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Prediction algorithm for ICU 
mortality and length of stay using 
machine learning
Shinya Iwase1, Taka‑aki Nakada1,2*, Tadanaga Shimada1, Takehiko Oami1, 
Takashi Shimazui1, Nozomi Takahashi1, Jun Yamabe2, Yasuo Yamao1,2 & Eiryo Kawakami3,4

Machine learning can predict outcomes and determine variables contributing to precise prediction, 
and can thus classify patients with different risk factors of outcomes. This study aimed to investigate 
the predictive accuracy for mortality and length of stay in intensive care unit (ICU) patients using 
machine learning, and to identify the variables contributing to the precise prediction or classification 
of patients. Patients (n = 12,747) admitted to the ICU at Chiba University Hospital were randomly 
assigned to the training and test cohorts. After learning using the variables on admission in the 
training cohort, the area under the curve (AUC) was analyzed in the test cohort to evaluate the 
predictive accuracy of the supervised machine learning classifiers, including random forest (RF) for 
outcomes (primary outcome, mortality; secondary outcome, length of ICU stay). The rank of the 
variables that contributed to the machine learning prediction was confirmed, and cluster analysis 
of the patients with risk factors of mortality was performed to identify the important variables 
associated with patient outcomes. Machine learning using RF revealed a high predictive value for 
mortality, with an AUC of 0.945 (95% confidence interval [CI] 0.922–0.977). In addition, RF showed 
high predictive value for short and long ICU stays, with AUCs of 0.881 (95% CI 0.876–0.908) and 
0.889 (95% CI 0.849–0.936), respectively. Lactate dehydrogenase (LDH) was identified as a variable 
contributing to the precise prediction in machine learning for both mortality and length of ICU stay. 
LDH was also identified as a contributing variable to classify patients into sub‑populations based on 
different risk factors of mortality. The machine learning algorithm could predict mortality and length 
of stay in ICU patients with high accuracy. LDH was identified as a contributing variable in mortality 
and length of ICU stay prediction and could be used to classify patients based on mortality risk.

Abbreviations
APACHE  Acute physiology and chronic health evaluation
AUC   Area under the curve
CI  Confidence interval
HR  Heart rate
ICU  Intensive care unit
LDH  Lactate dehydrogenase
RF  Random forest
SOFA  Sequential organ failure assessment
SpO2  Peripheral oxygen saturation
UMAP  Uniform manifold approximation and projection

Critically ill patients have a potential risk of death. To prevent this, substantial data including physiological 
parameters and laboratory tests are collected on intensive care unit (ICU) admission and throughout the ICU 
stay. Based on the integral evaluation using these data, health professionals, including physicians can provide 
care and predict clinical outcomes. Death is the primary clinical outcome, while length of ICU stay, which poten-
tially reflects severity of the survivors and alters medical costs, may be another key outcome. Precise prediction 

OPEN

1Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 1-8-1 
Inohana, Chuo-ku, Chiba, Chiba 260-8677, Japan. 2Smart 119 Inc., 7th floor, Chiba Chuo Twin Building No. 2, 2-5-1 
Chuo, Chiba, Japan. 3Department of Artificial Intelligence Medicine, Chiba University Graduate School of Medicine, 
Chiba, Japan. 4Medical Sciences Innovation Hub Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 
Kanagawa, Japan. *email: taka.nakada@nifty.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-17091-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12912  | https://doi.org/10.1038/s41598-022-17091-5

www.nature.com/scientificreports/

of clinical outcomes at an early time point may contribute to improving the quality of patient care, medical 
resources/costs, and clinical  outcomes1,2.

Recent advances in machine learning have led to an increase in the development of prediction algorithms 
using machine learning approaches in critical  care3. A recent systematic review reported that a machine learn-
ing approach could be used to develop precise prediction algorithms for mortality in ICU patients compared to 
conventional statistical approaches (patients n > 10,000, area under the curve [AUC] 0.89-0.94)4,5. While high 
mortality precision has been reported, analysis results to identify important variables in mortality prediction 
algorithms have not been sufficiently reported. Other clinical outcomes besides mortality, including length of 
ICU stay, are rarely analyzed. In addition to prediction, clustering into sub-populations is another strength of 
the machine learning approach; however, studies on clustering critically ill patients are limited.

Thus, we hypothesized that machine learning approaches could be used to develop precise prediction algo-
rithms for ICU mortality and length of ICU stay, and that machine learning analysis could identify important 
variables for outcomes, while clustering may clarify subcategories. We collected a large data set on ICU admis-
sion from a single-center surgical/medical mixed ICU and analyzed three types of machine learning approaches.

Results
Prediction of ICU mortality. The entire cohort of 12,747 patients was randomly split into a training cohort 
of 10,197 patients (80%) and a test cohort of 2,550 patients (20%) (Table 1, Supplementary Table S1). The num-
ber of ICU survivors was 12,133 (95.2%). Patient background and outcome were comparable between the train-
ing and test cohort data, except for the fraction of elective operations (P = 0.04).

We first compared predictive values of ICU mortality using three machine learning approaches and logistic 
regression with acute physiology, and chronic health evaluation (APACHE) II or sequential organ failure assess-
ment (SOFA) score. The prediction algorithm using Random Forest (RF) had the highest predictive value for 
ICU mortality among the test cohort (Fig. 1a, red line; AUC 0.945 [95% confidence interval: CI 0.922–0.977]) 
(predictive value among training cohort, Supplementary Table S2). In the analysis of importance using the RF 
model, lactate, lactate dehydrogenase (LDH), and platelet count were identified as key variables (top three vari-
ables) (Fig. 1b). The threshold (mode) of lactate, LDH, and platelet was 2.03 or 10 mmol/L, 301.84 IU/L, and 
46.44  103/µL, respectively (Supplementary Fig. S1). The settings of each machine learning model were shown in 
the additional file (Supplementary Tables S3–S5).

Cluster analysis of ICU patients. To further evaluate the key variables, we performed a clustering analysis 
in the test cohort. Since the number and shape of clusters depends on the hyperparameter settings, we evaluated 
several patterns to identify the appropriate setting forming the most visually distinct clusters (Supplementary 
Fig. S2). The clustering analysis with uniform manifold approximation and projection (UMAP) and the distri-
bution of each variable classified the ICU patients into five clusters based on the risk of ICU mortality (Fig. 2). 
Clusters 1 and 5 had low mortality rates compared to clusters 2, 3, and 4 (Fig. 2a), and clusters 1 and 2 were 
characterized by entry route to the ICU (cluster 1, post elective surgeries; cluster 2, from emergency department) 
(Fig. 2b). In terms of key variables for mortality, cluster 3 had high LDH and cluster 4 had low platelet counts, 
and high lactate was not localized in specific clusters (Fig. 2b).

Prediction of the length of ICU stay among survivors. We next analyzed the length of ICU stay 
category prediction. The RF algorithm had better prediction for both short or long stay among survivors com-
pared to the logistic regression analysis models of APACHE II or SOFA score in the test cohort (short/long, 
AUC 0.881/0.889 [95% CI 0.876–0.908/0.849–0.936]) (Fig. 3a,b) (predictive value among training cohort, Sup-
plementary Table S6). The accuracy of the RF model was 0.961 for short ICU stay and 0.830 for long ICU stay 
(Supplementary Table S7). Three subgroup predictions using the ordinalForest approach yielded high predictive 
values in the test cohort (AUCs: short, 0.872 [95% CI 0.853–0.889]; medium, 0.839 [95% CI 0.790–0.880]; long, 
0.863 [95% CI 0.835–0.926]) (Supplementary Fig. S3).

The analysis of importance identified the key variables for short ICU stay among survivors to be admission 
after elective surgery, heart rate (HR), and LDH; for long ICU stay among survivors to be LDH, HR, and urea 
nitrogen (Fig. 3c,d). For short ICU stay, the threshold (mode) of HR, and LDH was 92.64 or 105.76 bpm, 210.62 
or 310.57 IU/L, respectively. For long ICU stay, the threshold (mode) of LDH, HR, and UN was 230.62 IU/L, 
75.96 or 94.9 bpm, 16.33 mg/L, respectively (Supplementary Fig. S4). In accordance with the key variables in 
mortality, LDH was identified as a key variable for both short and long ICU stays among survivors. Prediction 
of the length of ICU stay was conditional on surviving, therefore we compared the distribution of the important 
variables shown in Fig. 3 among survivors and non-survivors. Most of these important variables were significantly 
different between survivors and non-survivors (Supplementary Table S8). Although the above results suggested 
elective surgery patients had different characteristics, the repeat analysis excluding elective surgery patients 
showed similar findings (Supplementary Tables S9 and S10, Supplementary Fig. S5).

Discussion
In the present study, the machine learning algorithms using RF demonstrated a higher predictive value for ICU 
mortality and length of ICU stay among survivors compared to classical scoring systems. The machine learning 
prediction indicated that LDH was a contributing variable in precise prediction for both mortality and length 
of ICU stays among survivors. Cluster analysis with UMAP also identified that LDH contributed to classifying 
patients into the mortality risk sub-populations.

A unique feature of our study is the examination of key variables to predict ICU mortality and length of ICU 
stay using machine learning in combination with cluster analysis. LDH was found to be an important predictor 
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of mortality involved in the clustering of ICU patients based on mortality risk and length of ICU stay. LDH is 
elevated by cellular damage caused by infection, hematologic disease, or liver  damage6, and has been reported 
to be associated with mortality in critically ill patients. In septic patients, high LDH (> 225 IU/L) was associated 
with 28-day mortality; LDH had a favorable predictive value for 28-day mortality among these patients (AUC 
0.783)7. In acute respiratory distress syndrome patients, high LDH (> 350 IU/L) was associated with increased 
60-day  mortality8, and LDH was the most important variable for predicting mortality (AUC 0.854) among 
12 variables (age, sex, pneumonia or not, sepsis or not, white blood cell, albumin, C-reactive protein, LDH, 

Table 1.  Baseline characteristics and outcomes of patients in the training and test cohorts. Data are expressed 
as median (interquartile range) for continuous variables and as exact numbers (%) for categorical variables. 
APACHE acute physiology and chronic health evaluation, SOFA sequential organ failure assessment, ICU 
intensive care unit. P-values were calculated using Pearson’s chi-square test and Mann–Whitney U test. 
*Hematological diseases include acute myeloid leukemia and multiple myeloma. † Comorbidities were treated 
as not having if their data were missing.

Variables

Training cohort Test cohort

P-value(n = 10,197) (n = 2550)

Demographic data

Age, years 67 (53–75) 67 (54–75) 0.41

Missing 5 (0.0) 1 (0.0) 0.84

Male 6366 (62.4) 1567 (61.5) 0.36

Missing 1 (0.0) 1 (0.0) 0.29

Diagnosis on admission

Sepsis/Septic shock 411 (4.0) 98 (3.8) 0.67

Post cardiac arrest syndrome 284 (2.8) 67 (2.6) 0.66

Stroke 151 (1.5) 41 (1.6) 0.64

Acute coronary syndrome 305 (3.0) 83 (3.3) 0.49

Heart failure 426 (4.2) 89 (3.5) 0.12

Trauma 222 (2.2) 61 (2.4) 0.51

Others 4579 (44.9) 1130 (44.3) 0.59

Missing 3819 (37.5) 981 (38.5) 0.19

Admission route

Emergency room 1123 (11.0) 287 (11.3) 0.73

General ward 689 (6.8) 170 (6.7) 0.87

Operating room, emergency 241 (2.4) 59 (2.3) 0.89

Operating room, elective 2765 (27.1) 639 (25.1) 0.04

Other hospital 30 (0.3) 13 (0.5) 0.15

 Missing 5349 (52.5) 1382 (54.2) 0.12

Comorbidity

Acquired immunodeficiency syndrome 6 (0.1) 0 (0.0) 0.22

Hematological diseases* 29 (0.3) 7 (0.3) 0.93

Heart failure 361 (3.5) 80 (3.1) 0.32

Lymphoma 22 (0.2) 7 (0.3) 0.58

Respiratory failure 443 (4.3) 94 (3.7) 0.14

Metastasis 99 (1.0) 22 (0.9) 0.62

Immunosuppression 170 (1.7) 41 (1.6) 0.83

Liver failure 54 (0.5) 17 (0.7) 0.41

Cirrhosis 33 (0.3) 8 (0.3) 0.94

Dialysis 113 (1.1) 29 (1.4) 0.90

Missing† 0 (0.0) 0 (0.0)

APACHE II score 20 (14–28) 19 (14–27) 0.16

SOFA score 5 (2–8) 4 (2–7) 0.13

Outcomes

Survival discharge 9703 (95.2) 2430 (95.3) 0.77

Length of ICU stay

 ≤ 1 week 8758 (90.3) 2216 (91.2) 0.16

1–2 weeks 549 (5.7) 121 (5.0) 0.19

 > 2 weeks 396 (4.1) 93 (3.8) 0.57
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Figure 1.  Predictive accuracy and key variables for intensive care unit mortality in the test cohort. (a) ROC curves and 
AUCs for ICU mortality were obtained from machine learning methods (Random Forest, XGBoost and Neural Network) 
and logistic regression. (b) Relative importance of variables for ICU mortality in Random Forest. Lac, LDH, and PLT 
had the highest importance for the precise prediction of ICU mortality. ROC receiver operating characteristic, AUC  area 
under the curve, CI confidence interval, ICU intensive care unit, APACHE acute physiology and chronic health evaluation, 
SOFA sequential organ failure assessment, Lac lactate, LDH lactate dehydrogenase, PLT platelet count, NBPs non-invasive 
systolic blood pressure, UN urea nitrogen, cBase (Ecf) standard base excess, NBPd non-invasive diastolic blood pressure, 
ALP alkaline phosphatase, cBase (B) actual base excess, CRE creatinine, HR heart rate, AST aspartate aminotransferase, 
PT-PER prothrombin time (%), PR pulse rate, WBC white blood cell, RR (impedance) impedance respiratory rate, PT-SEC 
prothrombin time (s).
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pulmonary surfactant-associated protein D, peptidase inhibitor 3, number of organ failures [none, one, two, and 
more than two], and  PaO2/FIO2)9. In acute pancreatitis, patients who died had significantly higher LDH levels 
(mean 667 IU/L) than survivors (mean 494 IU/L)10. In line with these reports, our machine learning investigation 
found that LDH was a contributing variable in outcome prediction in ICU patients under various conditions.

Our investigation further identified that machine learning had a high predictive value for mortality in ICU 
patients. Machine learning can analyze a vast amount of data. As ICU patients undergo continuous monitor-
ing of various parameters, they produce a massive amount of data and are thus an optimal target for machine 
 learning11. With the development of automatic data collection systems in  ICUs12, investigations to identify the 
potential predictive ability for mortality in ICU patients using machine learning have been increasing recently. 
A previous investigation reported high predictive values for mortality using machine learning in ICU patients 
(AUC 0.85–0.89)5,13. Our results showed similar predictive values to these reports.

In the analysis of the length of ICU stay prediction, we found a remarkable performance of the machine learn-
ing algorithm. Prediction of prolonged ICU stay is important for the adequate allocation of medical resources 
and management of ICU  beds14,15. Short and long ICU stays are reported to be related to the severity of  illness16. 
Thus, precise prediction of short and long ICU stays is essential in the care of critically ill patients. A previous 
investigation reported that the predictive value for ICU stay longer than 6 days was higher in machine learning 
algorithms than in SOFA scores (machine learning, AUC 0.76; SOFA score, AUC 0.62)17. Patients with ICU stay 
within 10 days were identified using a machine learning algorithm with an AUC of 0.85118. Our investigation 
identified that the machine learning algorithm may predict both short (within one week) and longer (more than 
two weeks) ICU stays with high precision (short/long, AUC 0.881/0.889), in line with previous reports. However, 
in this study, the prediction of the length of ICU stay was conditional on surviving, which should be interpreted 
with caution. Because many of the important factors for predicting the length of ICU stay differed between 
survivors and non-survivors, the findings could alter in a population including non-survivors.

The present study has several limitations. First, this was a single-center, retrospective study. In this regard, 
the prediction accuracy should be validated in a future prospective study. Second, previous investigations were 
analyzed using data at the earliest timing after ICU admission. Inconsistent timing of sample collection among 
patients could potentially affect prediction accuracy. Third, we excluded non-survivors to predict the length of 
ICU stay for competing risks. However, we cannot forecast whether a patient will survive or die at the time of 
admission, which affects the generalizability of our results to predict the length of ICU stay. Fourth, the prediction 
was performed based on data collected only at a single time point on admission. Real-time prediction could also 
be useful to improve the accuracy of prediction of ICU mortality and length of stay of critically ill patients whose 
condition is subject to abrupt changes. Future investigations using sequential data are warranted.

In conclusions, the machine learning algorithm could predict ICU mortality and short/long length of ICU 
stay with high accuracy. Moreover, LDH was found to be a key variable predicting both mortality and length of 
stay, and contributed to the clustering of ICU patients based on mortality risk.

Figure 2.  Clustering analysis based on mortality risk in the intensive care unit in the test cohort. (a) A 
clustering with UMAP for ICU patients was performed based on the risk of ICU mortality and the distribution 
of each variable. The analysis classified the patients into five clusters. (b) The top three variables (Lac, LDH, 
and PLT) contributed to predicting ICU mortality and the other two factors (Diagnosis and Department) 
characterized each cluster. UMAP uniform manifold approximation and projection, Lac lactate, LDH lactate 
dehydrogenase, PLT platelet count.
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Figure 3.  Predictive accuracy and key variables for the length of intensive care unit stay in the test cohort. 
(a,b) ROC curves and AUCs for the short (a) and long (b) length of ICU stays were derived from the machine 
learning methods using Random Forest and logistic regression. (c,d) Relative importance of variables for 
the short (c) and long (d) length of ICU stays in Random Forest. Elective surgery, HR, and LDH had the 
highest importance for the precise prediction of short length of ICU stay; LDH, HR, and UN had the highest 
importance for the precise prediction of long length of ICU stay. ROC receiver operating characteristic, AUC  
area under the curve, CI confidence interval, ICU intensive care unit, APACHE acute physiology and chronic 
health evaluation, SOFA sequential organ failure assessment, HR heart rate, LDH lactate dehydrogenase, UN 
urea nitrogen, PR pulse rate, PLT platelet count, CRP C-reactive protein, CRE creatinine, RR (impedance) 
impedance respiratory rate, NBPs non-invasive systolic blood pressure, MetHb methemoglobin, RR respiratory 
rate (count), COHb carboxyhemoglobin, D-Bil direct bilirubin, AST aspartate aminotransferase, ALT alanine 
aminotransferase, PT-SEC prothrombin time (in seconds), AMY amylase, PT-PER prothrombin time (%), 
PT-INR prothrombin time (international normalized ratio), Alb albumin, GGT  gamma-glutamyltransferase, 
CPK creatine phosphokinase.
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Methods
Subjects. This was a retrospective cohort study performed using electronic health record data of consecu-
tive patients admitted to the ICU at Chiba University Hospital, Japan, from November 2010 to March 2019. The 
surgical/medical ICU has 22 beds, with an annual admission number of patients ranging from 1541 to 1832. Of 
the 16,169 screened patients, 12,747 were enrolled in the present study after the exclusion of 3,422 with missing 
data on clinical outcomes.

The study was approved by the Ethical Review Board of the Graduate School of Medicine, Chiba University 
(approval number: 3380), and performed in accordance with the Declaration of Helsinki. The review board 
waived the need for written informed consent, in conformity with the Ethical Guidelines for Medical and Health 
Research Involving Human Subjects in Japan.

Data collection and definitions. To develop prediction algorithms, the data of 91 input variables (Sup-
plementary Table S11) were collected at the earliest time within 24 h after ICU admission from the ICU data 
system. These variables included (1) patient baseline characteristics (age, sex, height, weight, blood type, clini-
cal department categories, diagnosis on admission, admission route [from emergency room, general ward, 
operating room, other hospitals] and APACHE II comorbidities [acquired immunodeficiency syndrome, acute 
myeloid leukemia/multiple myeloma, heart failure, lymphoma, respiratory failure, cancer metastasis, liver fail-
ure/cirrhosis, immunosuppressed status, and dialysis]); (2) blood tests (complete blood count, biochemistry, 
coagulation, and blood gas analysis); and (3) physiologic measurements (HR, blood pressure, respiratory rate, 
peripheral oxygen saturation  [SpO2], and body temperature). Numerical data with an input rate of less than 50% 
were not used for predictions.

Variable importance is defined as an index calculated by machine learning that indicates how much the model 
used the variable to make precise predictions. The top three variables with high importance were defined as the 
key variables in this study. The length of ICU stay was analyzed in survivors and divided into three categories: 
short (within 1 week), medium (within 1–2 weeks), and long (more than 2 weeks). The short and long length 
of ICU stay were considered to have high clinical importance because these subcategories were reported to be 
associated with ICU mortality and  severity16,19. In addition, identifying patients who are at risk of long ICU stay 
may contribute to adequate ICU management and avoid ICU bed  shortage16.

Imputation for missing values. We performed multiple imputations (10 times) for the missing values of 
numerical data on single dataset using the sklearn.impute.Iterative Imputer in Python (scikit-learn 0.22.1; https:// 
scikit- learn. org). Dummy coding was used to convert categorical variables into binary variables. After missing 
value imputation, the dataset was randomly split into the training and test cohorts, comprising 80% and 20% of 
the datasets, respectively, and the variables were compared between the two cohorts.

Statistical analysis. The primary outcome variable was ICU mortality, and the secondary outcome varia-
ble was the length of ICU stay. Outcome prediction was performed using machine learning approach algorithms 
computed with the three types of classifiers, namely RF, XGBoost, and Neural Network, or logistic regression 
analysis using either APACHE II score or SOFA score. RF is a standard ensemble machine learning method, and 
XG Boost is the same decision tree-based method as RF, which has been used frequently in recent years because 
of its accuracy for complex data. Different from these two classifiers, Neural Network is a non-decision-tree 
based method. Because it is difficult to evaluate all machine learning methods, these three classifiers, which are 
representative and have different characteristics, were selected in this study. After machine learning algorithms 
were derived using the training cohort, the established algorithms were applied to the test cohort. As we found 
that the RF was superior to the other two machine learning models for the prediction of mortality, we confirmed 
the variable importance and key variables in the RF model. To evaluate the variable importance in the predic-
tion, we used the feature importances function in Python scikit-learn package.

For robust clustering of ICU patients with higher risk factors for mortality, an RF dissimilarity measure was 
calculated to evaluate the similarity among patients. The RF dissimilarity measure is a method to evaluate the 
similarity between samples based on a trained RF model, where the similarity of samples is evaluated by the 
frequency with which two samples are classified into the same leaf in the decision tree in the RF  model20. If two 
samples are classified into the same leaf in all decision trees, the RF dissimilarity between the two samples is 0 
(completely same). Conversely, if two samples are never classified into the same leaf, the RF dissimilarity is 1 
(completely different). The more often they are classified into the same leaf, the closer the RF dissimilarity is to 
0. The RF dissimilarity was then used as an input for UMAP to provide a 2D representation of the patients in 
the test cohort. UMAP is a type of manifold learning that allows us to place samples in a two-dimensional space 
while maintaining the distance (dissimilarity) between the  samples21. Subsequently, clustering of ICU patients 
was obtained by visually identifying the distribution of each variable on the two scaling coordinates of UMAP. The 
clustering based on the RF dissimilarity measure that we have done in this study is a visualization of a supervised 
machine learning model. In supervised learning, the prediction results are probabilities, but the details of the 
prediction, such as "what samples are likely to be wrong in prediction" or "what samples have similar prediction 
probabilities but have different characteristics" are not explicitly shown. Visualization and clustering based on 
the RF dissimilarity allows us to reveal the heterogeneity of the population and hard-to-predict samples.

To predict the length of ICU stay, we evaluated the short (short vs. not short) and long (long vs. not long) 
categories using machine learning with RF algorithm and logistic regression analysis using the APACHE II or 
SOFA scores. In the same manner as the analysis on mortality, variable importance and key variables associated 
with length of ICU stay prediction were confirmed. We also analyzed the predictive values of length of ICU stay 

https://scikit-learn.org
https://scikit-learn.org
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using ordinalForest, which could estimate the predictive values for all three categories of ICU stay at the same 
time. All classifiers were implemented using Python, except for the ordinalForest, which was executed with R.

Data are expressed as median (interquartile range) for continuous values and absolute numbers and percent-
ages for categorical values. The AUC was calculated to evaluate the predictive values. Statistical significance 
was set at P < 0.05. Analyses were performed using Python packages (sklearn.neural_network.MLPClassifier, 
sklearn.ensemble.RandomForestClassifier, xgboost, sklearn.linear_model.LogisticRegression) and R package 
(ordinalForest 2.4.1), to construct machine learning models.

Ethics approval and consent to participate. This study was approved by the research ethics committee 
of the Chiba University Graduate School of Medicine (approval number: 3380), who issued a waiver for written 
consent for the study because data collection was retrospective.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author upon 
reasonable request.

Code availability
The Python and R codes used in this article are available at https:// github. com/ eiryo- kawak ami/ ICU_ AI_ code.
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