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A methodology for evaluating 
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on the COVID‑19 experience
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Controlling the spreading of infectious diseases has been shown crucial in the COVID-19 pandemic. 
Traditional contact tracing is used to detect newly infected individuals by tracing their previous 
contacts, and by selectively checking and isolating any individuals likely to have been infected. 
Digital contact tracing with the utilisation of smartphones was contrived as a technological aid to 
improve this manual, slow and tedious process. Nevertheless, despite the high hopes raised when 
smartphone-based contact tracing apps were introduced as a measure to reduce the spread of the 
COVID-19, their efficiency has been moderately low. In this paper, we propose a methodology for 
evaluating digital contact tracing apps, based on an epidemic model, which will be used not only to 
evaluate the deployed Apps against the COVID-19 but also to determine how they can be improved 
for future pandemics. Firstly, the model confirms the moderate effectiveness of the deployed digital 
contact tracing, confirming the fact that it could not be used as the unique measure to fight against 
the COVID-19, and had to be combined with additional measures. Secondly, several improvements are 
proposed (and evaluated) to increase the efficiency of digital control tracing to become a more useful 
tool in the future.

Little did we know when the COVID-19 pandemic started that it would have such a huge impact on our society. 
Not only has it caused millions of deaths, but it has also changed our way of living. Fortunately, with the intro-
duction of vaccines and new treatments, the pandemic is on the verge of being controlled.

The initial outbreaks of COVID-19 were tackled mainly by lockdowns and a stringent social distance to slow 
down the pandemic and make it more manageable by national health systems. After those initial outbreaks, 
countries started to use manual contact tracing, testing the symptomatic individuals, and when positive cases 
were detected, their prior contacts were traced and isolated. Thus, this contact tracing procedure, although being 
an arduous and slow manual task, is a more selective and effective isolation measure than general lockdowns1.

Nevertheless, the first studies have shown that asymptomatic individuals have caused about 80% of the 
infections2 since most infected individuals do not experience severe symptoms. This fact, combined with the 
large basic reproductive number of the COVID-19, implies that contact tracing has to be fast and accurate in 
order to be effective.

Digital Contact Tracing (DCT) was proposed with the aim of speeding up and extending this tracing contact 
process3. As its name suggests, Digital Contact Tracing relies on electronics tracking systems, mainly based 
on mobile devices, to determine risky contacts. Several contact tracing mobile apps were developed, such as 
Europe’s PEPP-PT4 and MIT’s SafePath5. Nevertheless, it was finally Apple and Google who teamed up in April 
2020 to develop the most widely adopted solution, which was integrated into both Apple and Google mobile 
phone operating systems.

Digital Contact Tracing is based on the results of several years of research in Mobile Computing, particularly 
Opportunistic Networking (OppNet) and Mobile Crowdsensing. OppNet is based on the opportunity of exchang-
ing messages between nearby devices when some type of direct and localised communication link is established 
(for example, through a Bluetooth or WiFi direct channel)6. The behaviour and dynamics of OppNets are similar 
to an epidemic spread of messages. Actually, many of the models used to evaluate these networks have been 
adapted from well-known epidemic population models7.

In a previous study8, we studied the efficiency of smartphone-based contact tracing, even before the first 
contact tracing apps were introduced. The main conclusions of that work are that digital contact tracing can only 
be effective in controlling an outbreak when the adoption ratio is very high (more than 80%); if this adoption 
ratio is even slightly lower (around 60%), it needs to be combined with other measures, although its effectiveness 
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is moderate. Unfortunately, the real usage of these applications was around 20%, so, as we forecasted, their 
effectiveness was low.

The crisis and urgency provoked by the COVID-19 sped up the research and development of new methods 
to fight against this pandemic, being the fast development of ARNm vaccines the most outstanding example. 
Similarly, a usually lengthy process that requires researching, developing, testing, deploying, and finally evaluat-
ing an application such as digital contact tracing, was shortened to a few months. This experience allows us to 
evaluate the efficiency of these deployed applications in such a short time.

The main goal of this paper is to develop a systematic methodology based on an epidemic model to evaluate 
quantitively the effectiveness of current and future digital contact tracing apps. To this end, we firstly evaluate 
and analyse the main causes that can impact their efficiency and effectiveness. Several aspects are considered, 
such as adoption ratio, user’s willingness to check their exposure, tracing speed, and application model (cen-
tralised vs decentralised). Then, based on our evaluation methodology, we propose several changes to digital 
contact tracing to be more effective in future epidemics. In addition, our model allows evaluating the impact 
of these changes depending on the main characteristics of future epidemics and the additional measures taken. 
This way, by knowing the real impact of these technological decisions, we will be able to improve these applica-
tions to manage an epidemic effectively. Note that this paper is devoted only to evaluating the technical aspects 
of digital contact tracing and not the organisational, medical, sociological, and political aspects that impact the 
success of these applications.

The performed evaluation shows that the adoption ratio is the main factor that impacts the effectiveness of 
digital contact tracing. Only with high adoption ratios can an outbreak be controlled. Nevertheless, in most 
cases, this is not a realistic scenario. Therefore, digital contact tracing should be used as an add-on to standard 
epidemic mitigation measures, such as social distancing or manual contact tracing. This way, it can contribute 
to the reduction of cases while being more selective than general lockdowns.

The remainder of the paper is organised as follows: next, we overview the related work. Then, the meth-
ods of this article are introduced, particularly how digital contact tracing efficiency and effectiveness can be 
characterised based on the proposed deterministic model. Section evaluation and results, firstly evaluates the 
effectiveness of the deployed digital contract tracing apps by modelling a real scenario and then by studying 
how digital contact tracing can be improved for future epidemics. Finally, the paper ends with a discussion of 
the results and the main conclusions.

Related work
Understanding the patterns of how a disease is spread, as well as the cause of these patterns, is essential to miti-
gate and prevent infections. This is the main goal of epidemiology. Recently, with the advent of Information and 
Communications Technology, a new term has been coined: Digital epidemiology. Digital epidemiology is simply 
epidemiology that uses digital data9. The goal is to predict, prevent and control epidemics using technologies such 
as internet-based surveillance, infectious disease modelling and simulation, remote sensing, telecommunications 
and mobile phones10. Among these technologies, mobile computing, particularly smartphones, has allowed users 
to share data, which is the basis of Mobile CrowdSensing. Mobile Crowdsensing is mainly based on two sensing 
approaches: mobile sensing, that is, gathering data from the mobile’s hardware sensors; and social sensing, which 
exploits data from social networks11,12.

Particularly, wireless sensor network technologies, such as ZigBee or Bluetooth, can be used to detect and 
trace contacts. Salathe et al.13 performed one of the first experiments using MOTES to detect contacts. Regard-
ing mobile phones, the FluPhone application developed at Cambridge University14 is considered one of the first 
attempts in this area; in particular, it used Bluetooth for estimating physical contacts and asked users to report 
if they had flu-like symptoms.

In the initial stages of the COVID-19, several frameworks for implementing digital contact tracing were 
developed, such as the Pan-European Privacy-Preserving Proximity Tracing (PEPP-PT)4, and SafePaths5,15. Finally, 
Google and Apple have teamed up to develop and integrate similar solutions into their iOS and Android operat-
ing systems. This framework was widely used for implementing the different digital contact tracing apps deployed 
in countries and states.

Digital contact tracing is based on detecting risky contacts mainly using the communications technologies 
embedded in mobile phones. Nevertheless, this detection is far from being reliable since it depends primarily on 
the use of the received signal strength, which can vary depending not only on the distance but also on the orienta-
tion of the devices, the absorption level of the human body, and the location16,17. Finally, for further information 
about digital contact tracing technologies and their requirements, please refer to the following surveys18–21.

Traditional contact tracing has been widely used as it is a useful tool for controlling the spread of infectious 
diseases. The evaluation of the different contact tracing strategies has been a key research topic in epidemiology. 
The evaluation of contact tracing is based mainly on two modelling approaches22: Population-based modelling is 
a macroscopic approach, depicting disease dynamics on a system level; Agent-based modelling is a more micro-
scopic approach dealing with each individual as an agent, modelling their movements and infection states. In 
general, although this method is more realistic, it can be computationally demanding.

In this paper, we follow the population-based modelling by developing an epidemic model, as do most of 
the previous evaluations23. These models are based on the basic SIR (Susceptible Infected Recovered) model, 
also considering quarantine, isolation measures, and incubation periods24–27. Eames et al.1 showed that contact 
tracing is effective only at the early stages of an outbreak and when the number of infection cases remains low. 
Particularly interesting are the results of the work by Farrahi et al.28, which evaluated digital contact tracing 
using population-based models.
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With regard to the COVID-19, some studies have evaluated contact tracing. Ferretti et al.3 showed that tra-
ditional contact tracing in the first outbreak did not prevent the COVID-19 epidemic, mainly due to the high 
number of asymptomatic cases that remain undetected. Therefore, they proposed digital contact tracing as a way 
to speed up the detection process. Kretzschmar et al.29 obtained similar conclusions: reducing the testing delay is 
the most crucial aspect to enhance the effectiveness of contact tracing. Cencetti et al.30 showed that isolation and 
tracing alone are unlikely to be sufficient to keep an outbreak under control, and additional measures need to be 
implemented simultaneously. Hellewell et al.27 draw a similar conclusion through a simulated model, showing 
that highly effective contact tracing was enough to control a new outbreak of COVID-19 within three months, 
even when only 79% of the contacts were traced. Finally, Lambert31 has also proved, using an analytical model, 
that moderate rates of adoption of a digital contact tracing app can reduce the reproductive number R0 , but are by 
no means sufficient to reduce it below 1 (that is, to have control of the outbreak) unless other measures are taken.

Recently, several papers have studied and evaluated the effectiveness of digital contact tracing. Rodríguez 
et al.32 describe the results of the first experimental deployment of the Spanish digital contact tracing that took 
place in one of the Canary Islands in July 2020. With an adoption ratio of 33%, only 10% of all the potential 
cases were detected. Wymant et al.33 present the epidemiological results of the NHS COVID-19 app deployed 
in England and Wales. With an adoption ratio of 28%, their analysis suggests that a large number of cases of 
COVID-19 were averted by the NHS App, and estimated that for every percentage point increase in app uptake, 
the number of cases could have been reduced by 0.8%. Finally, Li et al.34 performed a survey to evaluate the 
reasons behind the low adoption rates of the COVID-19 contact-tracing apps. Grekousis and Liu35 studied the 
real impact of several applications on reducing the effective reproductive number.

Moreno et al.36 evaluate several factors that have impacted the effectiveness of digital contact tracing, such as 
the role of age, transmission setting, detection, and household isolation using a compartmental model. The evalu-
ation of actual contact tracing apps by Maccari et al.37 is quite pessimistic: they claimed that there is no scientific 
evidence of their efficacy in slowing down the spread of the virus, and propose to re-think some privacy-invasive 
measures that have made digital contact tracing inefficient. Other studies evaluated aspects such as privacy and 
deployment policies that have impacted on their adoption rate and consequently on the effectiveness of digital 
contact tracing38–40. A more holistic approach is followed by Shubina et al.41, using a wide range of factors: tech-
nical, epidemiological and social ones that are incorporated into a compact mathematical model for evaluating 
the effectiveness of digital contact tracing solutions.

Summing up, most of the previous papers were focused on the epidemiological aspects of the COVID-19 
and contact tracing effectiveness. Instead, our paper aims to provide a quantitative methodology to assess the 
efficiency of current and future digital contact tracing apps, focusing on those technological aspects that have a 
significant impact. This way, knowing the real impact of technological decisions will allow us to improve these 
applications in the near future.

Methods
Generally speaking, contact tracing is the procedure of identifying individuals who may have come into contact 
with an infected individual. Then, by tracing back the contacts of these infected people, public health profes-
sionals aim to reduce infections in the population, applying measures such as selective isolation. Traditional 
manual contact tracing is a laborious and lengthy task involving personal interviews that, in most cases, provide 
only vague information about the previous contacts. Consequently, digital contact tracing aims to automate this 
task, mainly by using users’ smartphones to detect contacts between infected and susceptible people, and trace 
back contacts.

We start this section by detailing how a risky contact can be determined and the architecture of digital contact 
tracing, focusing on those aspects that will impact its efficiency. Then we characterise this efficiency which will 
be used in the proposed model for assessing digital contact tracing. We differentiate between the terms efficiency 
and effectiveness. Effectiveness is used more as a medical term, that is, how well a treatment works when people 
are using it, and it can be measured as the number of infected or dead people averted with digital contact tracing. 
Efficiency is used more as a technological term and allows scientists to evaluate how well digital contact tracing 
is working, for example, by reducing the number of false alerts or by increasing the tracing speed.

Risk contacts estimation.  One of the critical aspects of digital contact tracing is how to estimate risk 
contacts using the underlying technology of current users’ smartphones. From the beginning of the COVID-19, 
health authorities have considered a risk contact someone who is in close contact (less than two meters away for 
at least 15 min) with a person who tested positive42–44.

Current smartphones can provide several ways to determine these close contacts using localisation and com-
munication technologies, such as GPS, Wi-Fi, Bluetooth, beacons, or even QR codes. The final goal is to provide 
a method to detect risky contacts with enough precision for contact tracing.

As most COVID-19 applications finally used Bluetooth for its greater precision and privacy, we briefly sum-
marise this detection technology. When two Bluetooth devices communicate, the sender emits its signal at a 
certain power level, while the receiver observes this signal at an attenuated power level known as the received 
signal strength indicator (RSSI). Since attenuation increases with the square of the distance, the distance between 
two Bluetooth devices can be inferred using a Path Loss Model. On the other hand, the duration of a contact 
is estimated by periodically sending Bluetooth messages and calculating their distance. However, RSSI values 
typically fluctuate in time or are influenced by other factors such as obstacles and reflections45. Several studies 
have shown that it depends on factors such as the relative orientation of handsets, absorption by the human 
body, type of devices used, and if the contact is indoor or outdoor17,46. For example, the evaluation shown in46, 
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in which several distances and scenarios were used using the Android Beacon Lib., showed an accuracy of close 
to 50% indoors and of about 70% outdoors.

Nevertheless, this is only referred to the accuracy of estimating if a contact is in the 2 meters range, not about 
the real exposure to the virus. The risk also depends on many other factors, such as the exposure intensity to the 
virus, the quality of the medium, and the susceptibility of the non-infected person.

A way to improve this precision is to use other smartphone sensors to detect the kind of location (indoor/
outdoor) and the quality of the medium (temperature, sunny/cloudy). Considering this new information, and 
with the combination of machine learning techniques, it is possible to improve the accuracy to 83% indoors 
and 91% outdoors45.

Digital contact tracing architecture.  Digital Contact Tracing works in a similar way to traditional con-
tact tracing but uses smartphones to detect and record the possible risky contacts (see Fig. 1). The first step is 
to install on the user’s smartphone an app that will be active to monitor these contacts. When the users’ phones 
are in contact for at least 15 min and at a distance of less than two meters, the app understands that there has 
been a risky contact. To preserve privacy, the smartphones exchange anonymous key codes, which can be used 
to determine the identity of the people contacted. If a user is diagnosed as positive after performing a test, the 
app should be notified in order to start the process of tracking the user’s previous contacts, which will use the 
generated keys of their previous contacts to identify the users at risk. Then, users who have had a contact with 
the positive user will receive an alert.

Nevertheless, there have been several considerations for the design of these contact tracing apps, such as 
where the keys are stored, how the matching is done, some privacy issues, and the adoption requirements. 
Regarding where the keys are stored and managed, there are two different models: in the centralised approach, the 
generated keys are stored and managed in a central server. This way, when positives are detected, the users notify 
the application of their new status, which is transmitted to the central servers. Then, the centralised servers check 
for all her/his previous risk contacts, who are notified immediately by the application. On the contrary, in the 
decentralised approach, the generated keys are stored on the user devices. Only when a user is detected positive, 
the mobile application will upload the recent locally stored keys to the server, which will be distributed among all 
the users in order to match locally if they have been in contact with this individual. Although the decentralised 
approach seems to preserve the privacy of the users, it depends on their willingness to check and inform health 
authorities of this possible risky contact, being less effective than the centralised approach.

In both models, we consider the matching of keys and notifications to users to be completely automatic and 
immediate in order to shorten the tracing process. Finally, note that the centralised approach allows several 
variations. If required, the health authorities can have direct oversight of user data, so they can check, notify 
and manage previous contacts. It can also be used in combination with manual contact tracing, so the positives 
detected are notified to the tracing teams (the user is not notified automatically by the app), and the notifications 
to users could be delayed.

Another implementation issue is the adoption requirements of the app. That is, how and when the contact 
tracing app is activated. As the effectiveness of digital contact tracing depends on the adoption rate, this is a key 
aspect. There are different strategies for activating the app: mandatory use, opt-in and opt-out. A mandatory 
adoption implies that the application is always active, for example, by compelling their citizens to install the appli-
cation and use it. This mandatory adoption may be viewed as a privacy violation in most countries. Therefore, 
most of the offered applications implemented the opt-in strategy for activating the app: users should download 
the app and proactively opt-in for using it, penalising its utilisation. Finally, the opt-out strategy assumes that 
the application is installed and activated by default (for example, by making use of an operating system update). 
Nevertheless, although the user still has the option to disable the application, most people would not opt-out47, 
and this will increase its utilisation.

The previous adoption requirements consider the entire population of a country or state, which makes high 
adoption ratios very difficult. Nevertheless, we can improve the utilisation and effectiveness if we consider only 
the people at specific locations, such as factories, music festivals, university campuses, retirement homes, and 
conferences (these groups are medically referred to as cohorts). The app should only work in those locations (for 
example, by using the GPS and establishing the tracing area where the smartphone can detect these contacts) 
and would be mandatory (no privacy issues can be raised as the app only traces the contacts in those locations). 

Figure 1.   Digital contact tracing: (1) when the smartphones of two users are in range, they exchange their 
anonymous key codes; (2) if an individual is detected positive, it starts a process for tracing and identifying the 
previous contacts; (3) users are notified about a risky contact.
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Additionally, for retirement homes, we can consider that the elderlies’ could use other more manageable devices, 
such as wristbands or necklaces, with detection capabilities similar to those of smartphones. Thus, considering 
the individuals in those cohorts, the adoption ratio could reach 100%.

Finally, and regarding the implementation decisions of digital contact tracing for COVID-19, the major-
ity of countries chose the Google/Apple Exposure Notification API as the framework for implementing their 
apps39. This framework implemented a decentralised approach and Opt-in activation, limiting, as we will see, 
its efficiency. Other countries, such as China and South Korea, developed their own framework and application, 
a mandatory app with a centralised model.

Characterising digital contact tracing efficiency.  As detailed in the previous subsections, several 
technical aspects of digital contact tracing can have a huge impact on its efficiency: the precision of detecting 
risky contacts, some implementation decisions such as the centralised vs. decentralised approach, and the adop-
tion model. Therefore, in this subsection, we first evaluate and parametrise the impact of these technical aspects; 
then, we introduce some simple expressions to evaluate the efficiency of contact tracing.

Parametrising digital contact tracing.  Accuracy is fundamental in detecting real risky physical contacts, that is, 
a true positive contact. Nevertheless, as detailed in section "Risk contacts estimation", current smartphone risky 
contact detection is not precise enough. Smartphone-based detection can generate false negatives (a true posi-
tive contact is missed) and false positives (a false contact wrongly detected as positive).

To characterise the false and negative contacts, we use the following ratios: the True Positive Ratio (or sen-
sitivity), TPR , is the ratio between the number of the detected positive contacts and the real number of positive 
contacts, and the False Positive Ratio, FPR is the ratio between the number of negative contacts wrongly catego-
rised as positive and the total number of actual negative contacts. The impact of these ratios in the contact trac-
ing process is quite different: a greater TPR implies that more infected individuals can be detected and isolated, 
and FPR increases the number of people wrongly considered infected (i.e. a false alarm), and thus the people 
isolated unnecessarily.

For example, the first evaluation of England’s contact tracing app performed in August 2020 (based on version 
1.4 of the Google/Apple Exposure Notification) showed a TPR of 69% and a FPR of 45%48. These numbers were 
not good, especially considering the high rate of false alarms that were generated, which undermined the people’s 
confidence in the app. A posterior refinement on the classification algorithm reduced this FPR significantly.

The centralised and decentralised approaches have an impact on the contact tracing time and the tracing 
coverage. The contact tracing time TT is the time in days required since an individual is tested positive until the 
notification of his/her traced contacts. The tracing coverage TC is the proportion of previous contacts traced.

If we consider that in the centralised approach, all the keys are uploaded to a centralised server, when indi-
viduals test positive health authorities can immediately start the process of matching their previous contacts 
obtaining full tracing coverage (thus, TT ≤ 1 day and TC = 1 ). On the contrary, this process is not as fast in a 
decentralised approach and depends on the users’ willingness. Firstly, when an individual is tested positive, she/
he should notify the application. Secondly, as the matching is done locally, the potential previous contacts of this 
new positive individual should check the App. This checking will produce delays of several days in the notifica-
tion ( TT > 1 days), and that some potential contacts are not notified, reducing the tracing coverage ( TC < 1 ). 
This last value will depend on the users’ willingness to check their App.

The adoption ratio has been shown to be a critical issue in the efficiency of digital contact tracing. The key 
question here is how many people are going to use the application. As detailed in the previous subsection, this 
rate depends on the adoption model. It is clear that a mandatory model will imply a high utilisation rate, while 
an Opt-in model will reduce its use significantly. Unfortunately, for the Opt-in model used in most countries, 
the utilisation rates were in the range of [0.15, 0.35], far below the necessary utilisation rates recommended for 
the models to be effective.

This adoption ratio (AR) can be used to estimate the number of contacts that can be traced, and, in some way, 
determine roughly the efficiency of the process as the proportion of the contacts detected to all real contacts. 
Note that, for detecting a contact, it is required that both individuals use the App. Therefore, the likelihood of 
detecting a contact is AR × AR , which is the probability that in a real contact both individuals use the App. This 
probability means that the ratio of contacts detected is AR2 , which implies that a high adoption ratio is required 
in order to capture a considerable number of contacts (for example, with an adoption ratio of 0.25, only 6.25% 
of the contacts can be captured).

Measuring tracing efficiency.  A simple way to measure the efficiency of contact tracing is to determine how 
many risky contacts can be detected. The first expression, the true traced contacts ratio cT , determines the ratio 
of true risky contacts detected to all real risky contacts. This ratio can be obtained by taking into consideration 
the true positive ratio TPR , the adoption ratio AR, and the tracing coverage TC. All these parameters reduce the 
final number of detected contacts as follows:

A similar expression can be obtained to determine the ratio of false positives generated, or false alerts ratio, cA , 
using the false positive ratio:

(1)cT = TPR · (AR)2 · TC

(2)cA = FPR · (AR)2 · TC
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As an example, we can estimate the efficiency of England’s digital contact tracing app. The parameters have been 
obtained from48, and33: the true and false positive ratios were 69% and 45%, respectively; the adoption ratio was 
28% (from a total population of 58.9 million), and the tracing coverage of 80%, estimated as the reported adher-
ence to quarantine rules of the individuals who used the app. With these values, the true traced-contacts ratio cT 
was 0.0433, and the false alerts ratio cA was 0.0282. Regarding cT , this means that only 4.3% of the real contacts 
were detected using the app, which can be considered a small efficiency. Nevertheless, in order to evaluate the 
real impact of these parameters when dealing with the COVID-19, we need to use an epidemic model.

A model for assessing digital contact tracing.  The model presented here is a Susceptible, Infected, 
Recovered (SIR) deterministic epidemic model, which considers not only the impact of the digital contact trac-
ing technology through the parameters described in the previous subsection but also the effect of the quarantine 
measures taken in case an individual is detected positive, and the immunity due to vaccines. The goal is to obtain 
a model that reproduces the spread dynamics of the COVID-19 disease that will be used to evaluate the effective-
ness of digital contact tracing.

The model we introduce here is a derivation of the stochastic epidemic model presented in our previous work8, 
in which we considered the heterogeneity of the contacts. Thus, in our new model, we consider a population of N 
individuals and homogeneity of the contacts. This new model also considers the effect of the temporal measures 
taken (such as social distancing and mask), along with the vaccination rates.

Epidemic model.  Epidemic models are usually based on the transmission rate (or risk) β , the rate at which an 
infection can be transmitted from an infected individual to a susceptible one. This rate can be obtained as the 
product of the average number of contacts with infected individuals during a day, k, and the transmission prob-
ability of the disease, b, where the time unit t is in days. Infected individuals recover after 1/γ days, where γ is 
known as the recovery rate. These values are related to the basic reproductive ratio as R0 = kb/γ . R0 represents 
the expected number of new cases directly generated by a single case. When R0 > 1 , the infection will start 
spreading in a population, but not if R0 < 1 . Generally speaking, the larger the value of R0 , the harder it is to 
control the epidemic. When measures are taken, this reproductive ratio can be reduced, and it is usually referred 
to as the effective reproductive number Re . For the COVID-19, in Table 2 we can see the estimated parameters 
of its transmission. These parameters are estimated when no health measures are taken. As for COVID-19, 
we have experienced that when temporarily applying physical measures such as social distancing and wearing 
masks, both the probability of transmission and the number of contacts were reduced. Therefore, in this model, 
we consider the time dependency of these parameters to model the effect of these temporal measures: B(t) and 
K(t). Note that, for simplicity of notation, we will omit the time in the expressions that follow. The number of 
casualties can be obtained from the whole number of infected individuals multiplied by the Infection Fatality 
Rate (IFR).

Vaccination reduces the probability of infection and its transmission drastically, and thus the mortality rates. 
Fortunately, for the COVID-19, it has been the definitive solution. Nevertheless, vaccines are not 100% effective, 
so vaccinated people can get infected. This effectiveness depends on the type of vaccine (for example, the effec-
tiveness of Pfizer’s vaccine is around 95% and the AstraZeneca’s one around 70%.). In our model, we take into 
account the weighted average effectiveness of the vaccines used in a country (v). We also consider a vaccination 
rate (per day) depending on time �(t) to model when the vaccines were introduced and their rate.

As detailed in the previous subsection, digital contact tracing cannot trace all real contacts positively, and 
it can even generate false positives. We obtained two expressions for measuring this efficiency: the true traced 
contacts ratio cT (Eq. 2), and the false alerts ratio cA (Eq. 1). Nevertheless, if tracing time is greater than one, that 
is, for the decentralised schemes, the cT and cA ratios need to be normalised considering the tracing time TT, 
since it will take more time to trace the previous contacts. Thus, the contacts are distributed among the days that 
last the tracing process, in the following way: cnT = q/(1/τT ) = cTτT and cnA = cAτT.

In our model, we assume that a newly detected infected individual is immediately isolated, and his/her 
previous contacts are evaluated using digital contact tracing. Then, these previous contacts are considered to be 
quarantined. Therefore, besides the common SIR classes (S, susceptible individuals; I, infected individuals; R, 
individual recovered;) we define three new classes for the individuals being in quarantine. Namely, QI refers to an 
infected individual that has been detected (or traced) and therefore quarantined; QS to a susceptible individual 
that is quarantined after being traced; and QT to an infected individual that has been detected and is being traced. 
There is also a class V for the vaccinated people. Finally, refer to Table 1 for the notation used in the model.

The transitions between classes and their rates are depicted in Fig. 2. The time unit is one day, as most human 
epidemic models do. The general transition rate from susceptible to infected is KB I

N  , which depends on the 
transmission rate of the disease, B, the average number of contacts, K, and the ratio of infected individuals to 
the population, IN  . Nevertheless, in our model, we distinguish between the infected individuals that have been 
traced positive and the rest. The transition S → I occurs when a susceptible individual that has not been traced 
positive gets infected. Thus, the previous general transition rate is multiplied by (1− cT ) , which is the ratio of 
non-traced contacts. Therefore, class I contains infected people who have not been detected positive and are 
not quarantined. The transition S → QT is for the susceptible ones that are infected and are detected positive (a 
true positive), mainly using digital contact tracing (which is why this transition rate is multiplied by cT ). Note 
that infected individuals that are in class I can be also detected by tests (PCRs) with a δ rate, traced back, and 
quarantined (transition I → QT).

Individuals stay in quarantine for a total of 1/τQ days. Nevertheless, we divide this quarantine into two phases. 
The first phase (transition QT → QI ) is the time needed to trace their previous contacts, which is the tracing time 
TT = 1/τT . This phase is added to evaluate the impact of this time, for example, to consider the delay incurred 
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Table 1.   Notation table.

Symbol Definition

N Population

S, I, R Susceptible, Infected and Recovered individuals classes

QS Susceptibles in quarantine by tracing

QI Infected detected and quarantined.

QT Infected detected and being traced.

V Vaccinated individuals

v weighted efficacy of the vaccines

R0,Re Basic and effective reproductive ratios ( R0 = kb/γ)

K K(t), contact per day and individual depending on time

B B(t), probability of disease transmission depending on time

β Transmission rate ( β = k · b)

γ Recovery rate ( 1/γ = days to recover)

δ Detection rate of infected individuals

1/τQ Average quarantine time

1/τ rQ Average quarantine time minus 1/τT
1/τT Average tracing time.

TT Contact tracing time. TT = 1/τT

� �(t),vaccination rate (per day) depending on time

TPR True positive ratio

FPR False positive ratio

AR Adoption ratio

TC Tracing coverage

cT True traced contacts ratio

cA False alerts ratio

IFR Infection Fatality Rate.

Table 2.   Some estimated parameters for the initial variants (year 2020) of COVID-192,3,27,36. The time unit is 
days. The column value shows the values used in our experiments. Note that some of these parameters can vary 
depending on the country and age group, as shown in the column range. Later variants, such as the extremely 
contagious Omicron, have different parameters.

Parameter Value Range

R0 3 [1.5,6]

β 0.52 [0.25,1]

γ 1/10 [1/15,1/5]

τQ 1/14 [1/20,1/10]

δ 0.01 [0.002,0.2]

IFR 1% [0.01,10]

v 0.8 [0.6,0.95]

S

QS 

RI

QT QI 

V

Figure 2.   Transitions of our epidemic model and their rates.
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in the decentralised approaches. After this tracing time, the infected individuals stay at class QI for the rest of the 
quarantine, 1/τ rQ = 1/τQ − 1/τT , and finally recover (transition QI → R ). Finally, transition I → R represents 
the individuals who remain undetected and recover from the disease, with a recovery rate γ . Note that this case 
also includes asymptomatic individuals.

Now we consider the effect of false alarms ( cA ). The effect of false alarms (false positives) is that some non-
infected individuals will be considered as infected and, therefore, wrongly quarantined. This corresponds to 
the transition S → QS , which considers the probability of not transmitting the disease (1− b) , and the ratio of 
false alarms generated, cA . Class QS is introduced to evaluate the individuals that are unnecessarily quarantined. 
When the quarantine ends (for 1/τQ days), these individuals return to the susceptible class (transition QS → S).

Finally, transition S → V  occurs when a susceptible individual gets vaccinated with rate � . Nonetheless, some 
of the vaccinated people could get infected. This is represented by transition V → I , with a rate of (1− v)KB I

N  , 
that depends on the weighted efficacy of the vaccines. In order to simplify the model, we do not consider that 
the vaccinated people are traced and quarantined. Note that, as a model, we have simplified or omitted some 
transitions with the aim of making the model amenable while keeping the fundamental behaviour that will help 
us to evaluate digital contact tracing.

From these transitions and rates, the epidemic model is defined as follows:

Note that, for simplicity of notation, the time has been omitted in all the classes, and in the K and B functions. 
For example, for class S, S′ = dI(S)/dt and S = S(t) ). This model is solved numerically, considering an initial 
value for I, R and S classes so S(0) = N − R(0)− I(0) , and the other classes are set to zero. The model can be 
solved for a given time (for example, one year), or until the infection is over.

Assessing the effectiveness of digital contact tracing.  The effectiveness of digital contact tracing can be assessed 
in several ways. The highest level of effectiveness would be when it could control an outbreak, that is, when the 
number of infected individuals decreases. Considering the Eq. (3) of the epidemic model, we can determine this 
condition when I ′ is negative as:

considering that KB = Reγ . We prefer to use the Re number as it is a more simple (and known) figure to express 
the intensity of an epidemic. If we analyse this expression, we can determine the main components that can 
lead to the control of an outbreak. The term (1−cT )S

N  is the proportion of susceptible people that can be infected 
without being detected and quarantined. Similarly, the term (1−v)V

N  is the ratio of vaccinated people that can be 
infected. If we substitute these terms in 4 by SRN and VRN we have:

Particularly, we can see that, in order to control an outbreak, we should reduce component SRN by improving the 
efficiency of contact tracing ( cT ) or by reducing the number of susceptible individuals, that is, reduce component 
VRN by improving the efficacy of the vaccines (v), reduce the transmission rate ( Re ) or, alternatively, increase 
the detection ratio ( δ).

Other important figures to assess the effectiveness are the whole number of infected individuals and deaths. 
These values can be obtained by solving the model for a given time or until the infection is over ( I < 1 ). Then, 
we obtain numerically the number of accumulated individuals infected over the evaluated period, considering 
the individuals who move from classes S to I. Note that we can also obtain the number of deaths by multiplying 
the whole number of infected people by the Infection Fatality Rate (IFR). Nevertheless, reducing these values 
(infected individuals) can imply the application of severe measures such as quarantines. Thus, we get the accu-
mulated number of people quarantined Qa , which is obtained as the number of individuals that transition to 
classes ( QS,QI and QT ). A highly effective contact tracing based quarantine will minimise the number of people 
quarantined while controlling the spread of the disease.

Finally, we can also evaluate the impact of false alerts ( cA ). As described in the model, less precise contact 
tracing increases the number of susceptible quarantined individuals QS , that is, the individuals that are wrongly 

(3)

S′ = −(1− cT )KB
I

N
S − cTKB

I

N
S − cAK(1− B)

QI

N
S

−�S + τQQS

I ′ = (1− cT )KB
I

N
S + (1− v)KB

I

N
V − δI − γ I

R′
= γ I + τQQI

Q′

S = cAK(1− B)
QI

N
S − τQQS

Q′

I = τTQT − τ rQQI

Q′

T = δI + cTKB
I

N
S − τTQT

V ′
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I

N
V

(4)
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(1− cT )S

N
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)

Reγ < δ + γ

(5)(SRN + VRN )Reγ < δ + γ
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detected and quarantined. So, we can count the individuals that transition into class QS as the number of gener-
ated false alerts.

Evaluation and results
This section has a twofold objective. Firstly, we evaluate the effectiveness of some deployed digital contact 
tracing apps under scenarios that resemble the ones generated by the COVID-19. The goal is to evaluate why 
digital contact tracing has not been as effective as expected. Secondly, we study and evaluate the conditions and 
configurations that could make it more effective in the future.

Effectiveness of deployed digital contact tracing.  In this section, we use our proposed methodology 
to evaluate some of the real contact tracing Apps used to fight against the COVID-19. Particularly, we firstly 
evaluate a decentralised approach such as England’s NHS COVID-19 App, which is based on the Google/Apple 
API. Secondly, we evaluate a centralised approach, such as those deployed in China (Health Code) and South 
Korea (Self-quarantine Safety Protection App).

In order to evaluate the effectiveness of the deployed digital contact tracing apps, we consider a scenario that 
resembles the ones caused by the COVID-19. Since the beginning, in the first month of 2020, the COVID-19 
generated several waves that have been mitigated by imposing different measures to reduce its diffusion. At the 
beginning of 2021, most countries started with vaccination, which seems to be the final solution to this pandemic. 
This scenario has been reproduced using our epidemic model, as shown in Fig. 3. We consider a population of 
50 millions, an initial outbreak with 10 infected individuals (that is, I(0) = 10 ), and the COVID-19 parameters 
shown in Table 2.

Specifically, we have modelled four waves with their subsequent measures, represented with three different 
intensity levels in the graph. The high level represents stringent measures such as a general lockdown; the medium 
level, social distancing and wearing masks; and finally, no measures (only at the beginning, when health authori-
ties were not aware of the risk of the CIVID-19 pandemic). In our modelled scenario, we can see the effect of 
the stringent measures, which reduced the effective reproductive ratio Re to values around or below one, and so 
did the spread of the virus. Finally, we can see the impact of vaccination, which reduced the spread of the virus, 
evidencing that herd immunity was near. Note that the vaccinated class (V) contains only the individuals who 
were vaccinated and had not been infected. The individuals in the recovered class (R) could have received the 
vaccine. At the end of the evaluated period, the total number of infected people was 12.7 million with a death 
toll of 127.000, which are coherent with the real figures of some European countries such as the UK, France, 
Italy and Spain.

Using this scenario, we evaluate the impact of digital contact tracing considering the most deployed platform: 
the one based on the Google/Apple API, which is a Bluetooth-based, decentralised approach with Opt-in activa-
tion. Particularly, we focus our study on England’s digital contact tracing App (see the end of section "Measuring 
tracing efficiency" for more details). Thus, we consider the following parameters: true positive ratio TPR = 0.69 , 
false positive ratio FPR = 0.45 , adoption ratio AR = 0.28 and tracing coverage TC = 0.8 . We also consider a 
distributed approach, so the average tracing time is two days ( 1/τT = 2).

The first outcome is that digital contact tracing was not able to control any outbreak with the configuration 
and performance of England’s App. Considering the threshold for controlling a COVID-19 outbreak determined 
by Eq. (5), we find that it is far from controlling the epidemic. Satisfying this condition would require an adoption 
ratio greater than 80% with a true positive ratio of 0.8, clearly an unrealistic goal. Considering the application of 
mild measures that could reduce the value of Re to values around 1.5, the utilisation required should have been 
65%, which is the value determined by the first models3,8,27.

Thus, discarded the outbreak control, we evaluated the effectiveness of digital contact tracing by determin-
ing the number of cases averted (infected individuals and deaths). We restricted our evaluation to the last four 
months of 2020 when digital contact tracing was initially introduced and used. Although in some countries these 
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Figure 3.   Real scenario for digital contact tracing showing the epidemic dynamics. Note the measures (meas.) 
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apps were active for several months more, the fact is that factors like starting the vaccination process, and a loss 
of confidence in them, caused their usage to decrease rapidly.

The results are shown in Fig. 4a. Compared to the results without digital contact tracing, the reduction of 
infected individuals is relatively small. During this period, the total of infected people was 3.57 million, compared 
to the 4.16 million if digital contact tracing was not considered. This means that approximately 0.59 million 
infected cases and 5900 deaths were averted. It goes without saying that every life saved counts, but more was 
expected. It is worth standing out that these results are quite similar to the ones presented by by Wymant et al.33, 
which evaluated the real effectiveness of the England NHS COVID-19 App for a similar period. These results 
were the consequence of applying selective quarantines, which is a very draconian (and annoying) measure. We 
can see the different types of quarantine in Fig. 4b, with an accumulated number of quarantined individuals 
( Qa ) of 1.89 million.

One of the causes of the low adoption ratio was the impact of false alerts, which undermined people’s con-
fidence in digital contact tracing. This is reflected by the QS line in Fig. 4b, which is quite high due to the mod-
erate-high false positive ratio (0.45). The total of individuals wrongly quarantined by false alarms is 0.6 million, 
justifying people’s loss of confidence in the application.

Note that the previous evaluation considers that some stringent measures were taken during the use of digital 
contact tracing. What would have happened if these measures had not been taken? We can see the results in 
Fig. 4c, where most individuals would get infected (around 35 million), and the death toll would be 350.000 
individuals.

The previous results have evidenced the limited effectiveness of the Google/Apple API based application (and 
particularly, the English NHS App). Now, we consider the App deployed in China (Health Code)49 and South 
Korea (Self-quarantine Safety Protection App)50. These applications were mandatory (so we consider an adoption 
rate of 80%) and used the centralised approach hence achieving full tracing coverage ( TT = 1 AND TC = 1 ). 
The detection of contacts was based on GPS and assisted with QR codes, which gives a smaller precision when 
compared to Bluetooth (51): true positive ratio TPR = 0.5 and false positive ratio FPR = 0.4 . Using these values, 
we repeated the same experiments and scenarios of the Google/Apple App shown in Fig. 4.

The results are shown in Fig. 5c. Firstly, we can see in Fig. 5a that the use of the Chinese/Korean digital tracing 
application combined with different measures significantly reduces the number of infected people. During this 
period, the total of infected people is reduced to 0.7 million (compared to the 3.57 million of the Google/Apple 
app.). This reduction has a significant effort, with a significant increase in the number of people quarantined, 
as shown in Fig. 5b. These results clearly reflect what happened in those countries, the infection was controlled 
better by imposing stringent quarantines. Finally, we evaluate the case when no other measures are taken. The 
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Figure 4.   Effectiveness of England’s NHS contact tracing App based on Google/Apple API between September 
to December 2020. In these figures, the susceptible individuals are not plotted. (a) Infected and recovered 
individuals under the real scenario; (b) People quarantined; (c) Infected and recovered individuals with no 
stringent measures taken.
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Figure 5.   Effectiveness of the Chinese/Korean tracing applications between Sep-Dic 2020. In these figures, the 
susceptible individuals are not plotted. (a) Infected and recovered individuals under the real scenario; (b) People 
quarantined; (c) Infected and recovered individuals with no stringent measures taken.
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results, shown in Fig. 5c, evidence that the outbreak cannot be controlled. Nevertheless, when compared to the 
ones in Fig. 4c, there is a significant reduction in the number of people infected.

Summing up, we have assessed the effectiveness of two different types of digital contact tracing apps. The 
ones based on the Google/Apple API were quite ineffective when compared to the Chinese/Korean ones. This 
improved effectivity is not only due to their high (mandatory) adaption rate but also due to their centralised 
architecture. Nevertheless, their low precision imposes a very high rate of (unnecessary) quarantines, so their 
efficiency is very low.

Controlling a future epidemic.  According to the previous evaluation, we have confirmed the relatively 
low performance of digital contact tracing in the COVID-19 real scenarios and the impossibility of controlling 
an outbreak. In this subsection, we study under which conditions a future virus outbreak could be controlled 
using Eq. (4). We do not know the intensity of a future epidemic, so this evaluation will depend on its repro-
ductive ratio ( Re ). For example, some very common infectious diseases have very high R0 values: rubella, 6–7; 
chickenpox, 10–12; measles, 12–16.

The efficiency of digital contact tracing can be measured by the ratio of contacts traced ( cT ). Additionally, 
other factors can reduce this required efficiency: the ratio of immunised individuals, which can comprise both 
the recovered individuals and the vaccinated ones, and the detection rate. The threshold plot is shown in Fig. 6, 
where the areas above the lines represent the values of cT necessary for controlling an outbreak depending on 
its reproductive ratio Re . Additionally, we plot several curves for different values of the ratio of immunised indi-
viduals and detection rate. As expected, we can clearly see that the greater the reproductive ratio, the greater the 
required ratio of contacts traced, and thus a greater efficiency is needed. This required efficiency can be lowered 
if the detection ratio is high or with the ratio of immunised people.

For example, for COVID-19, with a reproductive ratio Re = 3 and no immunised individuals, the required 
value of cT would be greater than 0.65, which is a very high value. Recall from section "Measuring tracing 
efficiency" that the England’s digital contact tracing cT values was 0.043. As shown in the figure, the required 
efficiency will depend on the intensity of a future epidemic. For example, with reproductive ratios below 2, and 
considering a high detection ratio, the required ratio of contacts traced will be around 0.3, which is still a high 
figure.

Summing up, it is essential to increase the ratio of contacts traced, and as detailed in expression 1 mainly by 
increasing the adoption ratio and also by obtaining a higher tracing coverage and true positive ratio.

How to improve the efficiency.  In this subsection, we study how to improve digital contact tracing effi-
ciency. It is clear that one of the main factors that affect efficiency is the adoption ratio. Considering the same 
scenario as in Fig. 4, if we increase the adoption ratio to 0.7, which returns a value of cT of 0.27, we can see in 
Fig. 7a that the reduction of infected individuals is quite significant (now 1.69 million), but at the cost of increas-
ing the number of quarantined people. A negative consequence of increasing the adoption ratio is the increase 
in the number of false alerts, and thus, the number of people wrongly quarantined (curve QS in Fig. 7b) due to 
the high value of the false positive ratio ( FPR ). If we improve the precision of digital contact tracing by reducing 
FPR to 0.1 and increasing the true positive ratio TPR to 0.8, we can see in Fig. 7c a significant reduction in the 
number of people quarantined. Particularly notable is the reduction in the number of false alerts. Increasing the 
precision also impacts slightly the number of infected people, which is reduced to 1.51 million.

Now, in order to evaluate the impact of these factors on efficiency, we consider a scenario where no stringent 
measures are taken (as the one shown in Fig. 4c), so people are only quarantined when detected positive, or 
through digital contact tracing (no general lockdowns). This should be one of the goals of using digital contact 
tracing: to reduce the number of people unnecessarily quarantined. The results are shown in Fig. 8. We can see 
that, even with an increase of the adoption ratio to 0.7, an excellent precision ( TPR = 0.8 and FPR = 0.1 ), and 

0 2 4 6 8 10 12 14 16

Reproductive ratio (R
e
)

0

0.2

0.4

0.6

0.8

1

R
at

io
 o

f c
on

ta
ct

s 
tr

ac
ed

 (
c

T
)

Im=0, =0.1
Im=0, =0.5
Im=0.25, =0.1
Im=0.25, =0.5
Im=0.5, =0.1
Im=0.5, =0.5

Figure 6.   Digital contact tracing thresholds for controlling an outbreak based on Eq. (4), considering different 
values of the ratio of immunised individuals (Im) and detection rate ( δ ). The pair of values above the lines 
results in a disease-free equilibrium.



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12728  | https://doi.org/10.1038/s41598-022-17024-2

www.nature.com/scientificreports/

with a contact tracing time of 1, the number of newly infected individuals in the considered period is still quite 
high (5.3 million).

Finally, we focus our study on the final number of infected and quarantined individuals as simple measures 
of the efficiency of digital contact tracing. We used a scenario similar to the previous one, where an outbreak 
of a future epidemic is produced with intensity Re , and after six months of digital contact tracing we obtain the 
percentage of infected and quarantined people. Initially, ten individuals get infected, and the detection ratio is 
γ = 0.01 . We repeated this experiment depending on Re , for different values of adoption ratio and considering 
several factors, such as the precision and the speed of contact tracing, which depend on the technology used. 
Note also that in the experiments, we have only plotted values between 1 and 6, as curves converge in this range.

The results are shown in Fig. 9. The first two Fig. 9a,d show the results for a digital contact tracing approach 
with parameters similar to the ones deployed for the COVID-19 ( TPR = 0.7 , FPR = 0.4 , TT = 2 , TC = 0.8 ). 
We can see that only when Re is lower than two and with high adoption ratios does the percentage of infected 
individuals remain low. In these cases, the proportion of people quarantined is not excessive, and thus digital 
contact tracing can be effective. Nevertheless, when Re is higher than 2, the infected and quarantined people are 
too high, so digital contact tracing is not applicable. Note that percentages greater than 100 mean that the same 
individual has been quarantined more than once or for periods longer than 14 days.

If we improve the accuracy by increasing TPR to 0.9, and decreasing FRP to 0.2, we can see that, although 
the infected individuals are slightly reduced (see Fig. 9b), the proportion of people quarantined is significantly 
reduced (the curves are slightly shifted to the right in Fig. 9e). This reflects a more selective (and effective) selec-
tion of individuals to quarantine. Finally, if we consider the utopian goal of no false positives and negatives, 
TPR = 1 and FRP = 0 , we can see that the individuals quarantined are reduced to their minimum (Fig. 9f), 
reducing the number of infected people slightly. Summing up, improving accuracy has a significant impact on 
reducing the number of people quarantined.

Finally, we study the impact of having a centralised digital contact tracing solution, which relies mainly on 
the tracing time TT and the tracing coverage TC. The previous experiments considered a decentralised approach, 
with TT = 2 days and TC = 0.8 . We repeated these experiments considering a centralised approach, with TT = 1 
and TC = 1 . The infected individuals are shown in Fig. 9g–i. Note that the results for the quarantine are not 
shown as they are very similar to Fig. 9a–c. Compared to the results obtained in the decentralised approach, 
we can clearly notice greater effectiveness at reducing the infected individuals, being particularly significant for 
higher adoption ratios (0.6 to 1). It is noteworthy that, with adoption ratios of 0.8 and 1, a centralised digital 
contact tracing can control outbreaks with Re of 3 or higher. Nevertheless, this is an unfeasible scenario (can only 
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Figure 7.   Efficiency of the contact tracing application considering an adoption ratio of 0.7. (a) Infected 
and recovered individuals under the real scenario; (b) People quarantined; (c) People quarantined when the 
precision is increased to FPR = 0.1 and TPR = 0.8.
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excellent digital control tracing parameters: AR = 0.7 , TPR = 0.8 and FPR = 0.1 , TT = 1 . (a) Infected and 
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be considered for cohorts). If we consider more reasonable adoption ratios, that is, between 0.2 and 0.6, and the 
use of other measures that can reduce the effective reproductive ratio to values below 2, we can effectively reduce 
the number of infected individuals using a centralised digital contact tracing with greater accuracy. This is clearly 
noticeable when we can compare the infected individuals in Fig. 9h against the ones in Fig. 9a.

Summing up, although it is not directly a technical factor, we have seen that the critical factor impacting the 
overall effectiveness is the adoption ratio. As detailed in section "Digital contact tracing architecture", we can 
increase this adoption ratio, for example, with an opt-out app set up or by using it only for cohorts. Regarding 
technical factors, a centralised approach is clearly more effective than the decentralised one, reducing the number 
of infected individuals for the same value of Re . Finally, increasing the accuracy has a huge impact on reducing 
the number of individuals quarantined.

Discussion
The proposed model for evaluating the effectiveness and efficiency of digital control tracing has shown the main 
aspects that need to be improved for these applications’ current and future use.

Our model considers (as most epidemic models do) a homogenous population and contact distribution, 
which allows evaluating the dynamics of an epidemic in great populations in a speedy way. This is a shortcom-
ing if we want to evaluate the particular spread of the disease depending on location, contact patterns, or age 
groups. To this end, we should consider the use of stochastic models or agent-based models, which would require 
a complete definition of the contact patterns and locations, and usually are computer-intensive based simulations. 
Nevertheless, as shown in the evaluation section for the English, Chinese and South Korean Apps, our model is 
a good approximation when considering a country’s population.

Although it is not a technical factor, the adoption ratio is the main factor that impacts the effectiveness of 
digital contact tracing. Only with high adoption ratios can an outbreak be controlled. Nevertheless, this is not 
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Figure 9.   Future digital contact tracing efficiency depending on the reproductive ratio Re and for several 
adoption ratios, showing the percentage of the population infected and quarantined. Figures (a) and (d) show 
the results for a digital contact tracing approach with parameters similar to the ones deployed for the COVID-
19. Figures (b) and (e) show the results when the accuracy is increased ( TPR is increased (0.7 to 0.9), and FPR is 
reduced (0.4 to 0.2). Figures (c) and (f) show a full accuracy scenario with TPR = 1 ; The last row, figures (g), (h) 
and (i), show a centralised approach ( TT = 1 , TC = 1 ) with the same accuracy than figures (a), (b) and (c).
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a realistic scenario in most cases, and digital contact tracing must rely on (and complement) other measures to 
fight against an epidemic.

Regarding the efficiency of digital contact tracing, we have shown that improving accuracy on the estimation 
of risky contacts is a crucial issue, not only to reduce the quarantined people but also as a way to improve the 
people’s true in the application, thereby improving the adoption ratio. This accuracy is mainly a technical issue, 
which in the future can be improved with the combination of Bluetooth distance estimation with other sensing 
and machine learning techniques. Another key aspect is how the contacts are processed. A centralised approach 
will provide a faster tracing time by improving its efficiency. Nevertheless, it is necessary to ensure the required 
privacy requirements.

Summing up, digital contact tracing should be used as an add-on to standard epidemic mitigation measures, 
such as social distancing or manual contact tracing. This way, it can contribute to the reduction of cases while 
being more selective than general lockdowns.

Conclusions
The key (and regretful) issue is why digital technology has failed to stem the worst pandemic in a century. The 
causes are not only technical; in fact, lack of coordination between countries and states, test shortages, and 
mistrust of technology are cited among the main social and political causes.

Summing up, based on the evaluations performed using our proposed model, we can derive the following 
conclusions:

•	 The efficacy of the deployed digital contact tracing applications, with an adoption ratio of around 20% (in 
countries where they were not mandatory), was quite limited. Therefore, it was necessary to use other meas-
ures.

•	 Adoption ratio is the critical factor in improving its effectiveness. Although it is not specifically a technical 
factor, this adoption ratio can be increased by installing and activating the app by default (known as the opt-
out strategy) or by using it only for cohorts (subsets of the population).

•	 A higher accuracy in detecting the risky contacts is required to avoid false alerts and an excessive number 
of quarantined individuals. This accuracy plays a key role, as false alerts can undermine users’ confidence in 
digital contact tracing, thus reducing its adoption ratio.

•	 The implemented decentralised approach penalised the performance of digital contact tracing. Thus, a cen-
tralised approach provides faster contact tracing, which is essential to detect and quarantine possible newly 
infected individuals.

•	 Fortunately, with these technical improvements, and when combined with other mitigation measures, digital 
contact tracing can avert a reasonable number of infected individuals and deaths, even with adoption ratios 
around 20%, and high reproductive ratios.

Data availability
All the code used in the paper, including the models, is available on the following GitHub site: https://​github.​
com/​GRCDEV/​DCT_​EpiMo​del.
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