding behavior from the perspective of atom displacement 
at the bonding interface.
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Figure 3.   Concentration of Cu and Au atoms along the z-axis at a time step of 1005 ps and Sv = (a) 2.8, (b) 2.2, 
and (c) 1.6 nm−1. Red plots and line represent the Cu slab; blue plots and line represent NS-Cu; yellow plots and 
line represent the Au slab (only concentrations near the interface are shown).
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First, the atomic displacement behavior during the early rapid-densification stage at Sv = 2.8 nm−1 was fur-
ther investigated, as shown in Fig. 5. Time steps of 0, 20, 100, and 200 ps were considered, as shown in Fig. 5a. 
Figure 5b shows cross-sectional snapshots taken during the simulation at these time steps (only atoms near the 
interface are shown). The NS-Cu surface contacted the Au slab surface within 20 ps. At this time step, the exist-
ing cavities between NS-Cu cuboids remained as gaps in the material. The smaller gaps disappeared by 100 ps, 
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whereas the larger gaps did not. At 200 ps, all gaps in this cross-section disappeared entirely, which resulted in 
a highly densified interface. The displacement vectors of the atoms corresponding to the snapshots in Fig. 5b 
are shown in Fig. 5c. At 20 ps, small displacement vectors were observed in the smallest gap between the NS-Cu 
cuboids, as shown in the center of the figure. This indicates that a smaller gap would preferentially be filled. At 
100 ps, displacement vectors were also observed in larger gaps, except for the largest gap in the cross section. 
Lastly, at 200 ps, displacement vectors appeared and filled the largest gap. These results indicate that displacement 
vectors were observed for the Cu slab, NS-Cu, and Au slab. This shows that interfacial densification behavior 
may have occurred because of the displacement of both Cu and Au atoms at the interface.

To quantitatively discuss the magnitude and direction of the atomic displacement, the mean square displace-
ment (MSD) in the vicinity of NS-Cu was calculated as follows:

where N is the number of atoms, and ri(t) and ri(0) are the positions of atom i at times t and 0, respectively. 
Additionally, MSDx, which is the portion of the MSD along the x-axis, is expressed as follows:

where rx,i(t) and rx,i(0) are the x-positions of atom i at times t and 0, respectively. MSDy and MSDz were obtained 
in a similar manner. MSD is the sum of MSDx, MSDy, and MSDz. In this study, MSDz was used as an indicator 
of the displacement that contributes to interfacial densification during bonding.

The MSD evolution of atoms of the Cu slab, NS-Cu, and Au slab in the vicinity of NS-Cu was evaluated at 
Sv = 2.8 nm−1, as shown in Fig. 6. The number of atoms used in the MSD calculation was selected to be approxi-
mately 11,000, as shown in Fig. 6a. Figure 6b shows the MSD curves of the atoms in the Cu slab, NS-Cu, and Au 
slab. Notably, the MSD of the Cu atoms was approximately twice as large as that of the Au atoms. This indicates 
that the contribution of the Cu displacement during the early rapid densification stage was larger than that of Au. 
Moreover, all curves had a shoulder at approximately 200 ps, which corresponds to the appearance of displace-
ment vectors that filled the largest gap, as shown in Fig. 5. Furthermore, the MSD values significantly increased 
with time (< 300 ps), and subsequently, increased slightly (> 300 ps). This tendency was similar to that of the 
relative density (Fig. 2d) and diffusion thickness evolution (Fig. 4b).
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Furthermore, the direction of the atomic displacement is discussed. Figure 6c–e shows the ratio of MSDx, 
MSDy, and MSDz to the MSD of the Cu slab, NS-Cu, and Au slab at Sv = 2.8 nm−1. The values of MSDx,y,z/MSD 
range from 0 to 1, with a value close to 1 indicating that atomic displacement is highly unidirectional along the 
x-, y-, or z-axes, whereas a value of 0.33 shows isotropy. In the Cu slab, NS-Cu, and Au slab, the MSDz/MSD ratio 
was larger than the MSDx/MSD and MSDy/MSD ratios. Moreover, there was no significant difference between 
the MSDx/MSD and MSDy/MSD ratios. The MSDz/MSD values of the Cu and Au slabs were close to 1.0. The 
MSDz/MSD ratio was particularly large during the early rapid-densification stage (up to 300 ps). This suggests 
that the displacement of the atoms in the Cu and Au slabs in the vicinity of NS-Cu is highly unidirectional along 
the z-axis. Therefore, preferential atomic diffusion along the z-axis contributed to rapid interfacial densification.

Based on the previous results and discussions, each bonding behavior during the early and later densification 
stages is discussed in this section, in terms of the variation in the atomic arrangement and diffusion coefficient. 
Herein, the early stage refers to the period up to 300 ps, and the later stage refers to the period after 300 ps at 
Sv = 2.8 nm−1.

The radial distribution function (RDF) g(r) was calculated to understand the atomic arrangement during 
bonding. The RDF is a well-known indicator that is presented as fluctuations in density around a given atom and 
describes the average number of atoms found at a given distance in all directions, which is expressed as follows33:

where r is the radial distance; ni (r) is the coordination number of atom i separated by r within the Δr interval; V is 
the volume of the system; N is the number of atoms. The RDF can provide insights into the atomic arrangement, 
with sharp peaks presenting a well-ordered crystal structure, whereas broad peaks present disordered structures, 
such as amorphous materials. The RDFs in the vicinity of NS-Cu at Sv = 2.8 nm−1 at the time steps of 0, 20, 100, 
200, and 1005 ps are shown in Fig. 7. The atoms selected for the RDF calculations were the same as those for the 
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Fig. 6a.
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MSD in Fig. 6a. Figure 7a shows the RDF of the Cu and Au atoms in total, where the number of atoms used for 
the calculation was 33,008. Figure 7b–d show the RDFs of the Cu slab, NS-Cu, and Au slab, respectively. The 
number of atoms used for these calculations was 11,027, 11,005, and 10,976, respectively. At a time step of 0 ps, 
sharp Au peaks and broad Cu peaks were detected, while the NS-Cu peaks were broader than the Cu slab peaks 
(as shown in Fig. 7b,c). Subsequently, the Au peaks broadened at a time step of 20 ps, as shown in Fig. 7d. The Cu 
slab peaks also became broader compared with that observed at 0 ps, as shown in Fig. 7b. Thereafter, the changes 
in these peaks were minor. This result indicates that the atomic arrangements were disordered during the very 
early densification stage upon contact between the Cu and Au atoms. This phenomenon may have induced early 
rapid densification between surface-nanostructured Cu and Au.

Subsequently, the bonding behavior in the early and later densification stages was investigated based on the 
diffusion coefficients. Using the Einstein’s diffusion law34, the diffusion coefficient is obtained as follows:

where Ñ  is the dimensionality of the system, which is equivalent to the reciprocal of the MSDz/MSD ratio. 
Therefore, the diffusion coefficient was calculated using the slope of the MSD curve and MSDz/MSD ratio. For 
comparison with the results of this study, the surface self-diffusion coefficients (D) of Cu/Cu(100) and Au/
Au(100) and the surface hetero-diffusion coefficients of Au/Cu(100) and Cu/Au(100) were calculated using the 
following Arrhenius equation:

where D0, Q, R, and T are the frequency factor, activation energy of surface diffusion, gas constant, and absolute 
temperature, respectively. The Q of Cu/Cu(100), Au/Au(100), Au/Cu(100), and Cu/Au(100) were 0.38, 0.64, 
0.49, and 0.77 eV, respectively35,36. The D0 values of Cu/Cu(100) and Au/Au(100) are 1.20 × 10–7 and 0.80 × 10–7 
m2/s, respectively35. Owing to limitations in the literature, the same D0 values for self-diffusion were used for 
Cu/Au(100) and Au/Cu(100).

The diffusion coefficients of the Cu slab (red), NS-Cu (blue), and Au slab (yellow) at Sv = 2.8 nm−1 were 
obtained, as shown in Fig. 8. The diffusion coefficients were calculated from the results in the time step ranges 
of 10–250 ps and 400–1005 ps for the early and later densification stages, respectively. The difference between 
the Cu slab, NS-Cu, and Au slab at each stage was minimal. Notably, the diffusion coefficients for the early stage 
were higher than the highest surface diffusion coefficient of Cu/Cu observed at 573 K. This result may suggest a 
mechanism other than general surface diffusion mechanisms, such as simple jumps, long jumps, or exchanges. 
This high surface mobility can be rationalized by the fact that materials with a very high specific surface area, 
such as nanoparticles, exhibit significant coalescence behavior owing to their liquid-like surface layer37. The 
highly disordered atomic arrangement shown in Fig. 7 may confirm this suggestion.

In contrast, the diffusion coefficients at a later stage were intermediate between those of Cu/Cu and Au/
Cu. This indicates that the well-known surface diffusion mechanisms dominate the bonding behavior at a later 
stage; this finding is within the scope of previously reported research on solid-state diffusion bonding24,25. These 
considerations suggest that a larger specific surface area enhances atom transport along the large surface, which 
resulted in faster densification, even during the later stage.
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Conclusion
This study investigated the solid-state bonding behavior between surface-nanostructured Cu and Au using MD 
simulations. The larger the specific surface area of the surface-nanostructured material, the faster the densifica-
tion at the bonding interface. When the specific surface area was very large (Sv = 2.8 nm−1), the bonding process 
consisted of a rapid densification stage with significant interdiffusion, followed by a gradual densification stage. 
Atomic displacement analysis near the bonding interface indicated that the preferential diffusion of both Cu and 
Au atoms along the cavities inherent to the surface-nanostructured material contributed to the bonding behavior. 
Based on the relatively large diffusion coefficients observed during the rapid densification process compared 
with the typical surface diffusion coefficients, an atomic-transfer behavior unique to surface-nanostructured 
materials is proposed. The highly disordered atomic arrangement at the bonding interface played an essential 
role in the significant atomic diffusion. Additionally, the large surface area accelerated the bonding progress, even 
during the later gradual densification process, according to the typical surface diffusion mechanism. This study 
proves that surface-nanostructured materials exhibit good solid-state bonding performances and their use may 
serve as a suitable bonding strategy in a diverse range of electronic applications. Further investigations based on 
this method, which consider other important factors, such as the crystal orientation and bonding pressure, can 
provide valuable insights into the various fields of electronic packaging.

Data availability
All data generated or analyzed during this study are included in this published article, or are available from the 
corresponding author on reasonable request.
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